
P H YS I CAL R EVIE%' VOLUME 122, NUMBER 3 MA Y 1, 1961

~+ —p Elastic Scattering at 310 Mev: Phase-Shift Analysis*
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A comprehensive phase-shift analysis of 2I-+—p elastic-scattering
data at 310-Mev incident-pion laboratory kinetic energy has been
performed. The experimental data utilized include measurements
of the differential and total cross sections and of the recoil-proton
polarization. The D-wave phase shifts were found to be de6nitely
needed in order to attain an adequate 6t to the data. A general
search for phase-shift solutions was carried out, using S-, P-, and
D-wave phase shifts. One solution —of the Fermi type —was found
that 6ts the data signi6cantly better than any of the other solu-
tions obtained. The calculated errors in the phase shifts of this
set vary from 0.4 to 0.6 deg. Because it was felt that these errors
might be deceivingly restrictive, the effects of small nuclear
F-wave phase shifts on the results of the analysis were investi-
gated and were found to be large: not only are the uncertainties
in the original Fermi-type solution increased, but additional sets
of phase shifts arise that 6t the data well. One of these new solu-
tions is similar to the original Fermi set except that the magni-
tudes of the phase shifts in this new fit are in general larger than
those in the initial solution, and the signs of the D-wave phase

shifts are reversed. The nuclear phase shifts in the original Fermi
solution and their rms errors are (when F-wave phase shifts are
allowed): S3, 1=—17.2~2.6 deg, P3, 1=—2.9&4.0 deg, P3, 3= 135.0
~0.6 deg, D3, 3 =3.1+2.6 deg, D3, 5

—4.9&2.1 deg, F3, 5—0.5+0.6
deg, Ii3, 7= —0.6~1.4 deg. Although theory appears to favor this
set, further theoretical and experimental evidence is desirable.
The values given here for the 6rst 6ve phase shifts approximate
the corresponding values obtained when the ti-wave phase shifts
were assumed negligible. However, all except P3, 3 fall outside the
limits set by the small original errors. Inelastic-scattering processes
were neglected during the phase-shift analysis. Calculations indi-
cate that, if these processes could properly be taken into account,
any changes in the quoted values of the phase shifts would prob-
ably be well within the corresponding errors given here. Extension
of the phase-shift inquiries to include G waves was attempted,
but it was observed that the available data and theory do not
allow the G-wave interaction to be significantly incorporated into
the analysis.

I. INTRODUCTION

A SERIES of experimental measurements on Ir+ —p
scattering at an incident-pion laboratory kinetic

energy of 310 Mev has been completed. Data obtained
include values of the recoil-proton polarization at four
angles of observation, ' differential cross-section (DCS)
measurements at 23 distinct angles, ' and total cross-
section values. ' The polarization and cross-section data
are noteworthy because of the relatively high accuracy
that has been attained.

Scattering data such as these can be analyzed in
terms of phase shifts, by using the method of partial
waves. The amount of success with which a phase-shift
analysis can be performed is a measure of the complete-
ness of the experimental data at the energy being con-
sidered. A satisfactory comprehensive theory must pre-
dict the behavior and magnitude of the phase shifts.
These parameters therefore provide a meeting place for
theory and experiment. The more accurately the phase
shifts are known, the more severely is an acceptable
theory limited.

Many phase-shift analyses of sr+ —P cross-section
data have been performed in the past. At pion labora-
tory kinetic energies below about 200 Mev, the experi-
mental data have been fitted satisfactorily by using
only the first two terms of the partial-wave expansion—
that is, S and I' waves. Above the 200-Mev energy

region, the possible participation of D waves in the
pion-proton interaction has made the results of the
data analyses uncertain. It has been dificult to deter-
mine the values of the D-wave phase shifts because of
the insensitive manner in which these parameters enter
into the cross-section equations and the relatively large
errors in many of the cross-section measurements. The
indefiniteness of the D-wave phase shifts has introduced
uncertainties in other phase shifts. In these earlier
analyses, not only have the values and signs of some of
the phase shifts in a solution been uncertain, but also
several different types of solution have been obtained.
These dissimilar sets of phase shifts are all good fits to
the data.

We have performed a phase-shift analysis, employing
the experimental data now available at 310 Mev. The
phase-shift uncertainties just mentioned have been
investigated. Not only has the role of D waves in the
Ir+—p interaction been examined, but the available
data also have enabled us to extend the phase-shift
investigations to include Ii waves.

The equations used in our analysis are discussed in
Sec. II. The diGerent types of phase-shift ambiguities
that have arisen in the past are briefly mentioned there.
In Sec. III, we describe our phase-shift investigations,
and present the results obtained. A discussion of these
results follows in Sec. IV.'

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Lawrence Radiation Laboratory, University
of California, Livermore, California.

' J. H. Foote, O. Chamberlain, E. H. Rogers, H. M. Steiner,
C. E. Wiegand, and T. Ypsilantis, preceding paper LPhys. Rev.
122, 948 (1961)g.

2 Ernest H. Rogers, Lawrence Radiation Laboratory (privat
communication).

IL BASIC EQUATIONS AND RELATED DISCUSSION

In this section, we present the equations used in our
phase-shift analysis. General expressions are given for

~ A more-detailed account of this work can be found in James H.
e Foote, thesis, Lawrence Radiation Laboratory Report UCRL-

9191, 1960 (unpublished).
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the non-spin-Qip and spin-Qip elastic-scattering ampli-
tudes as derived through the use of the method of
partial waves. These equations apply to m+ —p scatter-
ing and take into account both nuclear and Coulomb
effects. First-order relativistic corrections to the Cou-
lomb-scattering amplitudes will be incorporated into
these equations. We include in this section the expres-
sions, in terms of the scattering amplitudes, for the
DCS and recoil-proton polarization in pion-proton
elastic scattering. Finally, the various phase-shift
ambiguities are noted, and our notation for the phase
shifts is given.

It is convenient to discuss the pion-proton scattering
in the center-of-mass (c.m. ) system. One generally in-
vestigates the scattering that takes place in the hori-
zontal plane, which is experimentally the simplest
plane to treat. Consider a right-handed x-y-s Cartesian
coordinate system, with the pion and proton moving
along the s axis before the collision. Let the scattering
occur at the origin and allow the +y direction to be up,
perpendicular to the plane of the scattering. We will
use the symbol 0, to represent the angle in the c.m.
system between the direction of scattering and the
initial direction of motion of either particle. This angle
will be referred to as the c.m. scattering angle.

A. Scattering Amplitudes

The non-spin-Rip and spin-fhp scattering amplitudes
in m+ —p elastic scattering can be written

and

exp( ig ln(—sin'(8/2)])
2 sin'(8/2)

(bl,+ exp(2ibi, +)—exp(2' I,) )
+X P (L+1)!

L 0 2i

(br, exp(2ibl, )—exp(2iC r) )
! Er, (cos8), (1)

2i

bI+ exp(2ibr+) br, exp(—2ibi, )
&(8,~)=l Z

2i

)&Dz, Yr,+'(8,&) (2)

The term "non-spin-Qip" refers to the type of scattering
in which the component of the proton spin in the direc-
tion of the incident beam is unchanged; "spin-Qip"
refers to the scattering in which the z component of the
proton spin is reversed. In Eqs. (1) and (2), g(8) is the
non-spin-flip scattering amplitude, h(8,$) is the spin-flip
scattering amplitude, L is the orbital angular-momen-
tum quantum number, 8 and p are the spherical angular
coordinates dining the direction of scattering of the
particle (either pion or proton) considered to move in
the +s direction before the collision, K is the wave-

4 The angle 8 is measured with respect to the +s axis, and @
is measured in the x-y plane with respect to the +x axis, the +y
axis lying at @=90deg.

length of either particle, divided by 2m, in the c.m.
system, 8&+ are the phase shifts describing the total
(nuclear plus Coulomb) interaction and relating to
states with a specified L and with J=L+—,', where J is
the total angular-momentum quantum number (these
phase shifts are real quantities), br+ are the "inelastic
parameters" (these are real numbers with magni-
tudes less than or equal to unity, and take into ac-
count inelastic reactions; they are all equal to unity
only if no inelastic scattering occurs), and Pl. (cos8) is
the I.egendre polynomial. In addition, we have DI.= L4n-L(L+1)/(2L+1)]**, and

Yl,+'(8,&)= spherical harmonics

2L+1 q& d
! sin8 LEi, (cos8)]e+'&. (3)

(4s L(L+1)) d(cos8)

For L=O, the quantity C» is zero; for L&~1,

Ci, ——Q tan '(g/x),

with q= e /Av (positive for m+ —p scattering), where e is
the laboratory velocity of the incident pion.

Equations (1) and (2), in a slightly different form
and with the inelastic parameters set equal to unity,
can be found in Critchfield and Dodder. ' These equa-
tions take into account both Coulomb and nuclear
scattering. Although we will refer to 4 I. as the nonrela-
tivistic Coulomb phase shift of order L, it is actually
the difference between the nonrelativistic Coulomb
phase shifts of order L and of order zero. ' The upper
signs in the expression for the spherical harmonics are
to be used when the proton spin is pointing in the +s
direction before the collision; the lower signs, when the
proton spin is initially pointing in the —s direction.

The first term in Eq. (1) is the nonrelativistic Cou-
lomb-scattering amplitude, which approaches infinity
as the scattering angle approaches 0 deg. Because of
this singular behavior, we will find the form of Eq. (1)
advantageous. The summation in this expression for
g(8) contains just the difference between the total and
the nonrelativistic Coulomb-scattering amplitudes, and
is expected to converge more rapidly than an expansion
in which the nonrelativistic Coulomb-scattering ampli-
tude has not been separated out.

The phase shifts always enter into the equations in
the form 261.+. Thus multiples of 180 deg can be added
to or subtracted from the phase shifts without changing
any function of these parameters. Before quoting phase-
shift values, we will frequently make changes of 180
deg in order to reach a desired angular region.

I.et us divide the phase shifts describing the total
interaction into a pure Coulomb part and an additional

C. L. Critchfield and D. C. Dodder, Phys. Rev. 76, 602 (1949}.' The nonrelativistic Coulomb phase shift of order zero is given
by ga ——argF (t+~g).
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portion that arises only when the nuclear interaction
is added to the Coulomb interaction. We then can write
the total phase shifts as 8r,+=Cr.++Sr„~+, where the
symbols C»+ represent the relativistic Coulomb phase
shifts of order L and are set equal to C i+aC r+.r The
quantities ACI.+ are corrections to Cl, (the nonrela-
tivistic Coulomb phase shift) due to modifications of
the nonrelativistic Coulomb scattering. The modifica-
tions that we will discuss are the relativistic corrections
given by Solmitz. ' The quantities SL, ,&+ approximate
the pion-proton nuclear phase shifts of order L. By
nuclear phase shifts, we mean those that would de-
scribe the interaction if no Coulomb eGects existed. It
is to be stressed that the 81.,&+ are only approximations
to the nuclear phase shifts; the quantities obtained
when the pure Coulomb phase shifts are subtracted
from the total phase shifts still contain remnants of
the Coulomb interaction. We assume that the addi-
tional corrections needed to obtain the true nuclear
phase shifts are small.

and
:(P.P.)+-:-(2" 1)P"j/(-1+P.p,),

B=L:(~.p.p )-+-.'(2" 1)p"j!(—1+p.p.)
Here pr and p are the c.m. velocities of the proton and
pion, respectively, divided by the velocity of light, and
p~ is the magnetic moment of the proton in nuclear
magnetons. The other quantities in Eqs. (5) and (6)
have been previously defined. These formulas were
obtained from Eqs. (2) and (3) of Solmitz', we used the
relationship v/c= (P +Pi )/(1+P Pp), where (as in the
expression for ri) s is the laboratory velocity of the
incident pion. The effect of the magnetic moment of
the proton is included in these corrections. The double
sign before the expression for AA, q, and the e+'& factor
after, are necessary to account for the two possible
initial spin states. The double-sign convention is the
same as in Eqs. (2) and (3) of this report. The order
of these signs has been chosen so that the relative

' As in the case of 4L„ the phase shifts bl.+ (and CL,+) are ac-
tually the differences between the total phase shifts (and the rela-
tivistic Coulomb phase shifts) of order I. and the nonrelativistic
Coulomb phase shift of order zero.

Frank T. Solmitz, Phys. Rev. 94, 1799 (1954).

B. Inclusion of First-Order Relativistic
Coulomb Corrections

First-order relativistic corrections to the nonrela-
tivistic Coulomb-scattering amplitudes can be written

Ago= $riA (non-spin-flip correction),
and

XqB sine
Aho = W e+'e (spin-Rip correction), (6)

2 sin'(0/2)
where

0.00
0.44
0.66
0.81
0.92

0.09
0.09
0.06
0.04
0.03

—0.17
—0.09
—0.06
—0.04

0.09
0.53
0.72
0.85
0.95

~ ~ ~

0.27
0.57
0.75
0.88

phase of the nuclear and Coulomb spin-Qip scattering
amplitudes in Eq. (1) of reference 8 agrees with the
corresponding relative phase in our Eq. (8).

To incorporate these corrections into our analysis,
we decompose them into partial waves. This allows
them to be separated into two parts —one corresponding
to states with L&~L, and the second containing the
remainder. The quantity L,„ is the maximum value
of the quantum number L whose related partial wave
is affected by the nuclear interaction. For L&~L,„,
unitarity is maintained by employing the usual partial-
wave expressions but now interpreting part of each
phase shift as arising from the correction terms. These
phase-shift corrections are estimated by comparing the
first-order Solmitz corrections with Eqs. (1) and (2)
taken to lowest order. Our basic assumption is that these
corrections to the Coulomb phase shifts are not altered
by the other interactions. We subtract them, along with
the nonrelativistic Coulomb phase shifts, from the total
phase shifts, to obtain estimates of the nuclear phase
shifts. In contrast to the method for L&L, , the part
of the correction Ah& for L)L, is simply added to
the rest of the spin-Aip scattering amplitude, with no
attempt to preserve unitarity in the higher order states.
Because Ag~ is independent of angle, it is entirely
taken into account by the correction to the S-wave
phase shift.

The procedure just described yields the following ex-
pressions for the corrections to the nonrelativistic
Coulomb phase shifts:

hC'o(= AC o+) =Age/K,

EC i,+=riB/(L+1) for L&~1,
ECI. = riB/L for L)~ 1—.

Using these results and Eq. (4), we can compute the
numbers presented in Table I. It is observed that the
quantities ACI.+ are small and, for low L, CI, is also
small. Thus, for low L and tI not too near 0 deg, the
approximations made in expanding Eqs. (1) and (2)
to first order (with only the Coulomb interaction
allowed) are justified.

Handling the Solmitz corrections as discussed, we
can write the non-spin-Rip and spin-Rip elastic-scatter-

TABLE I. Nonrelativistic Coulomb phase shif ts, erst-order
relativistic corrections, and corrected Coulomb phase shifts (ail
in degrees) at an incident pion laboratory kinetic energy of 310
Mev. The signs given here apply to m+ —p scattering.
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ing amplitudes as

'Ag

g (8)= — exp{ —ig lnI sin'(8/2) j)
2 sin'(8/2)

(br+ exp (2ibr,+)—exp (2' r) )
(I,+1) I

2i )
(br, exp—(2iBr,

—
)—exp(2ic I))

I Pr, (cos8), (7)
2i

and
XgB sine

h (8,y) = W e+'4'

2 S1112(8/2)

+ma~ br+ exp(2i81+) —br, exp(2i8r, )
+X P

2iL=l

t
2L+1 q—itB

I I D.I."(8,~) (8)
&L(L+1)i

C. Cross-Section and Polarization Expressions

To obtain expressions for the DCS and recoil-proton
polarization in elastic m+ —P scattering in terms of
phase shifts, when both nuclear and Coulomb eGects
are present, we use the equations

and
I(8..-.) = Ig-I + Ih -I, (9)

I'(8, )= 2 Im(g *hp )/I(8, ). (10)

Here the quantity g is given directly by Eq. (7), and
hp is given by Eq. (8) when one sets &=0 or 180 deg
and employs the upper sign in each place where double
slglls occur.

' H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1957).

The part of the correction Aht.- for L&L,„has been
included in h(8, &) by adding the entire Abc and then
subtracting oG the L~&L portion. We summarize the
sign conventions employed in Eqs. (7) and (8):

(a) In each place where double signs occur in the
expression for h(8,&), the upper sign is to be used when
the proton spin is pointing in the +s direction before
the collision; the lower sign, when the proton spin is
initially pointing in the —s direction.

(b) The & superscripts on 8i, and bl. refer to states
with J=L+-', .

Equations (7) and (8) are similar to expressions that
are obtained if one simply adds the nuclear and Cou-
lomb scattering amplitudes. However, differences exist
because the method presented here adds nuclear and
Coulomb phase shifts rather than amplitudes for
L&~L,„. Except for the modifications due to the
Solmitz corrections, our approach is essentially that
used by Stapp, Ypsilantis, and Metropolis. '

Equation (10) follows from the results of Fermi's
article, '0 and Eq. (9) can be found, in a somewhat
different form, in Bethe and de Hoffmann. "In obtain-
ing Eq. (10), we have used the polarization definition
I'= (N~ Nn—)/(N~+Ng&), where N~ and Nn are the
intensities of recoiling protons with their spin vectors
pointing in the +y (assumed up) and —y (assumed
down) directions, respectively. The subscripts u and P
denote the proton spin states in which the spin points
in the +s and —s directions, respectively. The first
subscript on g and h refers to the spin state after the
collision, and the second to the spin state before the
collision (the reverse of Fermi's subscript notation).
In obtaining Fq. (10), we have used hp„———h p, a rela-
tionship that can be seen from Eq. (8) to be valid for
&=0 and 180 deg. This specification of the p value is
actually no restriction because one may choose the x—z

plane, which contains &=0 and 180 deg, to coincide
with any scattering plane of interest. With p specified,

g and hp depend only on the one angular coordinate
0. Because 0 can refer to the angle between the direction
of scattering and the initial direction of motion of
either particle, we have used the symbol 8, in Eqs.
(9) and (10), following the definition at the beginning
of Sec. II,

D. Ambiguities and Phase-Shift Notation

Owing to the nature of the equations, more than one
set of phase shifts have arisen in the analysis of pion-
proton scattering data. Each set has distinct char-
acteristics and, within certain limitations, yields a
satisfactory fit to the experimental data. It is important
to determine which of the several possible solutions
corresponds to the true solution. The various uncer-
tainties in the x+—P phase shifts may be classed as the
Fermi- Yang-Minami ambiguity, " '4 the D-wave phase-
shift ambiguity, " and the uncertainty in the absolute
sign of a given set of phase shifts. "We shall let the term
"Minami-Yang" refer to the set of phase shifts obtained
when the Minami transformation is applied to the
Yang set," as opposed to the "Minami" set, which is
similarly obtained from the Fermi-type solution.

The phase-shift notation that we will employ is given
in Table II. The conventional symbols for the S-, P-,
and D-wave phase shifts have been modified to present
a consistent notation when F waves are included in the
analysis. As before, the first subscript is twice the total
isotopic spin, and the second is twice the total angular

' E. Fermi, Phys. Rev. 91, 947 (1953).
"H. A. Bethe and F. de Hoffmann, Mesons and Fields (Row,

Peterson and Company, Evanston, Illinois, 1955), Vol. II, p. 65.
'2 H. A. Bethe and F. de Hoffmann, reference 11, Sec. 32.
» S. J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 110,

1174 (1958)."Shigeo Minami, Progr. Theoret. Phys. (Kyoto) 11,213 (1954);
S. Hayakawa, M. Kawaguchi, and S. Minami, Progr. Theoret.
Phys. (Kyoto) 11, 332 (1954)."E. Clementel and C. Villi, Suppl. Nuovo cimento 3, 474
(1956); Nuovo cimento 5, 1343 ('1957).
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TABLE II. Phase-shift notation for m+ —P scattering.

1/2
1/2
3/2
3/2
3/2
5/2
7/2

Phase-shift
symbol

S3, II 3, 1

P3, 3

D3, 3

D3, 5

~3, 5

momentum. Because we are dealing with m+ —p scatter-
ing, only the state with isotopic spin of —, enters into
the interaction.

A. General Method

In the analysis of our experimental cross-section and
polarization data, we used an IBM-704 electronic com-
puter and the formulas presented in Sec. II. The grid
search procedure was employed, in which the phase
shifts are varied in cycles. '7 When varying a phase
shift by the increment 6, our computer program makes
use of the equality exp(2i(3+6)7=exp(2i8))&exp(2ih).
This equation, when separated into real and imaginary
parts, contains the sine and cosine of 28 and 2A on the
right-hand side. After these four trigonometric func-
tions have been initially calculated, variations of the
size 6 can be made in 8 without the computation of any
new trigonometric functions. Because only relatively
simple arithmetic operations are involved, this method
reduces the computational time. "

Our program is arranged so that, in the search for a
fit to the data, the computer varies the phase shifts
but not the inelastic parameters. In the major portion
of our phase-shift investigations, and unless otherwise

'6 A preliminary discussion of our phase-shift analysis and its
results can be found in J.H. Foote, O. Chamberlain, E. H. Rogers,
H. M. Steiner, C. Wiegand, and T. Ypsilantis, Phys. Rev. Letters
4, 30 (1960).The numbers presented there differ somewhat from
the corresponding quantities quoted in this report because of
subsequent revision and extension of the data.

'7 E. Fermi, N. Metropolis, and E. F. Alei, Phys. Rev. 95,
1581 (1954).' We wish to thank Kent K. Curtis of the Mathematical and
Computing Section of the Theoretical Group, Lawrence Radia-
tion Laboratory, for suggesting this procedure. Appreciation is
also due Edwin M. Towster of the same department for other
useful programming ideas.

III. PHASE-SHIFT ANALYSIS

Our phase-shift analysis and the results obtained will

now be discussed. "We first examine the general method
used in these investigations. Then, we describe the
analysis involving 5, P, and D waves and the evidence
that the D-wave phase shifts are needed in order to
attain an adequate 6t to the data. The ambiguity in
the D-wave phase shifts is mentioned. Finally, the
inclusion of Ii waves in the analysis is discussed, and
also described is the attempt to add 6 waves.

stated, the inelastic parameters were assumed to be
unity; that is, only elastic scattering was allowed. This
assumption is reasonable owing to the apparently small
amount of inelastic scattering at 310 Mev (see Sec.
IV-A). If there were substantial inelastic scattering,
the inelastic parameters could be considerably less than
unity. We might then have had to vary both the in-

elastic parameters and the phase shifts in the search
for the true solution, and the analysis would have be-
come more complicated.

Although we generally disregarded inelastic scatter-
ing, we eventually wanted to investigate its influence
on the results of the phase-shift analysis. Our program
enables the computer to accept selected values of the
inelastic parameters and employ these initial values
throughout the search procedure. Various combina-
tions of these parameters can be chosen, the solution of
interest can be redetermined, and the resultant phase-
shift changes can be examined. In this way, one is able
to obtain estimates of the errors introduced into the
analysis by the assumption that all the inelastic
parameters are unity.

The predictions of a given set of phase shifts are
compared with the available experimental data by
computing the quantity M, where

X (')—X (') '

Here X;(' is the quantity X; as obtained from experi-
ment, 8, is the experimental error (standard deviation)
in X,'), and X;(') is the quantity X; as calculated by
the computer from a given set of phase shifts. We sum
over all the experimental measurements.

Expressing M in terms of quantities for which we
have experimental data, we write

Ik"- (1+e)Is" '
+Q

Iy(~) —1~(~)- ~

g(e) g(&)

where Pj'is the polarization of the recoil protons at the
c.m. scattering angle 8, .'', E, is the experimental
error in Pj(', II, is the elastic DCS for scattering at the
c.m. angle 0, (~), EA, ( ' is the experimental error in I~('),
e is the variable normalization parameter for the DCS,
E&'& is the experimental error in e (the experimental
value of e is 0&8'&), Ir is the total cross section (elastic
plus inelastic) between the cutoff angles 0, &'& and
0, ."), and E(~) is the experimental error in Iz ('). The
quantities I~') and P,"are calculated by using Eqs.
(9) and (10).The program computes Is" by integrat-
ing the elastic diBerential cross section over the
angular region between 0, (') and 8, "', and by add-

ing on the total inelastic cross section when it is as-
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sumed to be non-negligible. The first summation in the
expression for M extends over all angles for which
polarization data exist; the second summation, over all
angles for which elastic DCS data were obtained. We
assume that the experimental errors entering into M are
independent, normally distributed, and realistically
estimated.

The search program requires the computer to find a
set of phase shifts for which M has a minimum value,
beginning at a given set of phase shifts. In this way, a
least-squares fit to the data is attained. Such a fit
corresponds to a minimum point in the sense that a
change of &6&;„,& in any one of the phase shifts gives a
larger value of M than the value calculated at the
minimum. Here Ag;„,i is the smallest increment em-

ployed when the phase shifts are varied. The resulting
value of M may not have the absolute minimum magni-
tude obtainable, because the computer stops at the
first relative minimum that it notices. Different initial
sets of phase shifts can lead to different minima, some
of which may have even lower M values.

During the search procedure, the computer varies ~

in the same manner that it varies the phase shifts.
Thus the computer is able to modify the absolute scale
of the DCS in order to improve the fit to the data. The
experimental error in e, E", is comprised of the uncer-
tainties in the DCS absolute scale. Errors of this type
include uncertainties in the intensity and contamination
of the incident pi-meson beam and in the thickness of
the liquid-hydrogen target. Independent errors, such as
statistical counting uncertainties, are attached to each
DCS measurement individually and are denoted EI,& &.

These independent errors indicate the accuracy with
which the various measurements are known with re-
spect to one another (eBects of systematic uncer-
tainties in the shape of the DCS are discussed in Sec.
III-8). The use of the variable e enables the phase-
shift analysis to keep the independent errors in the
individual DCS measurements separate from the un-
certainties in the absolute- scale, thus allowing an
optimum amount of information to be obtained from
the DCS data and permitting independent errors in
the expression for M. Although we will generally dis-

regard e in our further discussion of the program and
when quoting results, it was always present in our
analysis.

Owing to the inQuence of the small relative error in
the value of I~~' used, the principal effect of c in our
analysis was to enable the elastic DCS curve to be
normalized to the total cross-section measurement. In
performing this normalization, we usually assumed that
we could neglect the inelastic-scattering contribution to
the total cross section. Because the amount of inelastic
scattering at 310 Mev is apparently not appreciable,
the error introduced by its disregard in the normaliza-
tion procedure appears to be small compared with the
error in the total cross-section measurement.

It is illuminating to visualize the hypersurface that

would be obtained if M could be plotted as a function
of the phase shifts. The region around a point where M
has a minimum value corresponds to a depression in the
hypersurface. In the phase-shift discussions to follow,
we will sometimes refer to this visual representation.

The usefulness of any possibly acceptable phase-shift
fit is increased if one can ascertain the accuracy with
which the experimental data determine the individual
phase shifts. We employed the customary method of
error calculation, which involves the error matrix.
Although the details of our calculation differ somewhat
from those described by Anderson et al. ,

" the general
method is the same. The square roots of the diagonal
elements of the error matrix give the rms errors in the
phase shifts. Each off-diagonal element is the product of
a correlation coefFicient and the two related rms errors.

As a check on the results obtained from the error
matrix, the rms errors in the phase shifts were also
calculated by a second method. In this method, one
phase shift is changed from its value at the minimum
and then held fixed while all the other phase shifts are
varied until M can be decreased no further. If we let
the resulting value of M be denoted Mo' and let Mo be
the value of M at the minimum point corresponding to
the solution under consideration, the change required
in the fixed phase shift to give a difference of unity
between Mo' and Mo is the rms error in that phase
shift. Errors in all the phase shifts can be calculated
in this way, but at the expense of considerably more
computer time than when the error-matrix method is
used. We obtained satisfactory agreement between the
results of the two methods of error determination.

3. The SPD Random Search"

The phase-shift investigations were begun with a
random search involving S-, I'-, and D-wave phase
shifts. In order to find every minimum that might lie
in the neighborhood of the true solution, the computer
was asked to begin searching at a large number of
random points scattered over the M hypersurface. A
total of 244 random sets of phase shifts were fed into
the computer. The values of all five phase shifts

(S3,i, P3, i, E3,&, D3, 3, D3,&) in every set were randomly
selected. The initial value of e was always zero. From
these 244 random positions on the hypersurface, the
computer searched and found 27 distinct clusters of
solutions (phase-shift fits). The solutions in each cluster
agree with one another to within a few tenths of a
degree in every phase shift. The different clusters ap-
parently correspond to various relative minima. Each
of the ten relative minima in the group with the lowest
values of M was detected by the computer at least five
times. If one assumes that the relative minima are

'9 H. L. Anderson, W. C. Davidon, M. Glicksman, and U. E.
Kruse, Phys. Rev. 100, 279 (1955).

20 The notation SPD will refer to our analysis involving S-, P-,
and D-wave nuclear phase shifts only. We will also use the
abbreviations SP and SPDF, which are variations of this notation.



PHASE —SH IF T ANAL YS IS

TABLE III. Experimental DCS measurements (in the c.m.
system) used in the phase-shift analysis. ~ The errors given are
standard deviations and are independent. Not included is an rms
error of approximately &6% in the absolute DCS scale.

I.o

0.8—
0.6—

C.m. scatter-
ing angle

(deg)
I(e. )
(mb/sr)

0.4— ~~Fermi Sp fit

14.0
19.6
25.2
30.6
34.6
36.2
44.0
51.8
56.8
60.0
69.6
75.3
81.6
97.8

105.0
108.1
120.9
135.2
140.6
144.7
152.2
156.4
165.0

18.71&0.60
16.05&0.46
13.82~0.31
12.99~0.25
12.28&0.27
11.65+0.27
9.82~0.15
8.59&0.26
7.54&0.28
6.58&0.22
4.73+0.10
3.62&0.09
2.77~0.08
1.66&0.07
1.51~0.06
1.62~0.07
2.08%0.08
2.93&0.14
3.36~0.12
3.76a0.15
4.10~0.21
4.51a0.17
4.88~0.12

0.2—

P 0

-0.2

-0.4

-0.6
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I'zo. 1. Experimental recoil-proton polarization measurements
given in Table V of reference 1. The solid curves represent the
its to the data predicted by the SPD solutions in Table IV of this
work. The SP ht, which is discussed in Sec. III-C, is indicated by
the dashed curve.

randomly spaced on the M hypersurface and can be
entered with equal ease, then the probability of having
overlooked a set of phase shifts with a low 3f value is
less than 1%.

Since the completion of our SI'D random search,
both the computer program and the input data have
been revised and extended. The most important changes
were the addition of a total cross-section measurement
and the inclusion of DCS data at angles sufFiciently
small so that Coulomb-nuclear interference sects are
noticeable. It is assumed that no new minima with low
values of M were created by the changes made. (The
validity of this assumption is supported by the results
of the SI'DF random search to be described in Sec.
III-D.) In general, the changes in the data and program
produced only small alterations in the phase-shift
values related to each minimum. The presence of the
DCS data at small angles caused the M values of
several of the original minima to increase considerably.
These minima correspond to sets of phase shifts that
give the incorrect sign for the Coulomb-nuclear inter-
ference eGects.

In all results to follow, we employ the revised and
extended data and program. The data used include
four recoil-proton polarization measurements, ' values of
the elastic DCS at 23 angles of observation, ' and a
total cross-section measurement of 56.4&1.4 mb (be-
tween the c.m. cutoff angles 14.'7 and 158.0 deg). ' The
polarization data are given in Table V of reference 1,
and the DCS data are listed in Table III of this report.
These experimental measurements are plotted in Figs.
1 and 2.

Of the 27 distinct sets of phase shifts found in the
SI'D random search, all but three have negligible
probabilities of lying in the vicinity of the true solution.
We base this statement on the y' distribution of sta-
tistical theory, which can be applied at least approxi-
mately to our results. " The z' distribution for 23
degrees of freedom is used here because we are en-
deavoring to fit 29 pieces of experimental information
(including e=0.00&0.06) with five phase shifts and the
parameter e. The 24 solutions that were discarded on
the basis of statistical theory have values of M in the
range 86 to 1100, and are therefore highly improbable
(the mean M value expected is equal to the number of
degrees of freedom). If the polarization data had not
been present in the analysis, some of these improbable
sets of phase shifts would have had low M values and
therefore could not have been discarded on the sta-
tistical basis alone.

Our three possibly acceptable solutions are presented
in Table IV. The phase shifts given there are of the
nuclear type. They were acquired by subtracting the
Coulomb phase shifts Cz,+, which are listed in Table I,
from the total phase shifts obtained by the search
program. The three solutions in Table IV are of the
Fermi type, Minami type, and Yang type, in order of
increasing M. The connections between these sets of
phase shifts are not precisely the relationships one
might expect because of the additional constraints

~' P. Cziffra and M. J. Moravcsik, Lawrence Radiation Labora-
tory Report UCRL—8523, 1958 |,'unpublished), p. 17; Frank
Solmitz, "Notes on the Least-Squares and Maximum-Like1ihood
Methods, " Institute for Nuclear Studies, The University of
Chicago (unpublished report).
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nuclear interference in the forward direction of scatter-
ing, we can definitely exclude them by using the DCS
data at small angles (see I'ig. 2).

Figures 1 and 2 show the manner in which the SPD
solutions in Table IU fit the data. The DCS curves
calculated from the Minami and Yang sets of phase
shifts are not shown; they closely resemble the Fermi
plot. All three phase-shift sets give values for the total
cross section that are in good agreement with the experi-
mental measurement.

We present in Table V the error matrix that is associ-
ated with our SPD Fermi solution. The phase-shift
uncertainties obtained from this matrix are based on
the errors in the experimental data. In order to make
the problem manageable, we have neglected the sys-
tematic uncertainties in the shape of the DCS and have
used only the independent uncertainties referred to in
Sec. III-A. It is these independent errors that are
given in Table III and shown in Fig. 2. We investigated
the inhuence on the phase shifts of the systematic un-
certainties just mentioned, and found the effects to be
small compared with the rms errors obtained from the
error matrix for the SPD Fermi solution.

TABLE V. Error matrix for the SPD Fermi solution.
The matrix elements are in (deg)s.

created by the polarization data. However, the features
that characterize these solutions can be noted.

Two other sets of phase shifts are good fits to all but.
the DCS data at small angles. These solutions are
similar to the Fermi and Yang fits in Table IV except
tha tthe signs of most of the phase shifts are opposite
to the signs of the corresponding quantities in the table.
Because these two solutions give destructive Coulomb-

TABLE IV. Solutions found in the SPD random search that best
6t the experimental data. The mean iV value expected is 23.

Type of
solution

Fermi
Minami
Yang

15.8 —18.5
32.0 —7.1
37.7 —23.2

Nuclear phase shift
&3, 3

—4.7—22.3
126.2

134.8—1.9
159.0

(deg)
Dg, a Dg, g

1.9 —4,0
135,6 0.8

7.5

I I

0 30 60 90 l20 l50 l80

8, (deg)

FIG. 2. The experimental c.m. differential-cross-section (DCS)
measurements given in Table III have been multiplied by 1+& to
normalize them to the total cross section. The value of c used
(—0.018) is that giving the minimum magnitude of 3f for both
the SPD and SP Fermi-type solutions. Independent errors only
are shown. The solid curve, which represents the Fermi SPD
solution, fits the data well. The dot-dash curve at small angles
shows the behavior of the SPD Fermi and Yang solutions that
possess phase-shift signs opposite to those given in Table IV. The
curve with short dashes, shown only at large angles, is the Fermi
SP Gt discussed in Sec. III-C. It is given only where it deviates
sufficiently from the SPD fit to be easily drawn.

S3, i P3, i P3, 3 D3, 5

P3, i
P3, 3

D3, 3

D3, 5

0.41 0.26 0.17
0.32 0.05

0.42

0.11
0.11—0.01
0.13

—0.20—0.18
0.05—0.10
0.19

C. Inadequate SP Fit; Ambiguity in the
D-Wave Phase Shifts

Besides our SPD analysis, we have also analyzed the
data by assuming that the pion-nucleon nuclear inter-
action affects only the S and P waves. The best SP
fit that we obtained is given in Table VI; the corre-
sponding polarization and DCS curves are shown in

Figs. 1 and 2. This solution is of the Fermi type and is
obviously an inadequate fit to the experimental data.
The poor fit is shown numerically in the large M value
of 92.5, Although the D-wave nuclear phase shifts are
small in our SPD Fermi set, they are de6nitely needed
in order to obtain a satisfactory fit.2'

By comparing the SP and SPD Fermi solutions, we
observe that the inclusion of D waves in the analysis

22 The D-wave phase shifts agree with those found by E. L.
Grigor ev and X.A. Mitin at 307 Mev; see Soviet Physics —JETP
57(10), 295 (1960) (translation).

In the remainder of this section, our attention will
often be concentrated on the Fermi solution given in
Table IV. The reasons for disregarding the Minami
and Yang sets of phase shifts will be brieQy discussed
in Sec. IV-A.
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has a noticeable eRect on S3 ~ and P3 i. Each is reduced
in absolute magnitude when the D-wave nuclear phase
shifts are allowed to have values other than zero. Only
the phase shift P3 3 is rather insensitive to the number
of partial waves included in the analysis.

When our four polarization measurements are ex-
cluded from the SPD analysis, an uncertainty appears
in the D-wave phase shifts. This ambiguity was men-
tioned in Sec. II-D. It gives rise to two Fermi-type
solutions yielding low values of M, instead of just the
one previously discussed. The two Fermi phase-shift
sets, obtained when only the cross-section data are
utilized, are given in Table VI. (They possess lower M
values than the Fermi solution in Table IV because
there are fewer experimental measurements to fit.) A

principal difference between these two solutions is that
the D-wave phase shifts in one set have signs reversed
compared with those in the other set. The usefulness
of the polarization data in diRerentiating between these
two SPD phase-shift solutions is demonstrated in Fig. 3.

D. Inclusion of I' Waves

Because of the relatively high accuracy with which
the phase shifts in our SPD Fermi fit are determined,
we felt it necessary to extend the analysis to include Ii

waves. It appeared quite possible that the addition of
small ti-wave phase shifts might cause changes in the
other phase shifts larger than the quoted errors. This in-
deed turned out to be true. We found that the inclusion
of a small F-wave nuclear interaction not only alters the
values of almost all the S-, P-, and D-wave phase shifts
but also causes their errors to increase considerably.
Also, new solutions appear that fit the data well.

With the ti-wave nuclear phase shifts allowed to be
diRerent from zero, another random search for solu-
tions was conducted. New random initial values were
picked for the phase shifts related to the S, P, and D
waves. The initial F-wave phase shifts were also chosen
at random, but were restricted to the interval 0%9 deg
because we assumed these parameters to be small. The
number of random sets used was 260, and about twice
as many minima were found as in the SPD random
search. Every solution with an 3f value of less than 40
was obtained at least five times. According to the y'
distribution, now for 2i degrees of freedom, the proba-
bility is less than 1% that the M value of the true
solution is greater than 40.

As a check on the SPD random-search results, we
made SPD fits to the data using as starting points the
first five phase shifts in the various SPDF solutions. All
the original SPD solutions appeared. In addition, only
two new minima were found and these possess ex-
tremely high 3f values. Therefore, we had apparently
obtained all the existing SPD solutions with low M
values in our original random search.

Every SPDF solution discovered, with a value of M
less than 40, is listed in Table VII. The Fermi-I,

TAaLE VI. The "SP Fermi" solution is our best SP fit to the
experimental data. "Fermi I" and "Fermi II" are the two SPD
Fermi solutions with low M values that are obtained when the
computer is required to fit only the cross-section data (these
solutions exhibit the ambiguity in the D-wave phase shifts).

Mean Com-
Type of M ex- puted Nuclear phase shift (degl
solution pected M S3, 1 P3, 1 P3, 3 D3, 3 D3, 5

SP Fermi
Fermi I
Fermi II

25 92.5 —22.3 —8.1 136.1 0 0
19 13.9 —16.8 —4.0 134.8 3.3 —5.4
19 14.1 —24.0 —8.8 137.3 —3.5 2.4

Minami-I, and Yang-I solutions correspond to the
three SPD fits given in Table IV. The designation
"Minami-Yang" refers to the type of fit of that name
mentioned in Sec. II-D. Many of the phase-shift
values in the various solutions denoted "I"in Table VII
are approximately connected by the ambiguity inter-
relationships discussed in the references cited in Sec.
II-D. Similarly interrelated are the three fits denoted
"II." We will disregard solution 6 because of its ex-
cessively large Ii3,7. When SPD fits to the cross-section
data only are obtained, the SP'DIi Fermi-I and -II
solutions reduce to the solutions of the same names
given in Table VI and therefore appear to be mani-
festations of the ambiguity in the D-wave phase shifts.
The error matrices for these two sets of phase shifts
are presented in Tables VIII and IX.

The Fermi-II solution and the two Minami-Yang
fits were also found in the SPD random search but then

I.O

0.8—
0.6—
0.4

0.2

p 0

-0.2

-0.4—
-0.6—
-08—
-I.O

0 60 90 1 20
8 (deg)

!50 180

FIG. 3. Variation of polarization with angle predicted by the
two SPD Fermi solutions with low M values that are obtained
when the computer fits only the cross-section data. These solu-
tions exhibit the ambiguity in the D-wave phase shifts. The
values of the phase shifts for these fits are given in Table VI.
When the four polarization measurements (shown above) are in-
cluded in the SPD analysis, the Fermi-I curve can be easily
altered to fit the polarization data but the Fermi-II curve cannot.
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TABLE VII. Solutions found in the SPDF random search that possess values of M less than 40. The mean 3E value expected is 21.

No. Type of solution S3, 1

Nuclear phase shift

P3, 3 D3, 3 D3, s F3, s F3, 7

1 Fermi I
2 Minami- Yang I
3 Fermi II
4 Yang II
5 Minami- Yang II
6 ~ ~ ~

7 Minami I
8 Yang I

14.1
17.6
18.3
26.6
26.9
27.8
31.7
34.2

—17.2
123.1—35.5—32.0
139.9—19.2—7.2—23.6

—2.9—22.4—16.1
142.2—39.0—7.6—22.4
124.7

135.0
3.1

151.4
160.4
13.1

153.8—2.0
159.5

3.1
158.6—11.4

17.8
164.0

2.0
136.8

5.8

—4.9
0,2

13.1—6.4
49—21.1
0.8—4.1

0.5—2.8—1.1—1.7—5.7—2.7
0.2—1.5

—0.6—0.1

1.3
2.0

13.0
0.1
0.7

had improbably large M values because of their in-
ability to fit the polarization data. The presence of
small F-wave phase shifts has enabled these three
previously unacceptable solutions to become good fits
to the polarization measurements. We present in Fig. 4
the variation of the polarization with c.m. scattering
angle predicted by the first four SPDF solutions in
Table VII. The analogous curve for the solution
Minami- Yang II is intermediate between those for
Fermi II and Minami-Yang I. The polarization plots
for the SPDF Minami-I and Yang-I sets are essentially
the same as the corresponding curves in Fig. 1.

E. Addition of G Waves

A~ attempt was made to observe the effects of G
waves on the SPDF analysis, again with the aid of the
IBM-704 computer. When no restrictions are placed on
the size of the G-wave phase shif ts, we found that our
former solutions become poorly defined, and additional
sets of phase shifts appear that fit the data well. The
SPDIi Fermi-I and Fermi-II solutions are altered in
character considerably when the nuclear G-wave inter-
action is allowed because the computer is best able to
fit the data by changing some of the phase shifts in
these solutions by as much as 10 to 20 deg (the 3II
values dropping to about 10 and 16, respectively). Even
if the magnitudes of the nuclear G-wave phase shifts
are held to within the arbitrary limit of 0.2 deg, the
uncertainties in many of the other phase shifts in the
two Fermi solutions increase to one and one-half to
two times their former values. With the nuclear G-

wave interaction allowed, we reinvestigated all the
minima obtained in the SPDP random search. The
magnitudes of the nuclear G-wave phase shifts in a

given fit were arbitrarily restricted to be less than one-
fifth the magnitude of the larger nuclear F-wave phase
shift in the same fit. Even this constraint did not pre-
vent new solutions with low M values from arising.
With our present data and the limited amount of
available theoretical information concerning the phase
shifts related to angular-momentum states of higher "

order, we conclude that we cannot meaningfully include
G waves in the analysis.

IV. DISCUSSION OF RESULTS

A. Phase-Shift Analysis

A comprehensive phase-shift analysis has been per-
formed, utilizing the polarization and cross-section data
now available on m+ —p scattering at 310 Mev. The
D-wave phase shifts were found to be definitely needed
in order to attain an adequate fit to the data. We in-
vestigated the influence on the analysis of the presence
of small F-wave phase shifts: not only are the errors in
our original Fermi-type solution increased, but addi-
tional solutions arise that fit the data well. Although
the introduction of a small F-wave interaction does not
greatly improve the best obtainable fit to the data,
no justification can be found for completely neglecting
P3, 5 and P3 7. We attempted to extend the phase-shift
inquiries to include G waves but found that the avail-
able data and theory do not allow the G-wave inter-
action to be significantly incorporated into the analysis.
Evidently the region of angles over which polarization
data exist is not large enough to enable us to satis-
factorily define the phase shifts when G waves are also
assumed aAected by the nuclear interaction.

TABLE VIII. Error matrix for the SPDF Fermi-I solution.
The matrix elements are in (deg)2.

TABLE IX. Error matrix for the SPDF Fermi-II solution.
The matrix elements are in (deg)'.

S3, 1 P3, 1 P3, 3

S3, 1 6.93 10.38 —0.08
P3, 1 16.14 —0.36
P3, 3 0.42
D3, 3

D8, s
F8, s

F8, 7

D3, 3

6.65
10.34—0.28
6.76

—5.56—8.54
0.27—5.51
4.61

F3, s

1.27
1.96—0.05
1.28—1.04
0,31

F3, 7

—3.61—5.66
0.16—3.67
3.00—0.70
2.03

S31 P31

S3, 1 0.50 —0.11.
P3, 1 0.43
P8, 3

D3, 3

D8, s
F8, s

F8 7

P3, 3

0.30—0.37
0.70

D3, 3

—0.08
0.24—0.25
0.22

D3, s

0.08—0.30
0.26—0.22
0.29

F3, s

—0.08
0.13—0.13
0.08—0.11
0.08

0.13—0.11
0.12—0.08
0.11—0.06
0.09
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Our investigations indicate that it is difIicult to ob-
tain a completely meaningful set of phase shifts from
pion-nucleon experimental data by using the partial-
wave treatment alone. Further assistance from theory
may be required before one can handle with confidence
all the angular-momentum states measurably affected
by the interaction. The discussions to follow will

principally be limited to the results of our SPDIi
investigation.

Let us begin the discussion of the various phase-shift
solutions by discarding all those that are of the Yang,
Minami, or Minami-Yang type. A principal reason for
rejecting these sets of phase shifts is that they appear
to disagree with the requirements of the dispersion rela-
tions for the spin-Rip amplitude of the pion-nucleon
scattering in the forward direction. """The Minami-
type solution is also unreasonable because of its large
D3 3 and the implausible behavior of its phase shifts at
Iow energy. ' 2

Of the phase-shift solutions listed in Table VII, only
the Fermi-I and Fermi-II sets remain to be considered
(we earlier rejected set 6 because of its excessively lar'ge

Fs,7). In Table X, we summarize the characteristics of
these two SPDIi Fermi-type fits. The SPD Fermi set
is also included for comparison. In comparing the
closely related SPD Fermi and SP'DIi Fermi-I solu-
tions, we notice that only P3,3 is essentially unaffected
by the addition of the F wave intera-ction (owing to
the strong dependence of this phase shift on only the
total cross section). Although Fs, s and Fs, 7 in the SPDF
Fermi-I solution are small and their errors overlap 0
deg, the effect of their presence is considerable.

Table X shows the drastic increases in the phase-
shift errors that occur when F waves are added to the
SPD Fermi solution and the SPDF Fermi-I set is
thereby obtained. This would seem, at first glance, to
indicate that much less information can be derived
from this type of solution now that Ii waves are allowed.

Nuclear
phase
shift

S3, 1

P3, 1

P3. 3

D3, 3

D3, 5

F3, 5

F3, v

SPD
(M =15.8

—18.5&0.6—4.7~0.6
134.8%0.6

1.9~0.4—4.0+0.4

Solution
SPDF Fermi I

14.1

—17.2~2.6—2.9a4.0
135.0a0.6

3.1&2.6-4.9a2.1
0.5+0.6—0.6&1.4

SPDF Fermi II
18.3)

—35.5~0.7—16.1~0.7
151.4&0.8—11.4&0.5
13.1&0.5—1.1+0.3—1.8&0.3

2' W. C. Davidon and M. L. Goldberger; Phys. Rev. 104, 1119
(1956).

"W. Gilbert and G. R. Screaton, Phys. Rev. 104, 1758 (1956).
&' Bethe g,nd de Hoffm4i, nn, r|:fgrqncg 11, p. 75,

TABLE X. Phase shifts for solutions of the Fermi type arising
in the SPD and SPDF analyses of w+ —p scattering data at 310
Mev. The units are degrees. The errors are standard deviations
and are the square roots of the diagonal elements of the error
matrices presented in Tables V, VIII, and IX.
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FIG. 4. Variation of polarization with c.m. scattering angle
predicted by the first four SPDF solutions in Table VII. For
reasons of clarity, the large-angle behavior of two of the curves is
not shown. All curves satisfactorily fit the three negative polariza-
tion measurements.

Actually this is not true because many of the correlation
coefticients are large in the SPDF Fermi-I solution.
Large correlation coefficients signify strong relation-
ships between the phase shifts, and thus information
about one phase shift will, in general, give useful in-
formation about other phase shifts. In any comparison
of theory with the SPDIi Fermi-I set, it will be im-
portant to use the entire error matrix (Table VIII).

To facilitate the phase-shift analysis, we neglected
inelastic scattering. Additional uncertainties in the
solutions of Table X exist because of this disregard of
all but the elastic-scattering reaction. There is little
experimental information available on inelastic processes
in z+—p scattering at 310 Mev. However, estimates
can be made of the magnitude of the total inelastic
cross section at this energy by combining the experi-
mental measurements of Willis" at 500 Mev with
theories such as those by Rodberg, " Franklin, " and
Kazes."The results indicate that the z.+—p total in-
elastic cross section is less than 1 mb at 310 Mev.

The inclusion in our analysis of even this small
amount of inelastic scattering can cause changes in
the phase shifts. We have observed the alterations in
the solutions given in Table X when a total inelastic
cross section of 1 mb is allowed. Various extreme as-
sumptions were made about the manner in which this
amount of inelastic scattering might be distributed

2' William J. Willis, Phys. Rev. 116, 753 (1959).
2' Leonard S. Rodberg, Phys. Rev. Letters 3, 58 (1959)."Jerrold Franklin, Phys. Rev. 105, 1101 (1957),
s9 Emil Kazes, Phys. Rev. 107, 1131 (1957).
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among the different angular-momentum states of the
interaction. Each inelastic parameter was assumed, in
turn, to have a value sufficiently less than unity so as
to account for the entire 1-mb cross section (all the
other inelastic parameters remaining at unity). Equa-
tion (7) of Willis" was used in order to calculate these
values. For each assumed set of inelastic parameters
and for each solution considered, the computer re-
determined the values of the phase shifts yielding the
minimum magnitude of 3II (this general procedure was
discussed briefly in Sec. III-A). We conclude from the
results of this investigation that, if inelastic-scattering
processes could properly be taken into account, any
changes in the quoted values of the phase shifts would
probably be well within the corresponding errors given
in Table X.

B. Comparison of the SPDF Fermi-
Type Solutions

Let us examine more closely the two SPDIi Fermi-
type solutions, both of which are excellent fits to the
data. Both sets are reasonable from the point of view
that the t -wave phase shifts are small compared with
those related to the D wave. We are unwilling to discard
the Fermi-II solution on the basis of lack of continuity
with results of phase-shift analyses at other energies
because we believe these other analyses may suffer the
same uncertainties as our SPD results. In the remainder
of this section, comparisons between the two SPDF
Fermi solutions will be made in an attempt to eliminate
one of these two sets of phase shifts.

Both solutions give Re[f(0')]= —0.686&0.012 in
units of A/pc (p, denotes the m.-meson rest mass) where
Reef(0')i is the real part of the forward-scattering
amplitude, for m+ —p nuclear elastic scattering, in the
c.m. system. The result, —0.686, was calculated by
inserting the nuclear phase shifts of Table X into Eq.
(12) of Anderson and Davidon. '0 (The value computed
for Ret f(0')$ is almost independent of the number of
partial waves assumed to be affected by the nuclear
interaction. ) We obtained the error by using the error
matrices in Tables VIII and IX. The sign of Re(f(0')]
is determined by the absolute sign of the set of phase
shifts used, which in turn is determined by the sign of
the Coulomb-nuclear interference contribution to the
DCS. We neglect a small correction (apparently less
than 1'Pc) to Reef(0') j arising from the disregard of
possible inelastic contributions to the total cross sec-
tion when the computer normalizes the experimental
elastic DCS to the experimental value of the total cross
section. If inelastic scattering takes place but is neg-
lected in the phase-shift analysis, DCS values calculated
from the resulting sets of phase shifts will be too large.
Because of the close relationship between Reef(0')]
and the value of the DCS for nuclear scattering at

"H. L. Anderson and W. C. Davidon, Nuovo cimento 5, 1238
(1957l.

tII, =0 deg, the disregard of inelastic scattering causes
the magnitude quoted for ReLf(0')j to be slightly
too great.

Our result for ReLf(0')$ agrees well with values pre-
dicted by the dispersion relations and based on other
experimental data. "The curve calculated by Spearman
gives Reef(0')$= —0.70 for f'=008, where f' is the
renormalized, unrationalized, pion-nucleon coupling
constant. " Another recent analysis is that by Cronin,
who predicts —1.35&10 " cm at 310 Mev for the real
part of the forward-scattering amplitude in the labora-
tory system (for f'=0.08)."When transformed to the
laboratory system, our result becomes (—1.36+0.02)
&(10 " cm, again in good agreement with the disper-
sion relations.

When the two SPDE Fermi-type solutions are com-
pared with the predictions of the phase-shift formulas
of Chew, Goldberger, Low, and Nambu, '4 we find that
Fermi I is in better agreement. The P-wave phase
shifts of Fermi I are more in accord with the effective-
range formulas of Chew et al. than are the corresponding
phase shifts of Fermi II. The effective-range equations
predict approximately —5 deg for P3 ~ and 127 deg for
P3, 3 at 310 Mev. We obtained these results by assuming
f'= 0.08 and cu„= 2.1. The quantity co„ is the value of a&

at the 3,3 resonance, where co denotes the total energy
in the c.m. system, exclusive of the nucleon rest energy,
in units of pc'. The eRective-range formulas are ex-
pected to be valid only at low energies. Therefore the
fact that the Fermi-II set disagrees more noticeably
with these equations than does the Fermi-I solution
is not sufficient reason by itself for discarding the
former set of phase shifts. One often compares experi-
mentally obtained values of P3, 3 with the effective-range
theory by means of the Chew-Low plot" Li.e.,
(q' cotP3 3)/cu versus ~, where q is the momentum of the
pi meson in the c.m. system, in units of pci. The values
of P3 3 in both Fermi I and Fermi II give results that
fall below the straight line passing through the low-

energy points on this type of plot, in accord with the
results of other experiments at energies near or above
300 Mev. The D-wave phase shifts in the SPDIi
Fermi-I solution agree in sign and reasonably well in
magnitude with the theoretical formulas of Chew et al. ,
which predict D3 3——+0.3 deg and D3 5

———2.5 deg at
310 Mev; the D-wave phase shifts in Fermi II disagree
in both sign and magnitude. However, these formulas
do not include the effects of the pion-pion interaction
and thus may not give accurate predictions.

The straight-line plot' at low energies of 53,~ as a

3'We acknowledge informative discussions with Dr. H. P.
Noyes, Lawrence Radiation Laboratory, concerning the dispersion
relations."T. D. Spearman, Nuovo cimento 15, 147 (1960).

3' James W. Cronin, Phys. Rev. 118, 824 (1960).
34 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1337 (1957).
35 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
"Jay Orear, Phys. Rev. 96, 176 (1954); Nuovo cimento 4, 856

(1956).
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function of q can be linearly extrapolated to 310 Mev
and compared with the values of this phase shift in our
two SPDF Fermi solutions. The extrapolated value ob-
tained is near —13 deg, and therefore the comparison
yields the better agreement for Fermi I. Once again,
this alone is not adequate evidence against Fermi II
because the linear relationship between S3,~ and g prob-
ably does not extend to energies as high as 310 Mev.

Although both the SPDIi Fermi-I and Fermi-II
solutions give results that agree with the dispersion
relations predicting Reef(0') j, these two solutions yield
contrasting results when compared with the dispersion
relations for the spin-Rip forward-scattering amplitude,
following the method of Davidon and Goldberger. "'
Dispersion-relation theory predicts that y =f'+Cx,
where f' is again the pion-nucleon coupling constant,
C is a constant, x is a given function of the energy, and

y depends in a stated way on the phase shifts and the
energy. As shown in reference 23, Fermi-type phase
shifts that are based on SP analyses over a range of
energies lower than 310 Mev exhibit approximately the
predicted y-x linear behavior and extrapolate to a
reasonable value of f'. (At su%ciently low energies, we
would expect the SP-type analysis to be adequate. )
Strictly speaking, the function y depends on the phase
shifts at all energies. However, for Fermi-type solutions
and for the region of energies considered in the Davidon
and Goldberger article, y depends principally on the
values of the phase shifts at the energy at which it is
being evaluated and on the behavior of P3, 3 at other
energies, about which reasonable assumptions can be
made when necessary. Approximate calculations using
the Fermi-I solution give y =+0.03&0.08; when
Fermi II is considered, y=+0.33&0.02. We have in-
cluded in the errors quoted only the error arising from
the term Re(a, ) in Eq. (2.6) of reference 23. The entire
error matrices (Tables VIII and IX) were used when
calculating these errors. Assuming that the other un-
certainties in the calculation do not greatly change the
general. features of these results for y, we find that the
Fermi-I solution is in moderately good agreement with
the straight line of reference 23 (which yields about
0.15 for y at 310 Mev) but that Fermi II disagrees.

"We thank Professor J. Ashkin of Carnegie Institute of Tech-
nology, Pittsburgh, Pennsylvania, for suggesting the use of the
spin-Rip dispersion relations as a possible means of discriminating
between the two 5PDF Fermi solutions,

Relying on the Davidon and Goldberger analysis, then,
we apparently may say that only the Fermi-I solution
is admissible.

C. Concluding Remarks

Although theory appears to favor the Fermi-I set
over the Fermi-II, further theoretical evidence and, in
addition, experimental justification are desirable. Useful
experimental information could probably be obtained
by performing supplemental polarization measurements
at su%.ciently small angles. We note in Fig. 4 that
appreciably different values of the polarization are
predicted by the two Fermi solutions at c.m. scattering
angles in the vicinity of 60 deg. If a practicable method
could be developed for determining the polarization of
protons with energies approximating 50 Mev, one could
perform recoil-proton polarization measurements that
might distinguish between the two SPDF Fermi solu-
tions. The same data might also provide experimental
evidence against the SPDIi Minami, Yang, and
Minami- Yang solutions.

In conclusion, the success of the SPD analysis was so
striking that an investigation of the effects of Ii waves
was in order. The inclusion of F waves has given a good
fit to the data, but not an appreciably better fit than
in the SPD analysis. The errors in the phase shifts of
the Fermi-I type have become very much larger than
they were before the F waves were added, but because
many of the correlation coefficients are quite large there
is still a great deal of information contained in the
SPDIi analysis. It is hoped that this work constitutes a
significant step in the quantitative study of pion-
nucleon scattering.
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