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The reaction sequence, M1+N; — Y*+M,; Y* — Y+m1; ¥ — Nyt is considered, where M and Mo
are spin-zero mesons, Ny and N, are nucleons, ¥ is a A or =% particle, and Y* is a pion-hyperon resonance of
spin 3 or §. The general form of the angular distribution of the particles =; and N is written down under the
assumption that final state interactions between the meson M and the Y* decay particles may be neglected.
If any polarization of the hyperon ¥ exists, the spin and parity of the resonance ¥* may be determined from
this angular distribution. The structure of the spin density matrix of the ¥Y* is discussed.

HERE is now strong experimental evidence for
the existence of a pion-lambda particle resonance
at a center-of-mass kinetic energy of about 130 Mev.!
Since this energy is below the K+N rest mass, the
resonance can be produced in the laboratory only in
conjunction with other particles; the simplest pro-
ducible final state including the resonance is of the type
involved in the experiment of Alston ef al.,'i.e., M+ TV*,
where Y* is the resonance and M is a spin-zero meson.
It is likely that one or more other pion-hyperon reso-
nances will be found in the low-energy region; it may
be necessary to investigate these resonances also from
a reaction sequence of the type,

M1+ZV1—) Y*+M2, (la)
V*— Vtm, (1b)
VY — N2+7l"2, (1C)

where M and M, are spin-zero mesons, V1 and N, are
nucleons, and ¥V is a 2 or A particle, assumed to have
spin 3.

The experimental determination of the spin and
parity of a resonance Y* from the interaction sequence
of Egs. (1) is a difficult problem because the orbital
and total angular momenta of the state Y*+M, are
unknown. Several types of measurements that might
reveal the spin or parity have been suggested.?® The
method of Adair can be used to determine the spin (but
not the parity) if enough data are available.? Several
spin measurements have already been attempted for
the ¥* of Alston ef al., but no definite results have been
obtained yet.!

The purpose of this note is to point out certain
angular distribution and correlation measurements that
might reveal the parity and spin of a pion-hyperon
resonance from the interaction sequence of Eq. (1).
We use the following set of unit vectors for describing
the event: k; and k; denote the momentum directions
of the mesons M and M, of Eq. (1a) in the center-of-

1 M. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W.
Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters
5, 521 (1960).

2R. K. Adair, Phys. Rev. 100, 1540 (1955).

3 Ph. Meyer, J. Prentki, and Y. Yamaguchi, Phys. Rev. Letters
5, 442 (1955).

mass system; X and y represent any orthonormal linear
combinations of k; and ky, while z=xXy is the normal
to the plane of the production event, Eq. (1a). The
momentum direction of the Y* decay pion 1, measured
in the cenler-of-mass sysiem of the Y*, is denoted by k,
and the momentum direction of the proton from the
Y decay, measured in the center-of-mass system of the Y,
is denoted by p.

For the time being, we neglect the possible effects of
final state interactions between the meson M; and the
particles resulting from the “fast” V* decay. We may
then write down the most general form for the distri-
bution X of the momentum unit vectors k and p corre-
sponding to the four simplest possibilities for the spin
and parity of the Y*, i.e., that it is an Sy, P3, Ps, or Dy
combination of the ¥ and = particles. The formulas
for £ are written below in cylindrical coordinates
defined with respect to the direction normal to the
production plane, i.e., k.= (k2+k,2)3, k,=k,x/7, tanes
=k,/kqy k.=k., etc.

(S)= a+®p., (22)
Z(P%): @/_’"(BII:Z (szz+pr'kr)kZ_P2:|’ (Zb)
2 (Py; Dy)=X1(Py; Dy)+E2(Py; Dy),
E1(Py)=A+Bk2+ (3D—3C)p.k.?
+(3C—3D)p.—2Dp, k.k., (3a)
2, (P3)=Ek,? cos(2¢r+a)
+F[ p.k,* cos(2px+06)
+2p.kik, cos(pirt¢,+6)],  (3b)
£,(Dy)=A"+B'k2
+ D' -3C") (p.k.+p--k)E
+L(9/2)C"— (15/2)D"Jp.k.?
+GD'—3C)p43(C'—D")p, kiks,  (30)
2y(Dy) =E'k,? cos(2¢r+a’)
+F'[p.(6k2—1)k,2 cos(2¢pi+8)
— pokrk,(3k.2—1) cos(prt¢p+B6)
+3p.k,k, cos(3pr—o,+6)],  (3d)

where the coefficients @ and ®, or 4, B, C, D, E, F, a,
and B are real functions of the production angle k;-kj,
and are unknown for ki-k;#+1 if the dynamics of
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the process M1+N;— YV*+M, are unknown.* When
k;-k;==1 the distribution must reduce to the form
given by Adair.? All terms linear in p are proportional
to the asymmetry parameter of the ¥ decay. It is
seen that there are many kinds of correlations that
may be present for j(¥*)=% but cannot be present for
7=1%. Terms proportional to (v/¢)? have been neglected,
where v is the velocity of the ¥ in the center-of-mass
system of the Y*.

The quantities @, @ or 4, B, C, D, E cosa, E sine,
F cosB, F sinB are linear combinations of elements of
the spin density matrix p of the ¥* produced in reaction
(1a); we may make the general structure of = more
transparent by discussing the general structure of p.
The density matrix is Hermitean and so, in general,
contains (2j+1)? independent real numbers, but parity
conservation together with the lack of any polarization
in the initial state reduces this by a factor of two, as
may be seen from the following argument. The matrix
p may be written as a sum of products of J,, J,, and
J ., where J is the spin operator for the Y*, Invariance
to rotations of the entire interaction scheme, together
with the lack of any initial polarization, implies that
the coefficients of this sum are functions only of k;-k;
and energy. Since X and y are normalized linear com-
binations of the momenta k; and ky, they are odd under
reflections, while z=xXy is even under reflections.
Hence, reflection invariance implies that p is un-
changed by the simultaneous substitutions J, — —J,
J,— —J,. This is equivalent to invariance under
rotations of 180 degrees around the z axis, implying
that [p,ei"/#]=0. In the representation where J, is
diagonal, this commutator condition implies that
pap=0if |a—@| is odd, so that p has a “checker-board”
pattern.

If j=% only the diagonal elements of the density
matrix may be nonzero in the J, representation, so that
the V* may be regarded as a statistical mixture of
particles with spins in the z and (—z) directions. It
may be shown that for any Y* spin those correlation
and angular distribution measurements that are in-
variant to rotations about the z axis involve only
diagonal elements of X. For j=3% these terms are
represented by X; in Egs. (3). The X, terms vary
harmonically, with period m, under rotations about the
z axis, The V* may be regarded as a statistical mixture
of the four eigenstates of J, only for computing the ¢
invariant terms X..°

We now limit our consideration to the possibilities,
j=% or 2, and assume that the ¥ particle resulting
from the ¥V* decay is a A or =*, and therefore can decay
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asymmetrically. Then if any ¥V polarization exists, so
that some term linear in p of the distribution X exists,
the parity and spin may be determined unambiguously.
For illustration we will show how the P; and Dj cases
may be distinguished by means of the polarization
angular distribution (defined as the distribution in %,
of all events in which p, is positive, minus the corre-
sponding distribution for p, negative) together with the
“transverse correlation” represented by the p,-k.k.
terms of X. The presence of £, terms in the polarization
angular distribution would indicate a Dj; resonance. On
the other hand, these k.* terms can vanish for the Dy
case only if C’=3D’, in which case the terms linear in
p of Eq. (3c) become 2D[p,(3k.2—2)+3p,-k,k.]. Such
a distribution is impossible for the Pj case, however,
for the P; polarization angular distribution can be of
the form 3k.2—2 only if C=—(7/3)D, in which case
the terms linear in p of Eq. (3a) become

ZDEPZ (Ssz_ 2) —Pr krkz].

Hence, if the polarization angular distribution happens
to be of the form 3%.2—2, one of the possibilities Py or
Dj; may be eliminated from the sign and magnitude of
the transverse correlation relative to the polarization
angular distribution.

It may be shown easily, by extending the above
analysis, that there is no nonzero form for the terms of
the distribution linear in p that is possible for more than
one of the four spin and parity cases under consider-
ation. Hence, the spin and parity may be determined
unless all ¥ polarization terms are small at all produc-
tion angles, not a very likely occurrence if the energy
of the incident meson is sufficiently high so that several
Y*+ M, orbital angular momenta are present.

Even if all the polarization terms do vanish, the
theorem of Eberhard and Good® can be used to show
that one of the two ¥* spin cases can be eliminated
from data at any production angle. The theorem states
that if the spin wave function of a particle is a statistical
mixture of Q pure polarization states, the trace of the
square of the spin density matrix satisfies the inequality
Trp? 2 (Trp)?/Q. In reaction (1a), Q is equal to two
(the number of polarization states of Ni); hence, the
V* spin density matrix cannot be a multiple of the
unit matrix if 7(¥*)2%. This implies that at least one
of the constants B, C, D, E, and F in Egs. (3) must be
nonzero, so that X(j=%) cannot have a form that is
possible for j=3%.

The preceding results are based on the assumption
that the final-state interactions between the meson M,
and the Y* decay particles are negligible. Such inter-
action effects should not be important if, when the
distribution of all M1+N — Y+ M.+, events in the
center-of-mass energy of the V-, is plotted, the

¢ Philippe Eberhard and M. L. Good, Phys. Rev. 120, 1442
(1960). See also, Murray Peshkin (to be published) for an ex-
tension of this theorem.
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resonance peak is many times higher than the average
of the distribution outside the resonance. This is not
always the case, however. One precautionary check
that may easily be made is to plot the angular distri-
bution of all the events under the resonance peak with
respect to the direction k; of the M. This distribution
must be symmetric in the absence of a final-state
interaction, but is likely to be appreciably asymmetric
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if the Ms-Y or M,m interaction is sufficiently im-
portant to alter the general distribution of Eq. (2) or
(3). One should make sure that there is no large asym-
metry in k-k; present in the data.

It has come to the author’s attention that the results
of this paper have been derived independently by R.
Gatto and H. P. Stapp [see Phys. Rev. 121, 1555
(1961)7].
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An attempt is made to separate out long- and short-range effects for high-energy elastic scattering.
Within the context of a high-energy approximation, expressions for the scattering amplitudes are obtained
for the cases kR>ka>>1 and kR>>1>ka, where R and @ denote the long and short ranges, respectively.
For the latter case, the entire short-range effect is included in a phenomenological S-wave term while the

long-range contributions are written explicitly.

I. INTRODUCTION

ITH the increase in energy of scattering experi-
ments, we see more details of the interaction of
particles at short ranges. Such experiments are compli-
cated by the presence of the longer range interactions
generally employed to interpret experimental results
at lower energies. Thus, it is of interest to see to what
extent we can separate these two effects, hopefully in
such a manner that will enable us to utilize our previous
knowledge about the long-range interactions in some
relatively simple way.! As a first approach, it seems
convenient to work within the context of a high-energy
small-angle approximation for elastic scattering based
on the work of Moliére? and developed in some detail
by Glauber?® and others.*=*

II. HIGH-ENERGY APPROXIMATION

We are interested in the case where the scattering
amplitude for a high-energy particle of reduced mass
m with an incident momentum propagation vector k
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and a final propagation vector k’ is given by?

k
FOR ) =— f expli(k—K)-b]

271
X{exp[ix(b)]—1}d®b, (1)
where
m
x(b)=— ;;2-]; j;w V(b4 xz)dz, 2)
with
x= (k+k')/|k+k'[. 3)

Here V(r)=V(b+xz) is assumed to be a potential
which represents the interaction between the projectile
and target particles. For simplicity, we will further
assume the potential to be azimuthally symmetric,
that is V(b+xz)=V(d,2). The extension to other
interesting cases is fairly direct.>* Equation (1) can
then be written

k 00
fo(@)=- f Jo(2kb sink6){eix®: B+ix®ia)—1}bdb,  (4)
(2]

where Jo(2kb sinf) is the Bessel function of order zero.
In writing the above expression, we have now explicitly
assumed that the potential can be split into a long-range
part characterized by a range R and a short-range part
characterized by a range a, where V(b,2)=V(b,2; R)



