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Calculations in Nuclear Evaporation Theory*
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Methods are developed for analytic treatment of problems in nuclear evaporation theory using the level
density formula exp{2ga(E —e) j&}. Several useful expansions are given, with their ranges of validity.
Comparisons made with existing calculations indicate the validity of this approach.

I. INTRODUCTION

HEN a nucleus is excited by means of a nuclear
reaction or through energy made available in

the process of fission, it may de-excite by ejecting one or
several nucleons. If the nuclear excitation is less than
50 Mev, one treats the probability of ejecting various
numbers of nucleons by means of evaporation theory. '
In the most commonly used version of the theory, the
energy spectrum of the emitted nucleons depends ex-

ponentially on the square root of the excitation energy
of the parent nucleus. Because there are difficulties in

treating the consecutive emission of several nucleons

analytically, people have resorted to the use of Monte
Carlo calculations. ' It is the purpose of this paper to
show that such calculations may be done with much

greater convenience through the use of suitable approxi-
mations in an analytic treatment of the problem, rather
than through the use of Monte Carlo techniques.
Through the use of these techniques, one may examine
the parameters involved in the theory with considerably
more ease.

The analysis presented here may be conveniently
divided into two parts: (1) the relative probabilities of
various numbers of particles being emitted, when only
one type of particle is emitted, e.g., neutrons in the
heavy element region; and (2) the competition between
di6'erent modes of evaporation when more than one
mode is energetically possible, e.g., protons and neu-

trons. The analysis described here is used to calcu-
late the probability of finding various final products
from the evaporation process rather than for cal-

culating spectra of emitted particles. Some compari-
sons have been made with available Monte Carlo
calculations.

and
E1=E*—Q1,

E*=Er—1-Q, (2)

to complete the listing.
In the form of evaporation theory to be treated here,

the probability of emitting a neutron with kinetic
energy e, is

dp

g g

P(e)de= e exp{2La(E—e)]l)de.
"0

(3)

For protons, the situation is analogous, we obtain
El g1

E(e)de= e exp(2ta(E' e)]'}«
0 ~0

where
Q V

i.e., the proton may be treated as a neutron if we add
Vs to Q in order to obtain an effective binding energy.

With all of the definitions in hand, we analyze the
case in which only one type of particle is emitted. The
competition between two- and three-neutron evapora-
tion illustrates the methods involved in the calculations
and there are no fundamental difficulties in extending
this approach to the evaporation of more particles.

The probability of emitting three neutrons is given as

II. TECHNIQUES OF CALCULATION FOR
ONE EVAPORATION MODE

Before proceeding with the details of the calculation,
we define the symbols to be used. u is the nuclear level
density parameter; e; is the kinetic energy of the ith
emitted nucleon. 8* is the initial excitation of the first
nucleus in the evaporation chain and Q, is the binding
energy of the ith emitted particle. Vp is the effective
Coulombic barrier for charged particle emission. We
also define

+E3—cI

J

�sr
exp(2La(E1 el)]), es exp{2La(Es er es)]l)des

0 Jp

@2 &1

Jp
es exp(2(a(E, —e,—es)]*}des «1

when three neutrons at most may be emitted.

gy

e1 exp{2La(E1—et)]')dst
0

(6)

*Based on work performed under the auspices of the U. S. Atomic Energy Commission.
j J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, Inc. , New York, 1952), pp. 365—374.

Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev. 116, 683 (1959). This article is an excellent introduction to the
notions of evaporation theory and the Monte Carlo methods applicable to evaporation problems.
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We may do the integrations over &2 in closed form, and obtain

E3—61

»2 exp{2[a(E2 »l——»g))~}d»g
J,

p &2—e1

»2 exp{2[a(E2—»l —»2)]&}d»2

where
exp'{ 2La(E2»l))'} exp{2[a(E2 E3)]'}f(»1) (7)

[2E,—3E,+2E,[a(E,—E,)]&—3[(E,—E,)/a]&+3/2a] —»i{2[a(E2—E3)]&—1j
(»l) =

[2E2—3 (E2/a) &+3/2a] —»[2 —3/2 (aEg) ~]

In obtaining Eq. (9) we assume that the lower inte-
gral in Eq. (7) can be neglected when it is evaluated at
its upper limit. We also assume that the radical (E2—»l) &

may be expanded to give

(E2—»l)'= (E2) '(1—»l/2E2), (10)

when this radical does not appear in an exponential.
The first approximation introduces no appreciable in-
accuracy (&1%) and the second approximation will
cause errors of at most 3%%uo, remembering that »l&E3
and the term for which we make the expansion is not
the largest term in the denominator. We should also
note that if we had been considering an evaporation
process involving more than three neutrons the effect
would be to replace»l by»l+», +»3 etc.

Next, we must integrate the upper integral in Eq. (6)
over ~~. The difficulties appear in the evaluation of

I»= »l exp{2[a(El—»l)]&} exp{—2[a(E2»l)] }
Jo

Xexp{2[a(E,—E,)]&}f(»,)d», (11)

This expression may be simplified to give

(»l)
1+(E3»l) {2[a(E2—E3)]&—3+3/[2(aE2) &]}

1—(»l/E, ){1+3/[4(aE2)'][2E2—3(E2/a)'*+3/2a] j
(9)

At this point we make further approximation in order
to continue with the problem. We must be very exact
in the expansion of the radicals which occur in the ex-
ponentials, as these will be our biggest source of error.
For the exponential terms, we use

(12)

This expansion is very accurate for 0(x(0.7. In the
evaluation of Jo, we will be taking the difference of two
such expansions so the magnitude of the exponential
dependence will be cut down. We obtain

exp{—2[a(E2—»l)]'} exp{2[a(El—»l)) }
= exp[2a&(QE, —QE&)7 exp{[(a/E2)&—(a/El)&]»l}

Xexp {[(a/E, ') &—(a/El') &)»l'/4}

Xexp{[(a/E2') ~—(a/El») &)»'/4}. (13)

The exponentials in ~] 6] and e&' may then be ex-
panded in Taylor sums, as the coefficients of the powers
of e in the exponentials are in general small. In most
cases three terms will suffice for each of these expansions.
Before doing this expansion, it is convenient to expand
the denominator of Eq. (9) using the relation

1/(1 —x) = exp(x j-,'x'+-', x'), (14)

then combine all of the exponentials and finally expand
the exponentials in Taylor sums. The approximation
made in Eq. (14) is good for 0&x&0.75. We also note
that the probability for two-neutron emission is given by

r(2) = Q3

»1 exp{2[a(E1»l)) }d»1

J»l exp{2[a(El—»l))~}d»l
0

@2 elr
»l exp{2[a(El—»l)]&}»2exp{2[a(El—»l—»,)] }d»»

0 & Z3-el Jp

E2—e1

»2 exp{2[a(El—»l—»2)]~}d»2 d»l

»l exp{2[a(El—»l))&}d»l
Jo

This calculation involves no new difhculties.
When all of the expansions involved in solving Eq.

(6) or Eq. (15) are done, one has 7 to 10 terms of poly-
nomial series in e&, and the problem may be done quite

feasibly by hand. The various expansions may be made
more exact by the inclusion of more terms, and the
problem will still be far easier to do than the equivalent
Monte Carlo calculation.
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Finally, we would like to point out a few things about the extension of this method to more than three neu-
trons being evaporated. We may use the evaporation of four neutrons to point out the applicability of this
technique.

E4—eI

'2 exp{2La(Ei—&i—&2)]*}
Jp

X j e8 exp{2La(ES—ei —e2 —e3)]-:}de3

&(4)=

ei exp{2ga(E,—e,)]-'*}

~ E3 c1—5Q

Jp

r@9 &1

Eg exp{2t a(E2 61—E2)]—}dC2

e exp{2)a(Ei—ei)]'}dej

63 exp{2La(E3—El—t2 E3)]~}d63 d62

A»

(16)

The point to note is that the integration over e2 will

be comparable in difhculty with the integration over e»

in Eq. (6), but the integration over ei will not re-
quire too many terms in the expansion because
exp{2La(E&—ei)]''}exp{—2(a(E&—e&)]'*}will have very
little e» dependence, remembering that e»&E4. Also the
denominator equivalent to Eq. (9) will be easier to
expand as ei/E2 will be quite small ( 0.4 at most).

III. EXTENSION TO COMPETITION BETWEEN
TWO EVAPORATION MODES

When we consider the evaporation process from

lighter nuclei, we observe competition between proton

and neutron emission. In the formalism of evaporation

theory, the eBect of this competition is to cause us to

make the following change:

-gn

j e exp{2(a(E e)5'}—de e exp {2La(E—e)]&}de

e exp{2La(E—e)]&}de
Jp

r~
e exp{2(a(E—e)]i}de+

Jp Jp
e' exp{2(a(E'—e')]l}de'

(17)

where e may be a neutron kinetic energy and e', a proton kinetic energy. A useful technique for dealing with this new

complication is to divide numerator and denominator of the right-hand side of (17) by JPe exp{2La(E—e)]l}de.
We then obtain:

Right-hand side of (17)=
e exp{2La(E—e)]'}de

e exp{2La(E—e)]:}de
0

E/

1+j e' exp{2ga(E' —e')]l}de'
0

(18)

e exp{2)a(E—e)]l}de

The first term on the right-hand side of Eq. (18)
gives us the probability of a nucleon being in some
range of interest and the bracketed term gives the
probability of that type of nucleon being emitted.
Quantities of the type of the first term have been calcu-
lated in the consideration of competition between two
and three neutron emission in Sec. II, and we see that
they may be calculated quite accurately for widely

diBering ratios of 6nal products, from Table I. For the
second term, we must develop a slightly diferent
approach, but from Eq. (18) it should be clear that the
calculation of a given product will be accurate, when we
can treat the bracketed term accurately. The approach
of Sec. II was that the P;e; must be less than E„ i by
at least 30%, and usually the sum will be only 60%
of 8„», and this justified the expansions. In the
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FIG. 1. Branching ratio as a
function of energy.
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TABLE I. Evaporation of neutrons from U'".

Monte Carlo
(Mev) P (2N) P (BN)

21 0.19~0.01 0.81 ~0.02
19 0.56+0.01 0.44 ~0.01
18 0.81&0.02 0.19 &0.01
17 0.97&0.02 0.027&0.003

Analytic
P(2N) P(BN)

0.178 0.822
0.577 0.423
0.826 0.174
0.980 0.020

and
s= Ie—Q'I

n—1

M =(~*—2 (Q+') —
Q )

(19)

(20)

using as the final Q value the larger of the two possi-
bilities, at the branch of interest.

In Fig. 1, we give plots of the branching ratio
(B.R.) different values of S, as a function of M. The
ratios given here are for an a value of 2.85 (Mev) '.
From Fig. 1, we note that the branching ratios are
straight lines, with a slight M dependence for M)10
Mev; this means that at all stages but the last, the
eGect of competition will be to put in a term of the form

B.R.=A 8 Q; e;, — (21)

as the Q values are ~10 Mev when there is competition.
At the last stage of the evaporation, we will have to
use some other approximation. We have found that the
branching ratios are well represented over the entire
interval of Fig. 1 by analytic expressions of the form

1) M—n
B.R.=1—-I

2 & (1+p)M+V)
(22)

bracketed term of Eq. (18) we have ratios of integrals
over entire spectra, so the approach of Sec. II will not
be valid.

We treat the problem of the branching ratio by de-
veloping an easily integrated function, which depends
on the diGerence in energy available for the two branches
and the amount of energy available at the time that
the branching occurs. The branching ratios are calcu-
lated for a particular value of the nuclear level density
parameter, but should not be too sensitive to small
changes in this parameter. We define

where B.R. is the branching ratio to the favored mode
of evaporation and n, P, and y depend only on S.

For a=2.85 (Mev) ', we have

y= 1.7S+1.95S'

n=0.4(S—1), S)1

n=0, S&1

(23)

(24)

P= 0.08S,

p=0,
S&1
S)1.

(25)

x= e/(8+y), (27)

for making the expansion of Eq. (14).
This procedure will be necessary at the last stage of

the evaporation process; at the earlier stages, the
branching ratio will be a linear function of 3E. We may
use this expansion for Z/(Z+y)(0. 75. The only diK-
culty which now remains is when S(&1 at the last stage
of the evaporation process. Interestingly, this is the
situation for which one would expect to obtain the best
results from the Monte Carlo techniques. Here we use a
diGerent expansion,

M/(M+y) =A+Be e~+De ~~, -(28)
and obtain the coeKcients 8, C, D, and P by analyzing
the function M/(M+y) as a decay curve with two
components. A will be the value of the function at the
largest M value under consideration. For S=O, the
problem is quite amenable to treatment. Because the
experimental data are often in violent disagreement with
calculations, one often redefines the Q value for a
particular step, i.e.,

(29)e=e.+~,

The existence of nonzero values for o. in this approxi-
mation means that the branching ratio to the unfavored
product is negligible ((0.3%) for M(n, and is con-
sidered to be zero for convenience in making the ap-
proximations. For values of S larger than one, the value
of p will be suKciently large so that the denominator
in Eq. (22) can be expanded using the methods of
Eq. (14), i.e.,

1/(M+V) = 1/(~+V —e) = , (26)
(&+v)L1—e/(~+V) j

and we identify
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in order to obtain better agreement with experiment.
This can be readily handled and leads to a new value
of S to be used in calculating the branching ratio curve.

The main point of this section is that simple analytic
functions (simple from the point of view of integration)
for the branching ratios niake it possible to treat com-
petition between two modes of evaporation with relative
ease.

IV. COMPARISON WITH MONTE CARLO
CALCULATIONS

The treatment described in Secs. II and III has been
applied to the calculation of neutron evaporation from
U" and compared with the Monte Carlo calculations
of Miller, Huizenga, and Vandenbosch. ' Calculations
have also been done for proton neutron competition
in the evaporation from Ni" and compared with the
calculations of Dostrovsky, Fraenkel, and Friedlander. '

In the Monte Carlo calculations on U"', the pa-
rameters of interest are a= 10.5, Qt ——4.76, Qz ——6.11, and

Q3
——5.27. In Table I, we compare the relative proba-

bilities for emitting two and three neutrons as calculated
using both methods.

The e8ect is that

1 (M n)—
1——

2 [(1+P)M+yj

(1y~) Pr ~]
(30)

2(1+P+-',Z) LM+q/(1+P+-', a)j

TABLE II. Evaporation from Ni".

(Mev)

25
35
40

Ratio
calculated

co57/NI57
o56/'Ni'6

Fe~5/Co55

0.79
0.51
0.61

Analytic

0.75
0.52
0.62

When neutron emission is favored, 6= —0.082; for
the case of proton emission being favored, 6=+0.089.
The branching ratio functions may then be easily
modified for comparison with Dostrovsky, Fraenkel,
and Friedlander. The comparison is given in Table II.

&2.59

g 58

I l.80

a See Reference 2.

l0.7

Fe56
Co56

N
56

FIG. 2. Evaporation of
nucleons from Ni'8.

Fe55
Go55

3 W. Miller, J. R. Huizenga, and R. Vandenbosch (private
cotnrnnnication).

The agreement between the two sets of results is
quite good. The results of the analytic treatment may
be improved by taking a few more terms in the various
expansions.

The comparison with the Ni" data of Dostrovsky,
Fraenkel, and Priedlander' is used as a test of the
methods for comparing competition between two modes.
The data which were used in the calculation are given
in Fig. 2. The numbers beside each arrow are the Q
values; the Q values for proton emission contain an
effective Coulombic barrier.

For comparison with the Monte Carlo values, we
use @=2.85. Also neutron spectra are multiplied by a
factor of 1.34 and proton spectra by 1.23. These factors
lead to slight changes in the branching ratio formula.

The analytic results were obtained after discovering
many numerical errors.

The ratio of Fe"/Co" was calculated by making
several approximations in order to simplify the calcula-
tion. The major difFiculty is in calculating the branching
from Co" to Fe" and Co". This calculation was done
exactly for a case which was an average of the two ways
to get to Co" from Ni". The branching ratios for all

steps before the last were made energy independent by
assuming 3-Mev kinetic energy carried oG per nucleon.
As these branching ratios have little energy dependence,
this assumption will introduce little error. Finally, the
assumption was made that the integrals over particle
kinetic energies would be about the same, i.e., if we can
remove the branching ratios, the rest of the integrals
will be a common factor. The justification for this step
is that we are only considering particles emitted with a
small fraction of the available kinetic energy. This final
assumption will be useable only when the products
being compared cannot evaporate another nucleon and
when a is only a function of the nuclear mass. This
procedure allows one to make quick, fairly accurate
estimates of ratios, when the ZQ, are about the same.

z

There is no real need for this final approximation.
For the purpose of clarifying the techniques used

here, it is instructive to set up a sample calculation.
We shall consider the probability of forming Ni" as
the evaporation product of the compound nucleus Ni",
having 35-Mev excitation energy.
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f23o2

eq exp{2[a(23.2 —eq)]'*}de&E(Ni") =B.R.(Ni" ~Ni")
J

From a consideration of Fig. 2, we see that

f10.9

e~ exp {2Le(23.2 —e~)]-'*}B.R.(Ni" ~ Ni")de~
0

f12
+B.R.(Ni" —& Ni'~) e& exp{2Lc(23.2—Ey)]*}dt's"10.9

$23 t2

e~ exp{2Lu(23.2—e~)]&}d&,. (31)
aJ 0

1

2

(M—n)(1—0.082)
(32)

(1+P—0.041) LM+&/(1+P —0.041)]

Next we use Eq. (19) and Eq. (20) to obtain

M =35—12.39=22.61,

S=0.59.

(33)

(34)

We then use Eqs. (23), (24), and (25) to obtain n, P,
and y:

n =0, P =0.048, y = 1.68. (35)

We then obtain

B.R.(Ni" —& Ni") =0.574. (36)

To calculate B.R.(Ni" —+ Ni"), we follow the same
procedure and have

In order to make the calculation, we need the values
of the two B.R. functions.

From Eq. (30), we have

B.R.(Ni" —& Ni")

Substituting the values of n, p, and y, we obtain
from Eq. (30)

0.478 (10.9—eg)
B.R.(Ni" —& Ni") =1—

(15.41—e&)

(38)

Since e& max/15. 4(0.75 we may use the expansion of
Eq. (14) for the denominator of Eq. (38). Using Eq.
(12) to expand exp{2La(23.2—e&)]'*}, we may then
proceed to evaluate the integrals in Eq. (31).

V. CONCLUSION

With the methods described here, it becomes possible
to treat problems in evaporation theory analytically.
There are special advantages in using these techniques
for calculating the probability of forming unlikely
products, as Monte Carlo methods must treat many
events in order to obtain good statistics. The analytic
techniques described here make it possible to treat the
parameters of evaporation theory with variations over
wide ranges of values.

M= 10.9—
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