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The two-electron, Auger-type transitions which occur when an
ion of suSciently large ionization energy is neutralized at the
atomically clean surface of a diamond-type semiconductor are
discussed. Consideration of the basic elements of the problem
leads to a computing program which enables one to calculate the
total electron yield and kinetic energy distribution of ejected
electrons in terms of a number of parameters. It is possible to
account for the experimental results for singly-charged noble gas
iona incident on the (111) faces of Si and Ge and the (100) face
of Si. The fit of theory to experiment is unique in its principal
features yielding numerical results concerning: (1) the state
density function for the valence bands of Si and Ge, (2) the energy
dependence of the matrix element as it is determined by sym-
metry of the valence band wave functions, (3) the effective ioniza-
tion energy near the solid surface, (4) energy broadening, and
(5l electron escape over the surface barrier. Over-all width of the

valence band is found to be 14—16 ev for both Si and Ge. Width
of the degenerate p bands is 5.1 ev in Si, 4.3 ev in Ge. The matrix
element for p-type valence electrons is 0.3 times that for s-type
valence electrons. Effective ionization energy is 2.2 ev less than
the free-space value for 10-ev He+ ions and decreases linearly with
ion velocity. Energy broadening is small for 10-ev ions and in-
creases approximately linearly with ion velocity. Probability of
electron escape is several times that predicted for an isotropic
distribution of excited electrons incident on a plane surface bar-
rier. A general theory of Auger neutralization is given in which the
conclusions of the fit to experiment are interpreted. Investigation
of the matrix element as a Coulomb interaction integral involving
wave functions whose general characteristics are known but which
are not explicitly evaluated leads to an understanding of its
principal dependences on energy and angle.

I. INTRODUCTION

A THEORY of the Auger-type electronic transi-
tions, which occur when an ion is neutralized at

a solid surface, is presented in this paper for the case
of the diamond-type semiconductor. It has been de-
veloped in an attempt to understand the experimental
results for noble gas ions incident on atomically clean
surfaces of germanium and silicon. '

Massey, ' Shekhter, ' and Cobas and Lamb4 have
treated the two-stage process consisting of neutraliza-
tion of the ion to an excited state by resonance tunneling
at a metal surface followed by de-excitation of the ex-
cited atom in a two-electron, Auger-type transition.
Shekhter' has also discussed the direct neutralization to
the ground state in the two-electron, Auger-type transi-
tion with which the present paper is concerned. In each
of these theories the attempt was made to calculate
matrix elements from assumed wave functions. The re-
sults are of limited value because the wave functions
were not accurate and because a number of very impor-
tant elements of the problem were ignored.

In the author's previously published theory of Auger
ejection of electrons from metals' a computer calcula-
tion was made of the kinetic energy distribution and
total yield of ejected electrons. In this work a number
of the elements previously ignored were incorporated
in the theory. These are: (1) energy distribution ot
initial electronic states in the solid, (2) dependence of
the matrix element on the angle which the excited elec-

' H. D. Hagstrum, Phys. Rev. 119, 940 (1960).' H. S. W. Massey, Proc. Cambridge Phil. Soc. 26, 386 (1930);
27, 469 (1931).

3 S. S. Shekhter, J. Kxptl. Theoret. Phys. (U.S.S.R) 7, 750
(1937).' A. Cobas and W. E. Lamb, Jr., Phys. Rev. 65, 327 (1944).' H. D. Hagstrum, Phys. Rev. 96, 336 (1954).

tron's velocity makes with the surface normal and the
effect of this on the probability of escape from the solid,
(3) variation of energy levels in the ion as it approaches
the solid surface, (4) the fact that ion neutralization
occurs over a range of distances from the surface,
(5) finite lifetime of the initial state, and (6) the role
of resonance tunneling to an excited state in determining
the partition between Auger neutralization and Auger
de-excitation processes.

In the theory for metals the following basic facts
concerning the Auger neutralization process were
established.

(1) The magnitude of electron yield is determined by
the ionization energy, the initial state density distribu-
tion, and the probability of electron escape. It is not
determined, as Shekhter assumed, ' by the integrated
transition probability over all distances from the sur-
face, which is unity.

(2) The form of the kinetic energy distribution is
determined by an integral transform of the energy level
distribution in the filled band of the solid in which the
electrons initially reside as was discussed for another
Auger process by Lander. '

(3) The role of the ion's incident kinetic energy is to
determine energy level shift in the atom and energy
broadening by determining the average distance from
the surface at which the process occurs.

More recently, Sternberg' has again attempted to
calculate matrix elements from assumed wave functions
for the resonance tunneling and Auger processes. Con-
siderable improvement over the earlier calculations of a

6 J. J. Lander, Phys. Rev. 91, 1382 (1953).
D. Sternberg, Ph.D. dissertation, Columbia University, 1957

(unpublished); available from University Microfilms, Ann Arbor,
Michigan.
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TABLE I. De6nitions of notation. '

I IlE')C~C

6p

&c

E'
Z, Z.,'(s}

E (n, S)

P.(r',,S)

sm

l 12

FIy;

FI' FI"

FIg, Hg

I,'(1), I,"(2)

free electron.

electron inside semiconductor.

number of electrons in the valence band used in
Eq. (89).
energy of valence electron measured from bottom
of valence band.

(e'+ c")/2.

energy above bottom of valence band of excited
electron inside solid.

uncertainty in e~ introduced by the Heisenberg
uncertainty principle.

energy of vacuum level above bottom of valence
band.

energy of bottom of conduction band above
bottom of valence band.

energy of top of valence band above its bottom
(i.e., total width of valence band).

~/~, at bottom of degenerate p band making width
of degenerate p band (1—p)r„.

kinetic energy of particle (atom, ion, electron)
outside solid measured from zero at the vacuum
level. Nature of particle may be expressed in pa-
rentheses after the symbol as in EI,(e ), EI,(He+).

free space ionization energy.

effective ionization energy at a distance s from
the solid surface.

energy of interaction between normal atom and
solid surface.

energy of interaction between ion and solid
surface.

Dirac 8 function on energy.

distance of particle from plane of outermost
nuclei of solid.

distance at which P~(s,vo} is maximum.

distance between electrons 1 and 2.

incident velocity of particle toward solid.

angle between surface normal and velocity of
excited electron inside solid.

maximum 0 for escape over surface barrier.

azimuthal angle about surface normal.

matrix element of Auger transitions.

"elemental" matrix elements derived from each
other by electron exchange PEqs. (49) and (50)].
H"/H'

average values of FI' for 8(8, and 0)8„re-
spectively.

FIj/FIg.

1 —1/f'.
wave functions of electrons 1 and 2 at e' and ~"
in the valence band, respectively.

«, (&)

u, (2)

I,'(2)

r](~', ~",0, p,s}
R, (s}

Po(s,vo)

I ~(S,Vp)dS

Ps(~ay)d~~

Pn (8,es,s)dQ

I (8 op, s)d (bc 1.,)

z, (~ },z, (L:&)

N, (r.&)

W (P)

wave function of electron 1 in atomic ground state.

wave function of electron 2 when excited to en-
ergy ~1, if it is transmitted across surface barrier.

wave function of electron 2 excited to energy eI„. if
it is rejected at surface barrier.

transition rate for elemental Auger process.

total transition rate.

probability that ion of velocity vo will reach s
without undergoing Auger neutralization.

probability that ion approaching surface with ve-
locity eo will undergo Auger neutralization in ds
at s.

probability that a process occurring mith incident
ion at.s will produce excited electron in d~q at cq.

probability that excited electron of energy e&

formed at s has velocity in dO=sined0dq at 8, q.
probability that the energy of an excited electron
formed by a process occurring at s will be uncer-
tain by an amount baI, due to the Heisenberg
uncertainty principle.

probability that excited electron at 6&=Ejg+60
will escape from solid.

parameters in the I', function.

parameters in exponential transition rate E~(s)
=A exp( —as).
parameters in exponential repulsive interaction
term B exp( —bs) (subscript i denotes ion, n de-
notes normal atom).

density of states in valence band.

effective density of states in valence band which
includes dependence of matrix element on energy.

le, '(c)/A;(e) which specifies variation of matrix
element with e.

factor by which a p electron is less effective than
an s electron in the Auger neutralization process.

density of states in conduction band.

distribution in energy of excited electrons inside
solid.

distribution in energy of ejected electrons out-
side solid.

Auger transform of Ar„'(e) PEq. (16)g.
broadened Auger transform LEq. (17)].
broadening function taken to be Gaussian in
this work.

parameter determining spread of Gaussian
function.

0 factor from variation of energy levels.

a factor from Heisenberg principle.

width at half maximum of the function P.
total electron yield in electrons per ion.

dielectric constant of the semiconductor.

& Notation introduced at only one place in the paper is not included in this table.

similar nature has been made, but it still appears to be
impossible to calculate the total electron yield in this
way.

The present work for the diamond-type semicon-
ductors may be considered to be an extension of the

author's previous theory for metals. A computer calcula-
tion of the total yieM and kinetic energy distribution is

again made in terms of the basic parameters of the
problem. In order to fit the theory to the experiment in

this case, however, it is necessary also to take account
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of the variation of the matrix element with energy of
the initial states. I urthermore, the greater width of the
filled band in Ge and Si as compared to % makes it
probable that resonance tunneling to the ground state
can occur for the singly-charged noble gas ions of
ionization energy less than that of He+.

In the present paper the experimental facts to be
explained are first presented (Sec. II) and the electronic
transitions are specified (Sec. III). Consideration of the
basic elements of the Auger neutralization process (Sec.
IV) leads to the computer program (Sec. V) for calcu-
lating the kinetic energy distribution of ejected electrons
and the total electron yield in terms of the essential
parameters. Solutions based on simplifying assumptions
which are progressively removed are presented in Sec.
UI. Energy broadening is then included in the theory
(Sec. VII) and uniqueness of the theoretical fit dis-
cussed (Sec. VIII). Solutions previously made for He+
ions of various kinetic energies incident on the (111)
face of Ge are then extended to the other singly-charged
noble gas ions and to the Si(111) and Si(100) crystal
faces (Sec. IX).The basic conclusions demanded by the
fit of theory to experiment are summarized in Sec. X.
In Secs. XI—XV a general theory of the phenomenon
is presented in terms of which these conclusions are
interpreted. The state density functions determined for
the Si and Ge valence bands are discussed in Sec. XUI
and surface effects in Sec. XUII. Notation used gen-
erally throughout the paper is defined in Table I.

II. EXPERIMENTAL FACTS TO BE EXPLAINED

The phenomenon we are attempting to understand is
the release of electrons from a diamond-type semi-
conductor which accompanies the neutralization of an
ion of sufFiciently large ionization energy at the semi-
conductor surface. ' The basic experimental information
concerning this phenomenon comprises the kinetic
energy distribution, ¹(E&),and its integral, the total
yield, p;. These quantities are found to depend specifi-
cally upon the nature of the solid and the state of its
surface as well as the nature of the ion and its incident
kinetic energy.

In this paper we shall concern ourselves with atomi-
cally clean and atomically smooth surfaces of the ele-
mental semiconductors silicon and germanium. Thus we
shall not attempt to include in the theory the effects of
surface steps, surface terminations of dislocations,
foreign atoms adsorbed on the surface, or any other
surface "defect". In the experiments atomic cleanliness
has been demonstrated but the surfaces used certainly
had steps and. dislocations on them. For the (111)
faces there is evidence that reasonably large areas of
the surface are most likely atomically plane. Thus on

In this paper the term "ionization energy of an ion" is used to
mean the first ionization energy of the parent atom from which
the ion is formed and not to mean, as strict usage would demand,
the first ionization energy of the ion itself, which is the second
ionization energy of the parent atom.
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FIG. 1. Experimental kinetic energy distributions, E0(L&), of
electrons ejected from the Ge(111) face by 10-ev singly-charged
iona of the noble gases (reference 1). The curves drawn through
the experimental points represent smoothed experimental
distributions.

most encounters the surface should appear to be atomi-
cally smooth to the ion which senses only a few neighbor-
ing surface atoms at the distance from the surface at
which the electronic transitions occur. However, we
shall not limit our model to the single dimension normal
to the surface but shall also discuss the possible effects
of surface atomicity.

Experimental results, in terms of which the present
theory is developed, are those for the (111)face of ger-
manium LGe(111)j.' In Fig. 1 are shown ¹(Zs)dis-
tributions for noMe ga, s ions of 10-ev incident kinetic
energy. ¹(E&)is found to change in form as ion kinetic
energy is increased. Experimental data for He+ ions of
five different kinetic energies are shown in I ig. 9. Since
the area under an ¹(Z&)curve is the total yield 7, in
electrons per ion, Fig. 9 indicates that for He+ y;
changes little with ion energy. This is also true for the
other singly-charged noble gas ions. These experimental
results for Ge(111) are much like those for Si(111)and
Si(100) for which data are also available. ' We shall see
that the present theory can account for all the principal
features of these experimental results.

III. THE ELECTRONIC TRANSITIONS

As has been shown previously for the refractory
metals, we are dealing here with the release of electrons
from the semiconductor in a two-electron, Auger-type
process termed Auger neutralization. ' The electronic
transitions are shown in the energy level diagram of
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initially at the top of the valence band. Thus,

(&k)mex Ei &0+2o„.

Minimum el, is given by

(oi);.=E,'—op for E,' —oo) o,

6c for +i 6p+ 6c

(2)

(3)
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~ /////////'
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E op is—calculated from (1) for o'=o"=0 when both
electrons lie initially at the bottom of the valence band.
However, any process for which E —Ep( t. is impossible
because it specifies a final state for the excited electron
lying either in the forbidden gap, e„(e~&~„or in the
already ulled valence band, 0(e~(c„.

The limits on kinetic energy outside the solid for
those excited electrons which can surmount the sur-
face barrier are:

(E.)--=E'' —2( o
— ),

(EI,);„=E —2op fol' Ei op) op

=0 for E,'—op& cp.

-(~' - &p)
I

ATOM

For e, (e~(ep the Auger neutralization process can
occur but none of the excited electrons can leave the
solid.

Fio. 2. Energy level diagram for an electron inside the semi-
conductor or in the field of the atomic core a distance s outside
the solid surface. The two sets of Auger transitions shown (1, 2
and 1', 2') are obtained from each other by electron exchange.
A resonance tunneling transition (3) to an excited atomic state is
also shown. Energies inside the solid indicated to the left are taken
to be zero at the bottom of the valence band. Energies outside the
solid given by the scale at the right are zero at the vacuum level,
the energy of a free electron at rest an infinite distance from both
ion and solid.

Fig. 2. The two electrons involved have energies ini-
tially at e' and ~" in the valence band which extends
from 0 to e,. One of these electrons tunnels into the
ground state of the atom outside the solid. The second
electron is simultaneously excited to the energy eI, in
the conduction band which extends from e. upward.
As indicated in Fig. 2, two processes of this type are
possible which are derived from one another by electron
exchange. The impossibility of resonance tunneling to
an excited state in the noble gases is pointed out in
Sec. IV. Resonance tunneling to the ground state for
Ne+, A+, Kr+, and Xe+ is discussed in Secs. IV and IX.

Equating the energy drop represented by transition 1
(or 1') to the rise represented by transition 2 (or 2')
leads to the following statement of the conservation of
energy:

o +& =2&= oI+&o—E, =Ep+2oo —E, .

In Kq. (1) E, is an effective ionization energy for the
atom near the solid surface which we do not expect to
be the same as the free-space value E;.

Since e' and c"may lie anywhere in the valence band,
we expect eI, to be distributed over a band of energies
whose limits may be calculated using Eq. (1). Maxi-
mum eq occurs for e'= e"=e, when both electrons lie

IY. BASIC ELEMENTS OF THE PHENOMENON

It is our purpose in this section to present the basic
elements of the Auger neutralization process upon which
the theoretical calculations of this paper are based.
Equations introduced here appear again later in the
numbered sequence of equations used in the calcula-
tions (Sec. V). A more detailed justification of the
principal assumptions upon which the calculation rests
is given later in the paper (Secs. XI—XV).

We wish to calculate the distribution in kinetic
energy, Ep(E&) or Ep(oi, ), of electrons outside the semi-
conductor in terms of a number of parameters. The
total electron yield, y, , is then the integral of 1Vo(o&)

over all energies. Ep(op) is related to the distribution in

energy, E,(o&), of all excited or Auger electrons inside
the solid through a probability of electron escape or
vacuum-level cutoff function, P, (op). Thus,

So(pi) =iV, (ci)P.(og).

P, (o&) specifies the fraction of electrons in E,(op) at any
energy having sufficient momentum normal to the
surface to escape over the surface barrier. It is calculable
for a plane barrier and an E,(oi,) distribution which is
isotropic in velocity at all op. In general, P, (oz) will

depend upon the nature of the angular distribution of
velocity in the X;(ok) distribution and upon the shape
of the surface barrier. Under all circumstances it is a
function which rises from zero at the vacuum level,
el, = t.p, and approaches —,

' for very large el, if the proba-
bility of eventual release of an Auger electron moving
initially away from the surface is small. Ep, X,, and P,
functions for He+ ions incident on the (111) face of
germanium are shown in Fig. 3.
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Fxo. 3. Electron energy diagram
like that of Fig. 2 on which are
plotted the functional depend-
ences of the theory introduced in
the text in Sec. IV. The positive
direction in which each function is
plotted is indicated by an arrow
alongside the function symbol.
The functions plotted are those
derived without energy broaden-
ing for the case of He+ ions inci-
dent on the (111) face of ger-
maniuIn. However, they may also
be taken as indicating schemati-
cally the types of functions in
terms of which the theory is
developed.
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The lV, (ei) distribution, in turn, is expected to de-
pend upon the variation of the matrix element of the
Auger process with energy and upon the distribution,
N„(e), of initial energy states in the valence band. In
general, the matrix element may be expected to depend
upon the initial energies c' and e" directly and upon
possible combinations of these energies such as their
difference e"—e'= 2d, . The direct dependence on initial
energy may be accounted for by using an effective
energy-level density function in the valence band,
N„'(e), which is the product of the true density function
N„(c) and a function q(e) which specifies the relative
variation of transition probability with energy. Thus,

This equation states that a direct dependence of transi-
tion probability on energy is indistinguishable from a
variation with energy of the number of electrons avail-
able to the Auger neutralization process. Smaller transi-
tion probability is equivalent to smaller effective num-
ber of electrons, and conversely. We shall see that this
assumption is necessary and sufficient to account for
the principal features of the experimental results. The
forms of N„(e) and N„'(e) for germanium are shown in
Flg. 3.

The dependence of N, (eI,) on iV, '(e) may now be seen.
Electrons populating the energy interval de at t.

' and
e" will produce excited electrons in the element
deI, (= 2de) at ei, . But so will electrons in intervals de at
all pairs of energies e' and e" which are symmetrically
disposed with respect to the energy e. Thus, we should
expect N, (ei) to be proportional to an integral over the
product of effective state densities in the valence band,
that is, proportional to the function T(eI,) where T(e)
is given by

The integration stops when ~ A=a" or —e+d =e"
reach the bottom or top of the valence band, respec-
tively. The change of variable from e to eI, is that dic-
tated by Eq. (1). T(e) is the analog, for N„'(e), of the
Auger transform de6ned by Lander' in terms of N„(e)
for another Auger process possible in solids. It is noted
here in passing that N;(c~) should also depend upon the
density of conduction band states, N, (e&). N, (e&) is
assumed here to be a constant; its role in the theory
will be discussed again later.

Because of the high probability of an Auger process
relative to any radiative process, ' ' we expect every ion
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TABLK II. Semiconductor parameters used in this work.

Ge(»1)
Si(111)
Sl(100)

Cp 6v

ev

4 8a
47b

1c

6c 6v

ev

0.7
1.1
1.1

16
12
12

a This value is taken to be close to the value of the work function q =4.79
ev measured by J. A. Dillon, Jr„and H, E. Farnsworth fJ. Appl. Phys.
28, 174 (1957)$ on the grounds that the experimental surface, although
clean, was strongly p type.

b J. A. Dillon, Jr. , and H. E. Farnsworth PJ. Appl. Phys. 29, 1195
(1958)j quote q for this face equal to 4.77 ev quenched, 4.67 ev annealed
for one sample, 4.73 ev either quenched or annealed for a high resistivity
floating zone sample. Eisinger PF. G. Allen, J. T. Eisinger, H. D. Hagstrum,
and J. T. Law, J. Appl. Phys. 30, 1563 (1959)j measured 4.77 ev after
heating, which agrees well with the value of q =4.76 ev for a cleaved surface
measured by R. E. Simon LBull. Am, Phys. Soc. 4, 410 (1959)j. The value
used here is again a little greater than the annealed value for a p-type
surface.' Dillon and Farnsworth (footnote b) give cp =4.92 ev quenched, 4.82 ev
annealed. J. Eisinger as quoted by F. G. Allen PJ. Phys. Chem. Solids 8,
119 (1959)j measured a less certain value of 5.05 ev. In view of this un-
certainty, the value 5.1 ev listed here is that found from fitting to the ex-
perimental data.

d These energy gap figures are rounded off to the nearest 0.1 ev from con-
siderably more accurate data. See J. R. Haynes, M. Lax, and W, F. Flood,
J. Phys. Chem. Solids 8, 392 (1959).Also, G. C. MacFarlane, T. P. McLean,
J. E. Quarrington, and V. Roberts, J. Phys. Chem. Solids 8, 388 (1959);
Phys, Rev. 111, 1245 (1958).

e These are approximate figures of sufFicient accuracy for present pur-
poses based on more accurate measurements in the infrared and at lower
frequencies. See H. B. Briggs, Phys. Rev. V'7, 287 (1950);W. C. Dunlap and
R. L. Watters, Phys. Rev. 92, 1396 (1953).

to be neutralized by Auger neutralization if direct
resonance tunneling to the ground or excited states in
the atom is impossible. Under these circumstances
S;(ei,) is normalized to a total area of one electron per
incident ion. Direct resonance tunneling to an excited
level, illustrated by transition 3 in Fig. 2, appears to be
impossible for the noble gas ions incident on silicon and
germanium because all excited levels lie above the top
of the valence band, at distances from the surface where
these processes can occur. This may be seen by compar-
ing ep —e„values in Table II with the variation of ex-
cited levels with distance shown in Fig. 24 of reference 5.
Tunneling into the excited state, if it occurs, will be
followed by the Auger de-excitation process which pro-
duces Auger electrons distributed differently in energy
from those produced by Auger neutralization. ' It is thus
essential to establish that resonance tunneling to an
excited state cannot occur. Direct tunneling to the
ground state is possible if the ground state lies at an
energy above the bottom of the valence band, that is if
E' 4 Ep. Its occurrence thus depends on the magnitudes
of the ionization energy and the total width of the
valence band and appears to be definitely impossible
only for He+ ions. This theory, in which 1V;(e&) is nor-
malized to one electron per ion, will overestimate the
Auger yield if a fraction of the incident ions are neu-
tralized by tunneling to the ground state (Sec. IX).

It is now necessary to introduce three further ideas,
namely, (1) the dependence of transition probability on
distance, s, of the atom from the surface, (2) the varia-
tion of ionization energy with distance of the atom from
the surface, and (3) energy broadening of the X; and
A p distributions. All ions approaching the solid will not

V. STRUCTURE OF THE THEORETICAL
CALCULATION

The preceding discussion of the basic elements of the
theoretical problem suggests a procedure for calculating
the iVs(E&) distribution. We start with a state density
function, X„(e),derived from what is known about the
general features of the population of the valence band
in a diamond-type semiconductor. ' "Two of the four
valence electrons are distributed over the entire valence
bandwidth, 0(e& e, . These electrons vary in symmetry
character from pure s at the bottom of the band to
pure p at the top and account for the s electron and one
of the three p electrons of the tetrahedral sp' hybridiza-
tion of the valence band. The remaining two p elec-
trons are distributed over narrower bands which are
degenerate if we neglect spin-orbit coupling. These
degenerate p bands lie at energies pe„(e&' e„at the top
of the wider s-p band.

We assume a form of E„(e) involving the two pa-
rameters e„and p which is compounded of four parabolas
Sl, iVg, E3, and S4. Thus,

1V.(e) =p iv„(e),
n=l

(6)

' F. Herman, Phys. Rev. 93, 1214 (1954); Proc. Inst. Radio
Engrs. 45, 1703 (1955); Revs. Modern Phys. 80, 102 (1958); J.
Callaway, in Solid State I'hypos, edited by F. Seitz and D. Turn-
bull (Academic Press, Inc. , New York, 1958), Vol. 7, p. 99.I J. C. Phillips, Phys. Rev. 112, 685 (1958).

undergo Auger neutralization at the same distance from
the surface. transitions will be distributed in distance
s according to a probability distribution we shall call
Pi(s, es) defined such that I'i(s, vs)ds is the probability
that an ion moving with velocity vp will undergo neu-
tralization in ds at s. E,(s,r,) is a peak-shaped function
like that shown in Fig. 3, passing through a maximum
at s=s .

The ionization energy near the surface is less than
the free-space value and varies with distance s. This
results from the image and repulsive interactions be-
tween ion and solid and the repulsive interaction
between neutralized atom and solid. Van der Waals
interactions are so small relative to the energy dis-
crimination of the experiment that they may be neg-
lected. The form of the dependence of the effective
ionization energy, E;, on s is also shown in Fig. 3.

The combination of a I'& function of finite width and
the variation of E; with s results in a variability of the
energy level of the atomic ground state relative to the
electronic energy levels in the solid. This introduces a
broadening in energy e& of the E, and Ep distributions.
Further energy broadening results from the Heisenberg
uncertainty principle by virtue of the finite lifetimes in
initial and final states of the Auger neutralization
process.
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where

1Vi(e) =Cie,

1Vs(e) =Ci(e,—e)',

1Vs(e) =Cs(e—pe„)i,

1V4(e) =C,(e„—e),

0& e& e„/2,

e„/2& e& e»

p"«' (1+p)"/»
(1+p)e,/2&e& e„.

(7)

(8)

(9)

(10)

C =l("/2) ',

Cs=sk(1 —p)"/27 *'=Ci(1—p) '.
(11)

(12)

Values of p and e„determined from the fit to experi-
ment for germanium are p=0.73 and e„=16ev, giving
Ci ——0.0664 and Cs ——0.473. For silicon p=0.68, e„=16
ev, giving C~ ——0.0664 and C&

——0.366. The use of pa-
rabolas for the E„functions means that we are assuming
constant effective mass in each of the subbands.

The eRective state density function 1V„'(e) is now de-
fined in terms of 1V„(e) by the equations:

1V„'(e)=q(e)1V„(e)=gq„(e)1V„(e) for 0&e&e„

The constants C& and C2 are determined by normalizing
the area under each of the four parabolas to one elec-
tron. This yields:

1.0
ey/2

0+ p) ey/2
Pfy Fy

V)z0
0.6

O
ILJ

W

z
0.4

z
w 0.2
CX'

--Ny(F)

q() l&4
I

/+2 . -Ny(e)
I

0
0 8 )2

8 tNev
f6 20

Fio. 4. The state density function $„(e) of Eqs. (6)—(10)
(curve 1) and the effective state density function 1V„'(e) of Eq.
(13) (curve 2) used in the theory for germanium. The q(e) func-
tion is specifmd by q& =qu of Eq. (14) (curve 3) and qa

——q4 of Eq.
(15) (curve 4). Parameters used are e„=16 ev, p=0.73, r=0.3.
Critical energies are indicated at the top of the diagram.

n=l (13)
=0 for e(0,e)e„.

As discussed above, this introduces a variation of
transition probability with energy through the q(e)
function. Ke shall anticipate later discussion by stating
here that this energy variation in all probability results
from the variation of symmetry character of the valence
electrons from s to p type through the band and the
conclusion that a p-type valence electron has a lower
transition probability than an s electron at the same
energy. These statements lead to a q(e) function of the
form,

q ( i)=eqs(e) = 1 (1 r) (e/e„),

qs(e) =q4(e)=r,

(14)

(15)

T( ) = iV '( —h)1V„'( +A)dh.
~o

(16)

in which r, another parameter of the problem, is the
ratio (&1) of transition probability for a p to that for
an s electron at the same energy. Equation (14) assumes
a linear variation from s to p character through the
s-p band specified by 1Vi and N&. Equation (15) reflects
the fact that the degenerate bands given by S3 and X4
are completely p in character. At this point we may take
(14) and (15) as giving an empirical form for q(e) to be
justified on the basis of the fit to experiment and later
theoretical discussion. 1V„(e),1V„'(e),and q(e) are plotted
for r =0.3 in Fig. 4.

The theory now proceeds with a calculation of the
Auger transform T(e) of the eRective state density
function. It is:

The details of computing this function for the assumed
forms of 1V, (e) and q(e) are given in the Appendix (Sec.
XIX). By virtue of the definition of 1V„'(e) in Eq. (13)
integration over 6 stops whenever either e—d, or e+6
leave the energy range of the valence band.

At this stage we introduce energy broadening by
convoluting T(e) with a broadening function q, (x)
yielding the broadened Auger transform:

Ts(e) = q, (x) T(e+x)dx. (17)

This procedure is introduced to account both for
Heisenberg broadening and for broadening resulting
from the variation of E with s and the finite width of
the I'& function on the s scale. In the present work a
Gaussian broadening function,

q. (x)= L1/o (2s)&7 exp( —x'/2o'), (18)

has been used. 0- is the fourth parameter of the problem.
The simplification of using a single broadening func-

tion to account for the total effect of two quite different
types of broadening is permissible for the slowest ions
(10 ev) for which broadening effects are small. For
faster ions where broadening becomes increasingly im-

portant, Gaussian broadening predicts the basic features
of the experimental results but not the detailed form
of the 1Ve(eI,) distribution. Auger transforms T(e) and
Ts(e) derived from the 1V„(e) and iV„'(e) distributions of
Fig. 4 are plotted in Fig. 5.

1V;(ee) is now taken to have the form of the broadened
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Auger neutralization is the only neutralization process
occurring.

Calculation of the external distribution Ep(eb) re-
quires knowledge of the probability of electron escape
over the surface barrier. For E;(eb) isotropic in velocity
relative to the surface normal and for a plane surface
barrier of total height eo above the bottom of the val-
ence band, assuming that no electrons escape which are
initially directed into the solid away from the surface,
I', is calculable and is given by'

0
0

e INeV
f2 20

Auger transform, Tb(e). Thus,

E,(ep) =GTbf-', (eb+ ep —E,')$, (19)

Fro. 5. T(b) and Tb(b) transforms derived from N„(b) and
E„'(c) of Fig. 4 for germanium. Curve 1 is the unbroadened T(e)
from N, (e) (curve 1, Fig. 4, r=1). Curve 2 is the unbroadened
T(e) from N„'(b) (curve 2, Fig. 4, r=0.3). Curves 3 and 4 are
broadened Tb(e) functions from curve 2, Fig. 4, r =0.3. For curves
3 and 4 0- has the values 0.85 and 2.5 appropriate to the solution
for 100- and 1000-ev ions, respectively. Critical energies are in-
dicated at the top of the diagram.

Equation (22) is plotted as curve 4 in Fig. 6. It is a
function which starts from zero at ei, = eo, the vacuum
level, and approaches ~~ for large e~. We shall find that
use of expression (22) permits the escape of too few
electrons to account for the experimental electron yield.
A one-parameter expression giving greater escape proba-
bilities is that derived earlier":

P, ( e)b=s[1 (ep/eb)'j/$1 n(ep/eb)'] for e@)ep
(23)=0 fol 6'(E-o.

For n=0 expression (23) reduces to (22); for n=1 it
gives P,=-,' at all energies. For 0(n(1, (23) lies higher
than (22) but has the same general characteristics of
rising from zero at cI,= eo and approaching —,

' for large

in which G is a normalization factor. This step requires
the change of variable from e to eb according to Eq. (1).
We may use a single value for E in (1) since the effect
of E variation with s and finite I'~ width have been
accounted for in the broadening procedure. The value
of E,' required by 6t to experiment should be close to
E,'(s ), the value at the maximum of the P, function
(Fig. 3). E,' is the fifth parameter of the problem. ep is
known from the assumed value of e, and the photo-
threshold (ep —e„) which has been measured for several
crystallographic faces of germanium and silicon (Table
II).

The 1V;(eb) distribution is now normalized to an area,
of one electron per incident ion,

X,(eb)deb ——1 eleCtrOn per iOn, (20)

yielding for the normalizing factor G of Eq. (19) the
result:

1/G= t TbL-;(e„+ep—E )].
Ep

(21)

1V;(eb) distributions obtained from the T(e) functions
of Fig. 5 are plotted in Fig. 6. On this basis the theory
gives an electron yield per ion neutralized in the Auger
neutralization process. This result may be compared
with that observed, as discussed above, only when
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"Equation (55) in reference 5,

FIG. 6. Graph showing several Ã;(~~) and I', (~~) functions
appropriate to the case of 10-ev He+ ions on Ge(111). Curve 1
results from curve 1 of Fig. 5 with L& =2;=24.6 ev, curve 2 from
curve 1 of Fig. 5 with F =22.4 ev, and curve 3 from curve 2 of
Fig. 5 with P; =22,4 ev, Curve 4 is a plot of Eq. (22), curve 5 of
Eq. (24) with o.=0.78, P=1.0, and curve 6 of Kq. (24) with
o, =0.25, P=1.0. Critical energies are indicated at the top of the
diagram.
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TABLE III. Procedure for obtaining theoretical
Np(Er) distribution and y;.

Step

(1) Assume E,(~)
(2) Assume q{c)
(3) Calculate X,'(e)
(4) Calculate T(e)
(5) Assume y, (x)
(6) Calculate Tf, (e)
{7) Calculate E;(~/,)
(8) Normalize X;(e/, )
(9) Assume E,(eI,)

(10) Calculate Np(Eq)
(11) Calculate y;

Equations

(6)-(»)
(14), (15)

(13)
(16)
(»)
(17)
(19)

(20), (21)
(22)-(24)

(»)
(26)

Param- Other
eters quantities'

~ ~ ~

(&0—e„)
(Eg —eg)

60

' See Table II.

eI,. A somewhat more convenient P, function, which

has been used extensively in the present work, is the
two-parameter expression:

P.(ek) =-', $1—(ep/ep)s5 fol ey) ep

=0 for
(24)

For n=1, P=-', expression (24) reduces to (22); for
n=O, P/0 it gives P.=-,' at all energies. For given

P/0, n in the range 1)n)0 determines the general
magnitude of I', and gives values higher than (22). The
P parameter largely determines the curvature of the
function as eI, increases from eo. Curves 5 and 6 in Fig. 6
are plots of this function. Expression (24) also ap-
proaches s at large e1 for all positive n and p provided
PAO. E,(ek) functions of Eqs. (23) and (24) are also
plotted in Fig. 15.

In terms of one of the P, functions introduced above
we may now calculate Np(ek) as

Np(e1. ) =N, (ep)P, (e1), (25)

and the total electron yield p; as

Np(ep)de1= I Np(Ek)dE1. .
0

(26)

The calculational procedure presented here has been
programmed for an electronic computer (IBM 704 or
7090). The steps involved are summarized in convenient
form in Table III. The program operates when supplied
with the necessary parameters (column 3, Table III)
and the other quantities involved (column 4, Table III),
and prints out q, and the functions Np(eI, ), N;(e~),
T(el), and Tp(e&) for energy intervals in e usually taken
to be 0.25 ev.

VI. SIMPLEST SOLUTION AND STEP-BY-STEP
REMOVAL OF ITS SIMPLIFICATIONS

We begin our attempt to 6t the experimental results
for He+ ions shown in E'ig. 1 by a calculation based on
the simplest of assumptions, We shall: (1) -neglect

v ec
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FIG. 7. Theoretical Eo (e/p) distributions (full lines) for 10-ev
He+ ions on Ge(111) obtained with various simplifying assump-
tions. The experimental distribution is indicated by the points
only. Curve 1 corresponds to curves 1, Figs. 4, 5, and 6 for the
case of r 1, E =E;==24.6 ev and P, of Kq. (22). Curve 2 corre-
sponds to curves 1 of Figs. 4, 5, and 6 with r =1, F =24.6 ev and
I', of Eq. (24) with o.=0.78, p=1.0. Curve 3 corresponds to
curves 1, 1, 2 of Figs. 4, 5, 6, respectively, with r = 1, J.' =22,4 ev,
and I',, of Eq. {24) with o.=0.78, p=1.0. Curve 4 corresponds to
curves 2, 2, 3 of Figs. 4, 5, 6, respectively, with r =0.3, E' =22.4 ev,
and P, of Eq. (24) with o, =0.25, p=1,0. Critical energies are
indicated at the top of the diagram and an A'I, scale is given at the
bottom.

broadening making o=0 in (18) and Tb(e)=T(e) by
(1/); (2) use the P, (e1) function of expression (22)
which assumes an isotropic X; distribution incident on
a plane barrier; (3) use the free space ionization energy,
that is, take E =E,=24.6 ev in (19); and (4) neglect
any dependence of transition probability on energy,
thus taking r= 1 which gives q(e) = 1 by (14) and (15)
and N„'(e) =N„(e) by (13).These assumptions eliminate
steps 2, 3, 5, and 6 of Table III. In addition we shall use
e„=16 ev and p=0.73 for germanium which are the
values found for the ultimate fit. We investigate varia-
tion of e„and p in Sec. VIII.

The N„(e) function used here is curve 1 of Fig. 4
which leads to the T(e) function of curve 1 of Fig. 5.
The N, ( e)1distribution is curve 1 of Fig. 6 and the
assumed P, function is curve 4 of Fig. 6. The resulting

Np(e&) distribution is curve 1 of Fig. 7 yielding a theo-
retical y; of 0.056. Comparing these results with the
experimental y; of 0.196 and with the experimental
points also shown in Fig. 7, we see that this erst theo-
retical Np(el, ) is too small in magnitude, lies too high
on the energy scale and has the wrong form. We shall
now attempt to correct these de6ciencies by a step-by-
step removal of the simplifying assumptions.
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TABLE IV. Parameters used in theoretical calculations. '

Ion K.E. Target E,'(sm) Ey 6g

ev ev ev ev
60

ev ev

1 He
2 He+
3 He+
4 He+
5 He+
6 He+
7 He+
8 He+
9 He+

10 He+
11 He+
12 He+
13 He+
14 Ne+
15 Ne+
16 A+
17 Kr+
18 He+
19 He+

10
10
10
10
10
33

100
333

1000
10
10
10
10
10
10
10
10
10
10

Ge(111)
Ge(111)
Ge(111)
Ge(111)
Ge(111)
Ge(111)
Ge (111)
Ge(111)
Ge(111)
Ge(111}
Ge(111)
Ge(111}
Ge(111}
Ge (111)
Ge(111)
Ge(111)
Ge(111)
Si(111)
Si(100)

24.6
24.6
22.4
22,4
22.4
22.2
22.0
21.5
20.5
22.0
22.4
22.4
22.4
19.8
19.8
14.2
12.4
22.6
22.6

16.0 16.7
16.0 16.7
16.0 16.7
16,0 16.7
16.0 16.7
16.0 16.7
16.0 16.7
16.0 16.7
16.0 16.7
14.0 14.7
14.0 14.7
10.0 10.7
10.0 10.7
16.0 16.7
16.0 16.7
16.0 16.7
16.0 16.7
16.0 17.1
16.0 17.1

20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
18.8 0.72
18.8 0.69
14.8 0.57
14.8 0.68
20.8 0.73
20.8 0.73
20.8 0.73
20.8 0.73
20.7 0.68
21.1 0.68

1.0 0
1.0 0
1.0 0
0.3 0
0.30 0.3
0.30 0.5
0.30 0.85
0.30 1.5
0.30 2.5
0.32 0.3
0.34 0.3
0.4 0.3
0.4 0.3
0.30 0.3
0.25 0.3
0.30 0.3
0.30 0.3
0.34 0.3
0.34 0.3

~ ~ ~ ~ ~ ~

0.78 1.0
0.73 1.0
0.25 1.0
0.248 1.0
0.248 1.0
0.248 1.0
0.248 1.0
0.248 1.0
0.300 1.0
0,316 1.0
0.318 0.25
0.318 0.25
0.248 1.0
0.290 1.0
0.248 1.0
0.248 1.0
0.935
0.935

0.056
0.137
0.120
0.191
0.198
0.198
0.196
0.198
0.203
0.194
0.196
0.181
0.174
0.166
0.145
0.079
0.825
0.191
0.127

a Parameters of particular interest in any sequence of runs are indicated in bold-faced type,
b @he P, {e&) expression for any line of the table is that of Eq. (22) if neither o; nor p is specified, Eq. (23) if n only is given, and Eq. (24) if both e and

P are given.
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I"ro. g. Theoretical Xo(E~s) distributions (lines) compared with
the experimental distribution {points only) for 10-ev He+ ions
incident on Ge(111). The full curve is for a small amount of
energy broadening {0-=0.3), the dashed curve for no broadening
(0=0). Parameters used in the calculation of these curves are
ljstecf jn ljnes 5 and 4 of Table IV, respectively.

The only way to increase substantially the magnitude
of cVo(s~) above that of curve 1 of Fig. 7 while meeting
other requirements is to increase the probability of
escape. If we replace Eq. (22) for P, by Eq. (24) with
cr=0.78, P=1.0 P, has the form of curve 5 of Fig. 6.
Keeping all other parameters at the values initially
chosen, we obtain for Eo(ss) curve 2 of Fig. 7, the
product of curves 1 and 5 of Fig. 6. The values of n and
P used were chosen to give a height of the Es(E~) func-
tion approximately equal to that of the experimental
one.

We now proceed to bring the high-energy limit of
Xo(EI,) into agreement with the experimental data.
The controlling step here is the change of variable in-
volved in calculating 1V, (ss) from T(s) (step 7 of
Table III). Equation (4) indicates that (Ek), is
governed by both E,' and the photothreshold (ss —s„).
Since the latter is known for germanium, the only
parameter at our disposal for shifting the high-energy
limit of Eo is E,'. Our choice of E,'=E;=24.6 ev for
He+ is clearly too high. If E = 22.4 ev, we obtain curve
2 of Fig. 6 for E,(sq). Again using curve 5 of Fig. 6 for
P„, the 1Vo(ss) of curve 3 of Fig. 7 results.

Curve 3 of Fig. 7 still represents a wide departure
from the experimental distribution. The theory at this
point produces proportionately far too many electrons
near the top of the distribution which are those coming
from near the top of the valence band. We need a varia-
tion of transition probability with energy through the
valence band which discriminates against electrons
lying high in the band. This is provided by the q(s)
function given in Eqs. (14) and (15) and introduced
into the theory as indicated in Eq. (13).It is found that
a value of r= 0.3 is necessary to fit the data. This gives
curve 2 of Fig. 4 for E„(s) with q(s) given by curves 3
and 4. The corresponding T(s) and lV, (sq) functions are
curve 2 of Fig. 5 and curve 3 of Fig. 6, respectively,
keeping E,'=22.4 ev. It is now necessary to increase
the magnitude of P, (s~) further to obtain an Ar o func-
tion of the experimental magnitude. Curve 4 of Fig. 7,
in good agreement with the experimental points, is
obtained for the I', of curve 6 of Fig. 6 for which
et=0.25, /=1.0.

It should be observed that the steps required to go
from curve 1 to curve 4 in Fig. 7 are unique. The pa-
rameters involved (lines 1—4, Table IV) affect 1Vs(EI,)
in what might be termed @n orthogonal, manner, In
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curve 4 of Fig. 7 we have achieved a quite respectable
fit of theory to experiment without energy broadening.
We shall not be surprised to find that for 10-ev ions
broadening eGects are small. However, the theoretical
solution is so close to correct for a=0 and the solution
is so insensitive to relatively large changes of 0 in the
range 0(0-(0.5 that one cannot accurately determine
0. for 10-ev ions based on the 10-ev results alone. Fitting
theory to experiment at higher ion kinetic energies,
where broadening is important (Sec. VII) gives by
extrapolation 0 0.3 ev for 10-ev He+ ions. In Fig. 8
theoretical curves for 0=0 and 0.=0.3 are shown and
compared again with the experimental points.

VII. ENERGY BROADENING AND THE VARIATION
WITH ION KINETIC ENERGY
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Energy broadening, although relatively unimportant
for 10-ev ions, becomes increasingly important as ion
kinetic energy is increased. This fact enables one to
study more closely the nature of energy broadening in
the Auger neutralization process. In Fig. 9 are shown
experimental Eo distributions for He+ ions of hve
different kinetic energies incident on Ge(111). There
are two distinguishable effects to be seen in these curves.
As ion energy increases the distribution is increasingly
broadened as is evidenced by the formation of a longer
and longer tail at high energies and the gradual dis-

appearance of the higher energy peak of the two present
in the 10-ev curve. The second eGect is the shift of the
higher energy peak to lower energies indicating a re-
duction of E as ion energy increases.

An attempt has been made to predict these changes in

¹(Ey)using the calculational procedures of Sec. V and
Table III starting with the parameters which 6t the

X'IO
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FIG. 9. Experimental Np(Ep) distributions for He+ ions incident
on Ge(111) having the kinetic energies indicated (reference 1).
These curves are smoothed distributions like those of Fig. 1
drawn through data points which are not shown.
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FIG. 10. Theoretical ED(E&) distributions to be compared with
the experimental ones of Fig. 9. Parameters used in the calcula-
tions are listed in lines 5—9 of Table IV.

10-ev curve and changing 8 and 0 only as ion energy
is increased. The results are shown in Fig. 10. The
general features of the experimental curves have cer-
tainly been reproduced by theory. The detailed 6t
becomes poorer as ion energy increases, however, most
likely as a result of the use of Gaussian broadening. The
values of the E parameter were chosen so that the
theoretical distributions all cross each other at E~(e )

10.2 ev as do the experimental ones. The Ts(e) func-
tions for the 100-ev (o=0.85) and 1000-ev (o-=2.5)
kinetic energies are curves 3 and 4 of Fig. 5,
respectively.

VIII. UNIQUENESS OF THE FIT OF THEORY
TO EXPERIMENT

We must now look into the question of uniqueness of
the theoretical solutions. We have already noted the
uniqueness of the steps required to go from curve 1 to
curve 4 in Fig. 7. In these calculations, however, values
for e„and p were used which were those of the ultimate
best fI.t. We shall now investigate the uniqueness of the
solution for He+ (10 ev) on Ge(111) with respect to
variation of each of the parameters of the problem.
This will also indicate the probable error with which
each parameter is obtained.

E,', (es—e„). These parameters enter the theory in
the combination E,'—2(es —e,) a,nd determine by Eq.
(4) the upper energy limit of the ¹(E&)distribution.
Even though the photothreshold, (eo—e„), is known
for Ge(111) (Table II), the effects of small va, riations
in both E,' and (es—«„) are shown in Fig. 11.

p. Figure 12 shows that near the true solution varia-
tion of p affects only the width of the higher energy
peak of ¹(Es).
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FIG. 11. Effect of variation of the parameters B and (cp —6 }
on the theoretical 1VO iEI) for 10-ev He+ ions on Ge(111).Curve 2
is the best 6t of line 5, Table IV with E =22.4 ev and (~p —c,)
=4.8 ev (Table II). The other curves have the same parameters
except that (ep —e,)=5.2 ev for curve 1 and E =22.8 ev for
curve 3. Note that increase in F by 0,4 ev increases the upper
energy limit by the same amount whereas increase in (ep —~„) by
0.4 ev decreases this limit by twice 0.4 ev.

r. Figure 13 shows that small changes in r affect
only the height of the higher energy peak of No(Et).

P.(e&). Variation of the level of P, (e&) by variation
of the parameter n in either of Eqs. (23) or (24) affects
the height of the whole cVe(Et) distribution as shown in
Fig. 14. Changes in curvature of the P, (et) function
keeping the general level constant (Fig. 15) produce the
changes in iVe(Et) shown in Fig. 16. Such changes in
the curvature of P, (eq) cannot be distinguished in this
theory from other gentle variations with energy intro-
duced by minor modifications in the forms of the q(e)
and iV, (e&) functions. q(e) most likely is not strictly
linear as assumed in Eqs. (14) and (15), and E,( e)iis
not constant as assumed above. This coupling among
q(e), iV, (e&), and P, (e&) in no way alters the principal
conclusions of the fit (Sec. X). Only relatively minor
changes in any one of these functions may be com-
pensated for by reasonable changes in the others.

~,. It was found early in this work that for both
germanium and silicon serious difficulties were met
when the attempt was made to fit the experimental
data for values of e,„much below 16 ev. Attempts to fit
the 10-ev He+ data on Ge(111) for e„=14 and 10 ev
are shown in Figs. 17 and 18, respectively. One con-
cludes, on the basis of extensive investigations of this

type, that e, must lie in the range 14—16 ev for both
Ge and Si. It is recognized that this result is more
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FIG. 12. Effect of variation of the parameter p. Curve 2 is
again the best fit of line 5, Table IV with p=0.73. For curves 1
and 3, p has the values 0.70 and 0.76, respectively, all other
parameters remaining unchanged.
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FxG. 13. EGect of variation of the parameter r. The best fit of
line 5, Table IV with r=0.30 is shown by curve 2. In curves 1
and 3, r has the values 0.33 and 0.27, respectively, all other
parameters unchanged. Curve 4 shows the result of choosing r =1
with the parameters of I', (line 3, Table IV) chosen to give ap-
proximately the correct height for the higher energy peak.
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sensitive to the form chosen for 1V„(e) than are the
values obtained for the other parameters (see Sec.
xvI).

0-. It was shown in Secs. VI and VII that the fit at
10 ev is insensitive to a since broadening is small and
that the best value for 10-ev ions is determined by ex-
trapolation from higher ion energies where 1Vs(e~) is

more sensitive to cr. A study of the accuracy with which

broadening can be specified at higher ion energies must
await the use of a broadening function which more
accurately reproduces 1Vs(Ek) at these ion energies than
does the Gaussian function. Possible error in 0- for
higher ion energies will not change the conclusion that
0. is of the order of 0.3 for 10-ev ions.

From the foregoing we see that uniqueness of the
main features of the solution is maintained when the
variation of all parameters is considered. From a study
of the graphs showing the effects of varying the pa-
rameters individually, one can determine that a change
of one parameter cannot be compensated for by any
combination of changes in the other parameters. This
uniqueness allows latitude for only minor variations in
the functions q(e), 1V„(e), 1V,(ez), and 1',(ez), as has
been mentioned above and will be discussed again in
Sec. XV.

0.3
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25 x lo"3

FIG. 15. Plots of several P, (es) functions. Curve 1 is for the
isotropic X;(ez) distribution on a plane barrier LEq. (22)].Curve 2
is a plot of Eq. (23) with o.=0.956. Curves 3 and 4 are plots of
Eq. (24) with 0.=0.248, P=1,0 and n=0.366, /=2. 0, respectively.
Curves 2, 3, and 4 show P, functions of about the same level but
of diferent curvature.
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FIG. 14. Effect of variation of the o. parameter in the two-
parameter formula for P, (e&) )Eq. (24)]. Curve 2 is again the best
fit of line 5, Table IV with o, =0.248. For curves 1 and 3, cx is 0.224
and 0.272, respectively, all other parameters remaining unchanged.
Curve 4 is for P, (ez) LEq. (22)] appropriate to an isotropic ve-
locity distribution of excited electrons incident on a plane barrier.
Parameters for curve 4 are given in line 1 of Table IV.

FIG. 16. Variation of the theoretical Eo(Es) distributions for
He+ (10 ev) on Ge(111) caused by the use of P, (e&) functions of
different curvature. Curve 1 is the best fit (line 5, Table IV) using
Eq. (24) with m=0. 248, P=1.0 (curve 4, Fig. 15). For curve 2,
Eq. (24) was used with o.=0.366, P=2.0 (curve 3, Fig. 15), For
curve 3, Eq. (23) was used with ~=0.956 (curve 2, Fig. 15). All
other parameters were the same for the three curves except for r
which was varied from the 0.3 value for curve 1 to 0.28 and 0.26
for curves 2 and 3, respectively, in order to compensate for the
change in slope of the P, functions used.
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Ne+, A+, and Kr+ are then to be interpreted as 1—lV
for these ions. The fact that 8' increases with decreasing

8, as is expected for resonance tunneling, lends cre-
dence to this explanation. It is true that as E decreases
the theoretical fit becomes more sensitive to the detailed
forms of IV, '(e), qr (x), P, (es), and to the exact value of
E„'.One cannot decrease S' to zero for A+ and Kr+ by
changes in the theoretical parameters which are at all
reasonable for He+ and Ne+. Relatively minor changes
in the parameters for the Ne+ fit will reduce 8' to zero
for Ne+ as is indicated in Fig. 19.If S" is in fact greater
than zero for Ne+, it means that es) E,'(Ne+) = 19.8 ev
(line 15, Table IV). This sets a lower bound for e„of
E,' (es—e„)=—19.8—4.8=15 ev, since ee —e„=4.8 ev is
known (Table II). If resonance tunneling occurs 6rst
for A+, then the lower bound on e„ is E (A+) (ee—e.)—
=9.4 ev using the data of line 16 of Table IV.

Theoretical calculations have been made of IVs(EI,)
and y, for He+, Ne+, A+, and Kr+ incident on the (111)
and (100) faces of silicon for which experimental data
are also available. ' The theory works as well here as
for germanium. Theoretical 1Vs(Ei,) curves for 10-ev
He+ on Si(111)and Si(100) are shown in Fig. 21 where

they are compared with experimental data. E is
within 0.2 ev of that found for Ge(111). The level of
P, (e&) is approximately the same as that required for
Ge(111).Little difference in e„ is found between Si and

Ge, but p is smaller by a significant amount for Si
predicting a somewhat wider degenerate p band. It is
for this reason that the minimum near 5 ev in Es(Ei,)
for 10-ev He+ on Ge(111) is not nearly as well de-

veloped in the corresponding IVe(EI) for Si(111).
Theoretical IVs(Es) curves for He+ ions of various

kinetic energies incident on Si(100) have been calcu-
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FIG. 21. Theoretical iVO(Lz) distributions compared with the
experimental points for 10-ev He+ on the (111) and (100) faces
of Si. Parameters for the Si(111) curve are given in line 18 of
Table IV. The same parameters were used for the Si(100) curve
except for ~0 which is determined by the appropriate change in
photothreshold e0 —e„(see Table II and line 19 of Table IV).
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lated also. The same degree of agreement with experi-
ment was found, as is reported here for He+ on Ge(111),
in Figs. 9 and 10. These results bolster one's confidence
in the general credibility of the theoretical model.

X. CONCLUSIONS OF THE FIT OF THEORY
TO EXPERIMENT

In what has preceded in this paper we have discussed
the basic elements of the Auger neutralization process
and devised a calculational procedure for fitting the
experimental data. It has been possible to And a unique
solution which reproduces all the principal features of
the experimental results. The requirements of the ht
have forced upon us four basic conclusions concerning
the Auger neutralization process. These are:

(1) The relative Auger transition probability repre-
sented by the function q(e) decreases with energy
through the valence band having a value at the top of
the band about 0.3 that at the bottom (r=0.3).

(2) The effective ionization energy, E, in the Auger
process is less than the free-space value, E;, and de-
creases with increasing ion velocity. For He+ the E
values in lines 5—9 of Table IV are represented with
reasonable accuracy by the expression:

hJ

O
E,—E,'—2+0.06(EI,+2) i, (2&)

0'
0
0 8 12

ELEcTRQN ENERGY ~ Ek (e ), 1N ev
16

FIG. 20. Comparison of theory and experiment for E0(P.'I„.) from
Kr+ (10 ev) on Ge(111). Points are experimental. Curve 1 is
theoretical for the parameters of line 17, Table IV, and curve 2
is curve 1 multiplied by 0.36.

in which E~ is the ion s incident kinetic energy at s= ~
and E;, 8, and E~ are in ev. E;—E obtained from the
6t to experiment is compared with the predictions of
Eq. (27) in Table V.

(3) Energy broadening is small for the slowest ions
(10 ev) but must be included for faster ions ((1000ev).
The parameter 0- in the Gaussian broadening function
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Z, {He+)

10
33

100
333

1000

E; E(—ev)
From the 2+0.06

fit' X {Ra+2)&

2.2
2.4
2.6
3.1
4.1

2.21
2.36
2.61
3.10
3.91

p (ev)
From the

fit'
0.083

X {~a+2)&

{o.3)
0.50
0.85
1.5
2.5

0.29
0.49
0.84
1.52
2.64

TABLE V. Comparison of E;—E and 0 obtained from the
6t of theory to experiment and the empirical formulas )He+
on Ge(111)j.

The I function depends upon s because initial state
lifetime depends on r& which in turn depends on s.
I(pep, s) specifies the analog of natural linewidth for the
Auger neutralization process. Integration over initial
states e' and e" introduces as weighting factors the
densities of initial states iV„(e') and 1V„(e").The general
expression for Ri(s) is then

Ri(s)= ) )' )
'

) (2~/&) i&~'I'&.(ep)~(~",s)

& Lines 5-9 of Table IV.

used is found to increase approximately linearly with
ion velocity at the distance from the surface where
Auger neutralization takes place. For He+ o- values in
lines 5—9 of Table IV are given with good accuracy by
the expression:

o.—0.083(Ep+2) *,

in which again EI, is the ion s kinetic energy at s = ~ and
both o- and EI, are in ev. Table V also includes a com-
parison of 0 values from the 6t to experiment and those
derived from Eq. (28).

(4) The probability of electron escape in the range
of external electron energy involved here (0—12 ev) is
several times greater in magnitude than that predicted
for an isotropic distribution of internal Auger electrons
incident on a plane barrier. This ratio is a function of
energy and is best seen by comparing the levels of
curves 2, 3, and 4 with that of curve 1 in Fig. 15.

It is our purpose in the next sections of the paper to
discuss these conclusions in the light of theory. Our
purpose is to get at the basic significance of these con-
clusions rather than to attempt to derive them rigor-
ously from first principles.

XI. TRANSITION RATE AND BASIC
PROBABILITY DISTRIBUTIONS

The transition rate, r&, for an elemental Auger transi-
tion (Fig. 3) is given by time-dependent perturbation
theory using the method of variation of constants as

rg( e eg, pp, s) = (27I/ft)
~
Hr

~

iV (ek)dD (29).
The rate r~ is expected to be a function of initial electron
energies, e' and e", of direction of the excited electron's
velocity, 8 and p, and of distance, s, between ion and
surface when the process occurs. In Eq. (29), Hr, is the
matrix element, and iV, (ep) an average final-state
density function which smooths out the variations with
angle and energy caused by diRraction effects. dQ
= sin8d8dq is the element of solid angle.

The total transition rate, R&(s), is obtained by inte-
grating r& over all possible initial and final states as
well as over the uncertainty, beI, in the energy of the
final state, eI„,, introduced by finite lifetimes in initial
and final states. This energy uncertainty is introduced

by convoluting r& with a distribution function I(pep, s).

XIV'(e )Ny(p )g(ei+e +E' —ep —ep pep)d—Q

Xde'de"d(pep)de&. (30)

Pi(s, vp)ds =Ri(s)Pp(s, pp)ds/pp.

Pp is defined in terms of R, (s) by

(31)

(
Pp(s ttp) =exp (

— R&(s)ds/vp
"s

(32)

Ke now define two other probability distribution
functions Pp(ep, s) and Pn(g, ep, s) as follows. Pp(ep, s)ds
is the probability that the Auger electron produced in a
process occurring at s will have energy in the interval
de& at e&. Pn(g, e&,s)dQ is the probability that the Auger
electron produced in a process occurring at s and of
energy et, will have a velocity lying in the element of
solid angle dQ=sined0dy. Ke assume that Po depends
only on 0, the angle with respect to the surface normal
inside the solid and not upon the azimuthal angle y.
P&, P'~, and ",Pg are normalized according to the
equations:

Pi(s, vp)ds= 1, (33)

)I Pp(c(„s)dep 1, ——
ec

(34)

Pn(g, ep, s) slngdgdrp= 1.
~0 "0

(35)

In terms of the three probability distributions P&, P&,
and Pn, we may now write the distribution, V,( i), oepf

The g function on energy a,ssures that Eq. (1), with ep

replaced by ep+hep, . is satisfied.
R, (s) is the transition probability per unit time that

the Auger neutralization process will occur for ions at a
distance s from the solid surface. From it we may obtain
another probability distribution, P&(s,pp) already defined
in Sec. IV such that P&(s,vp)ds is the probability that
an ion approaching the surface with velocity vo will be
neutralized in ds at s. In terms of the probability
Pp(s, pp) that an ion reaches s without undergoing Auger
neutralization we may write
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excited electrons inside the solid formed in a sufficiently
large number of individual processes. It is

1.0

1V, (ek) = Pg(s, vp)Pk(sk, s)
o ~o ao

XPn(g, sk, s) sin8dgd its. (36)

Normalization of P& by Eq. (33) means that we are
assuming all incident ions to undergo Auger neutraliza-
tion. Equations (33), (34), and (35) result in the
normalization of E;(ek) to an area of one electron per
incident ion given in Eq. (20).

Electrons in the X; distribution which approach the
surface with sufficient momentum to cross the potential
barrier there will escape from the solid. For an electron
to be in this class the condition 8&8,(ek) must be ful-
filled. 0, is the critical angle for refraction of the elec-
tron's velocity into the plane of the surface and de-
pends upon the electron's energy, c~, and the height of
the barrier ep. For 0&0, the Auger electron is internally
rejected at the surface. The external electron dis-
tribution Sp(ek) may now be written

tccc lcsc
r

pc

Ãp(ek) Pt(s, vp)Pk(ek $)
&o ~o "o

&&Pa(g, sk, s) sin8d8dyds. (37)

Equations (36) and (37) may be reduced to more
manageable form only if the integrations over 0 and s
can be separated. Since R~(s) is a function which in-
creases approximately exponentially with decreasing s,
we expect P~(s, np) to be peak shaped and to limit the
integration over s to a relatively narrow range. In this
range Pn(g, ek, s) may be approximated by Pn(g, ek, s ),
where s= s is the distance at which the P& function is
maximum (Figs. 3 and 22). When this approximation
for Pn is made, Eq. (36) reduces to

0.8

0.6

0.4

0.2

0
~4 0 2

a(s-sm)

Of the three probability distributions defined here,
we have indicated only how P&(s, ttp) in Eqs. (31) and
(32) is related to the transition rate R, (s) and hence to
the matrix element through Eq. (30). Both the Pk(ek, s)
and Pn(g, ek,s ) distributions must also relate in a funda-
mental way to the energy and angle dependences of the
matrix element as will be seen.

It is instructive to look at the properties of the P~
function for an exponential rate function of the form

R, (s) =A exp( —as).

Equation (32) gives

Pp(s, sp) = expL —(A/avp) exp( —as)],

and Eq. (31),

(42)

FIG. 22. Plots of the Pp and P& functions of Eqs. (42) and (43)
in the text. The quantity n in the ordinate is that in Eq. (41) for
g~(s), and s is given by Eq. (44).

Nc(sk) = gP(s, vp) P(k,sk) sd, s
0

P&(s,sp) = (A/vp) expL —(A/avp) exp( —as) —as]. (43)
(3g) This P& function passes through a maximum at s=s

with
using (35). Equation (37) now reduces to s = (1/a) ln(A/amp), (44)

and its value there is
Xp(sk) =X;(ek) Pn(g, skcs„) singdgdq. (39)

4p ~o

The double integral in (39) is the fraction of elec-
trons at ej, in the internal distribution which surmount
the surface barrier and is thus the probability of escape
already dehned in Sec. IV. Its definition in terms of
Po is

pflc

P, (sk) = Pn(g, sk, s ) singd8d p.
o ~o

W(Pg) = 2.48/a. (46)

Written in terms of s, expressions (42) and (43)
become

Pp(s, mp) = exp( —expL —a(s —s )]), (47)

P~(s ) =a/e=0. 368a, (45)

independent of vp. A graphical solution for the width
of the P~ function of Eq. (43) at half maximum gives

Equation (39) is thus a restatement of Eq. (25) intro-
duced earlier. P~(s, sp) = a exp( —exp( —a(s —s )]—a(s—s )). (48)
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Fxo. 23. Schematic representation of electronic wave functions
plotted on an electron energy diagram like that of Fig. 2. Two
positions of the atom outside the solid are shown at A and B.
Two wave functions for the excited electron at eI, are shown. One,
N„corresponds to electrons which cross the potential barrier at
the surface (0(0,). The other, I,', represents electrons internally
reflected at the surface barrier (8&8,).

These two functions are plotted in Fig. 22. Equations
(45), (46), and (48) indicate that for an exponential
rate function the form of P& is independent of vo. The
position of P& relative to the solid surface, however, is
determined by vo through s LEq. (44)]. It can be
shown" that the mean distance of Auger neutralization
under these circumstances is close to s .

XII. THE MATRIX ELEMENT

We turn now to a discussion of the matrix element.
We shall Grst introduce the wave functions and discuss
the eGects of their antisymmetrization. The initial state
wave functions are I,' and u," for electrons at c' and

in the valence band, respectively. The final state
functions are u, and I, for electrons in the ground
atomic state and in an excited state at cg, in the conduc-
tion band, respectively. Figure 23 shows schematic
representations of these four functions. We note that
each of the two I, functions has an appropriate range
of 0. The functions I„' and u," are periodic inside the
lattice but fall off exponentially at su@eiently great
distances outside the surface. I, is the spherically sym-
metric s function of the ground state of the noble gas
atom. I, can take either of two forms, depending upon
whether the electron is transmitted through or inter-
nally rejected at the surface barrier. n, in Fig. 23 cor-

"Equations (45)—(47) and accompanying text in reference 5.

responds to transmission (0(0,) and is periodic but of
different wavelength on the two sides of the barrier.
u, ' corresponds to the case of internal reflection (0)0,)
and, like the valence band functions, has an exponential
tail outside the solid.

Consider now angular dependence and normalization
of the electron wave functions. For a plane barrier the
tails of the u„ functions outside the solid will vary as
exp f —(2m(Ep —6 cos'8)]ls/5), which decreases in mag-
nitude at any s if either 8 is increased at constant e, or e

decreased at constant 8. In the discussion which follows,
it is necessary only that the two I, functions be nor-
malized in the same manner. The u, and I,' functions
are normalized on a Aux basis, each representing the
Aux of one Auger electron as it passes over or is reQected

by the surface barrier. For given e& the wavelengths of
u, and I,' inside the solid are the same although the
range of 0 is different for the two functions. Again, for
a plane barrier, the magnitude of I,' outside the solid
varies as the exponential given above with 0)0,
= cos (6p/6&)l LEq. (102)].

Neglecting spin we may write two "elemental"
matrix elements corresponding to the two sets of transi-
tions shown in Fig. 2. The matrix element

H'= u,*(1)u,*(2)(e'/rq2)u, '(1)u„"(2)drqdr2 (49)

corresponds to transitions 1, 2 of Fig. 2 and

H"= I u, *(2)u,*(1)(e'/r q2) u„'(1)u„"(2)dr ~dr ~ (50)

The functions,

u,"=2 iLu„'(1)u„"(2)au„'(2)u„"(1)], (52)

are similar space functions for the initial states. As spin
wave functions we use the usual orthonormal functions,

corresponds to transitions 1', 2'. In these expressions
the numbers in parentheses indicate the space co-
ordinates of electrons 1 and 2. The perturbation is the
Coulomb interaction, e /r~2, between the participating
electrons. For a metal one expects this interaction to be
screened and for a semiconductor to be reduced by the
dielectric constant. Such effects will be dependent on
distance from the surface and will thus contribute to
the form of the rate function, E~(s). Since the exact
nature of the interaction does not affect the basic con-
clusions reached here, it will not be considered further.

We must now introduce spin and take account of the
Pauli principle by antisymmetrizing the wave functions.
Symmetric and antisymmetric orthonormal space func-
tions for the Anal states may be written as:

up+ ——2—iLu, *(1)u,*(2)aug*(2) u.*(1)]. (51)
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three of which are symmetric:

sr ——n(1)n(2),

sp ——2 '*Ln(1)P(2)+P(1)n(2)],

»=P(1)P(2),

and one antisymmetric:

s4 ——2 '*l n(1)P(2) —P(1)n(2)].

(53)

The four final-state and four initial-state anti-
symmetric wave functions which result from all pos-
sible combinations of the above space and spin functions
areuf sg, uf s2, uf

—
s3, uf+s4, u;—sg, u; s2, u, s3, u,+s4. By

virtue of spin function orthogonality only four matrix
elements remain of the 16 possible using these 8 func-
tions. Using the normalization properties of the spin
functions, these four matrix elements may be written
out and reduced to expressions in terms of the "ele-
mental" matrix elements H' and H" of expressions
(49) and (50).The results are three integrals of the form,

H. = t Nf (e'/r»)tt; drrdr2 —H' H——", —

derived from the three sets of functions involving the
antisymmetric space function, and ore integral of the
form

f
H p Nr+(e'/r»——)I,+dr rdr p= H'+H", (5S)

derived from the single set of functions involving the
symmetric space function. These represent the four dis-
tinguishable elemental Auger processes involving elec-
trons initially at specific energies e' and e" in the valence
band when spin is accounted for. The term

l Hr; l

' in ex-
pression (30) is to be replaced by the sum of the squares
of the four matrix elements. When this is done, we
obtain

l Hr, l

p= tLH"+H'"]. (60)

We see that if H'=H", the Pauli principle results in a
decrease of a factor 2 in the transition rate. This factor
merely changes slightly the distance at which the
process occurs and is unimportant. What is important is
the possible energy dependence of

l Hr, l

' introduced by
the functional dependence of expression (59). Our ex-
pression for the total matrix element can be shown to

IH, , I

= ;AH. +H, ]=5-~ +H- HH"] (59)—

in which we have divided out the numerical factor 4
resulting from the total number of ways the spins of
the two electrons can be arranged.

Expression (59) is to be compared with the corre-
sponding expression obtained, if the Pauli principle is
neglected:

be consistent with that given by Burhop. "' For the
three symmetric spin functions Burhop's f&" H——' and
fp" IX——", thus making his fr" fp"—H'——H"—=H, . For
the single antisymmetric spin function Burhop's fry= H
and fp"= H" —yielding fr" f&"—H'——+H"=Hp. ~hen
the four corresponding b„' given by his Eq. (2.12) are
added one obtains the sum of squares given here in
expression (59).

We may express the total matrix element taking
account of the Pauli principle in more convenient form
as follows. I et us assume that H')H" and write

H"=mH', 0&m& 1. (61)

H'=
~ ~

I, (1)N„'(1)(eP/r»)u, *(2)N„"(2)drrdrp. (63)

We now see that H' has the form of a Coulomb inter-
action energy between two charge clouds cue*(1)N„'(1)
=eF(1) and ett,*(2)N„"(2)=eG(2). Because the atomic
ground state, for He at least, lies farther below the
vacuum level than do the valence states, F(1) will be a
function limited to the vicinity of the atom. Its magni-
tude will vary with e through the valence band as does
the u„' function at the atom position. The matrix ele-
ment is then the integral of the product of F(1) and
G(2) weighted by the inverse distance between elec-
trons, 1/r». Here N,*(2) is the complex conjugate of
either u, or u, ' shown in Fig. 23 as appropriate.

The picture of the matrix element as a Coulomb
interaction integral leads to the following possible
energy dependences:

(1) A dependence on ep —e and ep e, the depths of
the valence energy levels below the vacuum level, by
virtue of the exp( —[2nt(ep —e cos'0)]'*s/tp) term in the
u„ functions.

(2) A direct dependence on e' and e" brought about
by the change in symmetry character of the u„ func-
tions with energy.

(3) An energy dependence on (e"—e') arising from
exchange matrix element cancellation as expressed in
Eqs. (59) or (62).

"E.H. S. Burhop, The Attger Zgect and Other Radiationless
TrurIsitiorIs (Cambridge University Press, New York, 1952), p. 15,
Eq. (2.12).

Then expression (59) becomes

lHf, l'=H"$1 rtt+rr—t']=H"P+(nt —-')'7 (62)

Thus H&; as a function of m is symmetrical about its
lowest value at nt= pr at which point

l
Hf; l'= 4H".

We shall now introduce a way of looking at the matrix
element, H say, which brings to light its possible de-
pendencies on energy and angle. Rewriting expression
(49) in such a way as to group together functions in
the coordinates of a single electron on each side of the
perturbation term, we obtain
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FIG. 24. Plots of the radial distributions of electrons in the
n =4, l =0, 1, 2, and 3 orbitals of the hydrogen atom. Here the
radius is designated by s.

'4 Since r has been used as a parameter, we shall use s in this
discussion for distance from a free atomic nucleus as well as dis-
tance from the solid surface defIned as distance from the outer-
most nuclei in the solid.

We shall discuss each of these items in turn. Each de-
pendence will, in general, depend on s, which fact must
also be discussed.

For neutralization at large s (position A in Fig. 23),
the dependence on 6p —6 and 6p —t should be marked.
It is a very strong dependence and would limit partici-
pation in the Auger process to only those electrons which
lie at the top of the valence band. That this is not the
case can be seen directly in the experimental data of
Fig. 1. Here for He+ we observe Auger electrons over a
range of energy 12 ev wide. This means that we are
observing electrons which come from the valence band
to an average depth in the band 6 ev below the top.
For neutralization close to the surface (position 8 in
Fig. 23) where the barrier between solid and atom is
thin and the exponential tails of the I„ functions are
not well developed, we should expect the dependence on
6p —6 and 6p —t to be small or nonexistent. From the
fact that the theoretical fit to the experimental data
given in Sec. VI requires that transition rate decrease
as e increases, we conclude that the ion is neutralized
sufficiently close to the surface to prevent any appreci-
able dependence on depth in the well (item 1 above).

The direct dependence on e' and e" brought about by
change in symmetry character of the I, functions from
s to p as» increases (item 2) rests upon the fact that
at a given distance a p-wave function is smaller in mag-
nitude than an s function of the same energy. This
can be seen from a plot of radial distributions of hydro-
genic wave functions of the same energy. In Fig. 24
such distributions are plotted for the s, p, d, and f
electrons having v=4. For distances from the nucleus"
greater than 14 A we are in the tails of these functions
and the s function is greater than the p, the p than the
d, etc. The large distances in this example come from
the choice of the m=4 shell for illustrative purposes
and are not indicative of distances to be expected in
the Auger neutralization process.

We may estimate the magnitude of the ratio of transi-
tion probabilities for s and p electrons in the following
way using Hartree wave functions for germanium. We
take the radial part of the atomic wave function to be

of the form, "
P(s) =f(s) expL —(2nzE';;/k')'s7. (64)

This quantity is plotted in Fig. 25 where s is now taken
as the distance from the solid germanium surface.

As discussed in Sec. IV, a direct dependence on e'

and e" can be accounted for in the theory by the use of
the effective state density E„'(»)= q(»)E„(») defined in
Eq. (13). By Eq. (30) the transition rate R& will then
depend on q'. Since

l Hr, l
depends on the product of two

I, functions, we expect it to depend directly on r of
Eq. (65) and R, by (30) on r'. Thus, q(») should depend
on the first power of r as indeed was assumed in Eqs.
(14) and (15).If we take s= 2.2 A, the nearest neighbor
distance in germanium, as a reasonable distance at
which Auger neutralization occurs we find that Fig. 25
predicts r 0.3, the value found in the fit to experiment
in Sec. VI. This numerical agreement indicates a basic
consistency between the distance at which the process
occurs and the nature of the energy dependence which
is operative.

The third possible energy dependence listed above
is that involving exchange matrix element cancellation
arising in the (1—m+m') term of Eq. (62). We expect
m to be a function of the energy difference (»"—»')
between the initial electronic states. For e"=c', m=1
and lH&~l'=H". For»"W»', m may vary from unity
but the dependence of II~; on m is such that it can never
fall below ~II", its value for m=~. Electron exchange
changes F(1) from u,*(1)u„'(1) to u,*(1)u„"(1)and
G(2) from u, *(2)u„"(2) to u,*(2)u„'(2). This inter-
change would have no eBect if the range of integration
limited the significant parts of the G(2) function to a
volume about the atom as small as that in which the
F(1) function has value. Even though the volume over

'5 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.
59, 306 (1941)."Atomic energy level data are taken from C. E. Moore, Atomic
L~'nergy Levels, National Bureau of Standards Circular No. 467
(U. S. Government Printing Once, Washington, D. C., 1952),
Vol. II.

Here f(s) includes the dependence on angular mo-
mentum. The exponential term gives for the atom the
energy dependence on depth in the potential well
analogous to the (»0—») dependence discussed above.
Hartree, Hartree, and Manning" give values of P(s)
for the 4s and 4p electrons of Ge. The energies required
to ionize these electrons are 63 600 cm ' $GeI(4s'4p"Po)
to GeII(4s'4p 'P», )7 for the 4p electron, and 115 600
cm ' LGeI(4s'4p"Po) to GeII(4s4p''Po )7 for the 4s
electron. " One can then calculate the ratio r of the
squares of the f(s) functions by correcting for the ex-
ponential dependence on E; according to the expression:

f (s) ' P (s)r=
f„(s) P„(s)

Xexp( —(25'/k')'LE, l(4p) —E,l(4s)7s). (65)



THEORY OF AUGER NEUTRALIZATION OF IONS 103

),0

0,8

0.6
2

~ f4p(S)
(f4s(s)

0.4

0.2

0
0

FIG. 25. Plot of the quantity (f4&&/f4, l', calculated from the
Hartree wave functions for germanium as discussed in the text
of Sec. XII.

which G(2) is integrated is significantly greater than
the volume in which P (1) has value, changes in F and G
brought about by interchange of the u, functions will
certainly tend to compensate. We thus expect the
parameter m not to depart too drastically from unity
and that I H,;~'-H&P

Any energy dependence introduced by the (1—m+ m')
term should of the following kind. (1—m+m') can de-
part farthest from unity when the integration in ex-
pression (30) over e' and e" extends over the greatest
range, that is when ~, the mean of e' and e", lies near
the center of a band or subband. As e' and e" both
approach the same edge of a band their diGerence de-
creases and ~Hr; ~' approaches H".Thus, any energy de-
pendence introduced by the (1—I+no') term should
be representable by a function which is symmetric
about the center of a band and approaches unity at the
edges. This symmetry is the same as that of the func-
tions used to specify the state density function, N„(e).
Hence, an energy dependence introduced by exchange
matrix element cancellation, if it exists at all, could not
be separated from the form of the N„(e) function. It
perhaps should be included among the minor variations
with energy discussed under P.(e&) in Sec. VIII and in
Sec. XV.

Finally, H~; could also depend on the angles 0 and p.
The picture of the matrix element as a Coulomb inter-
action integral indicates that a dependence on 0 will
arise by virtue of the difference in magnitudes of the
I, and I,' functions outside the solid and the fact that
they apply over different ranges of 8. The I, function
representing escaping electrons for which 0&0, is larger
in magnitude in the vicinity of the atom than is the I,
function which applies for 8&0,. Further, the tail of
the I,' function decreases in magnitude as 8 increases
above 0,. Thus the matrix element might be expected

to change rather abruptly at 0=0, where the 6nal state
wave function changes from u. (8(8,) to e,'(8)8,) and
to decrease with further increase in 8 above 0,.

One might expect H~; to depend upon y as a result of
surface atomicity of the solid and possible dependence
on impact parameter relative to a given surface atom.
It appears not unreasonable to suppose, however, that
such differences average out to independence of y on
integration over the surface.

The above discussion indicates that we expect the
principal energy dependence of the matrix element to
be a direct dependence on e' and e" which can be
accounted for by an effective state density function for
the initial states. This validates the assumptions leading
to Eqs. (13), (14), and (15) and illuminates the first
conclusion of Sec. X. Dependence of H~; on 0 may be
accounted for in terms of the angular probability dis-
tribution Pn(8, ep, s ) of Sec. XI. These conclusions con-
cerning the matrix element are incorporated in the
theory by writing

iHr, i'= (&ri/2pr)C&I(e')I7(e")Pn(8, ep, s. ), (66)

in which C is a constant. Integrations over energy and
angle are now separable in Eq. (30) which, using Eq.
(13), reduces to

r

Ri(s) =C, N, (op)I(bep&s)N„'(e')N„'(e")
J J J

Xb(e +e +I &', &ep ep bei&)Pn(8&ep)$«&)

Xdle'de"d(bep)des. (67)

XIII. THE AUGER TRANSFORM AND THE
INTRODUCTION OF ENERGY

BROADENING

We now consider the double integral,

Xb( +pe +E~ op e«be«)de de
& (68)

to be found in expression (67). Changing variables from
e' and e" to e and 6, we obtain

N„'(e 6)iV„'(e+6—)b (2e+E& ep ep be&)—dAd—e—
T (e)b (2e+E; ep ep bep)de— — —I

in which T(e) is the Auger transform of Eq. (16).
Making use of (68) and (69), expression (67) reduces to

E,(s) = C N, (ep)I(be&„s)

XTL-,'(ps+bop+op —&,') jPn(8, ep, s )
XdQd(bei, )dpi, . (70)
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Integrating over angle and inserting integration limits,

we obtain

f«00 P
Go

R,(s) =C E,(o«)I(8o«, s)

XT[o (o«+so«+oo —Es')]d(8o«)do«. (71)

We now make use of the identity,

R, (s) =—I R, (s)P«(o«, s)do«,J„ (72)

which results from the normalization condition (34) on
the P« function. Comparison of Eqs. (71) and (72)
leads to the following expression for the P«(o«, s) proba-
bility distribution:

P«(o«, s) =
I(~o«p) T[o (&«+&o«+oo—E,') jd(5o«)

1Vs(o«)I(oo«, s)T[o (o«+&&«+&o Es )jd—(oo«)do«
sJ ~c —oo

(73)

At this point one could perform the integration over
be~ indicated in the above expressions using a suitable
distribution I(oo«,s). This would account for the energy
broadening due to Gnite lifetimes of initial and Anal

states. However, it is expedient to delay this step until
somewhat later in the development when it can be
coupled with a similar integration to account for energy
broadening caused by the finite width of the Ps(s, oo)

distribution and the variation of atomic energy levels
with distance from the solid surface.

Equation (73) relates P«(o«, s) to the matrix element
of the Auger process and its integration over initial
states. Putting it into Eq. (38) and neglecting the
normalization factor, we obtain

E,(o«) ~ X,(o«) Ps(s, &o)I(bo«, s)

XT[~~ (o«+So«+ oo—E,') jd (&o«)ds. (74)

k= [dE /ds]s=s' (76)

Since P„(s,bo) is zero for s(0, we may rePlace the lower

integration limit of zero for s in (74) with —oo. The
nature of the double integral in expression (74), which
we call the broadened Auger transform Tb(o), is seen
more clearly if we write it in terms of e, where

2o= o«+so«+ oo —E,'( m)s (773

We note that T is a function of s through E which

depends on s.
The integrations over s and 8o« in (74) can be shown

to be successive convolutions of the T function by the I
and I'

f, functions and thus to represent a broadening of
the T function. Again using the fact that the expected
form of the P, function limits the integrand of (74)
to a relatively narrow range of s, we may replace
I(5o«,s) by I(5o«,s,„) and E,'(s) by

E (s)~E,'(s„)+k(s s), —
in which

and let
y= —k(s —s )/2,

s =So«/2.

(78)

(79)

I'& and I are then functions of y and s, respectively, and
the double integral in (74) becomes

Tb(o) = t t P&(s„2y/k)I(2s) T(—o+y+s)dyds. (80)

0 0 0 (81)

Formula (17) appears to be a good approximation to
(80) for low ion energies where broadening is small but
introduces significant error in detail at higher ion en-
ergies where broadening is important.

Equation (74) leads to the following expression for
X;(o«) in terms of Tb(o):

X,(o«) = &.( )»[-'( + o
—E''(-))j

(82)

Es(o«)T«[o(o«+oo —E( s))$ d«o

Equation (82) reduces to Eq. (19) if 1V, (o«) is taken to
be constant or its energy dependence subsumed into
the P, ( )fou«nction (Sec. XV).

Convolution of T(o) with the P& function in Eq. (80)
accounts for the variation in energy of the atomic
ground state over the range of distances, specified by
the I'& function, in which the Auger transitions occur.
The form of the Ps function for exponential Rs(s)
plot. t.ed in Fig. 22 is not unlike the Gaussian function.

In the calculations outlined in Sec. V broadening of the
T(o) function was accomplished by a single convolution
with a Gaussian function [Eq. (17)j. Equation (80)
will reduce to (17) if P, (s„—2y/k) and I(2z) are re-
placed by Gaussian functions which we shall designate
«os&(y) and oos&(s), respectively. These successive con-
volutions with the Gaussian function are the equivalent
of a single convolution with a Gaussian function for
which
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0 2= 0.21.2AG'Vp. (88)

We reiterate that the values of 0-& and 0-2 just derived
are based on the approximation of the P~ and I func-
tions by Gaussian functions and the assumption of an
exponential rate function, R~(s).

Final-state lifetime arises because the holes left by
the Auger neutralization process at e' and e". in the
valence band are filled by secondary Auger processes
involving electrons lying higher in the band. These

'7 This equation differs from that given in Eq. (87) in reference
5 by a factor 2. The equation in reference 5 is in error because of
the neglect there of the relation between Seq and s PEq. (79) in the
present work). Note also that there is a confusion of y and s in
Eqs. (78) and (79) of reference 5.

Broadening by the P& function is in fact more sym-
metrical than the plot of P& on the s scale indicates by
virtue of the fact that 8 (s), contrary to the simple
assumption of Eqs. (75) and (76), varies more rapidly
for s(s than for s)s . If the I'& function in Eq. (80)
is replaced by a Gaussian function te~, (y) of equal
width at half maximum and if an exponential rate
function is assumed, we may calculate 0-& as follows.
The width of the P& function at half maximum on the s
scale is then (2.48/a) by Eq. (46). From (78) this width
on the y scale is 1.24k/a. Using (76) we obtain

W(y i) = (1.24/a)gdE;/dsfs=8 . (83)
I

The relation between the parameter 0- in the Gaussian
function PEq. (18)j and the width at half maximum,

W(y, ), is
0.=W (P,)/2. 36.

From (83) and (84) we obtain

o i (o 53/a) fed&''/ds), =.„. (85)

We may estimate values for 0.
& only after we know more

about the functional dependence of the effective ioniza-
tion energy, E,'(s).

Convolution by the I function in Eq. (80) accounts
for energy broadening by virtue of finite lifetimes in
initial and final states and the Heisenberg principle.
Broadening due to initial-state lifetime here should re-
semble natural line broadening which is characterized
by the Lorentzian function. Neglecting, for the moment,
finite lifetime in the final state, I(Res,s ) should be
given by

1(5",~-)= 1/{(5")'+L &«(~-)3') (86)

Approximating this by a Gaussian is poorer the greater
R~(s ). However, if this approximation is made and
widths at half maximum are again equated, one
calculates

W(q s)=-', ARi(s )=-,'Aanp.

This results from the fact that the width of I(5ej„s )
at half maximum is AR~(s ) on the Res scale and from
the use of Eqs. (79), (41), and (44). From (84) we
obtain"

processes are of the type proposed by Skinner" to
account for tailing observed at the long-wavelength
limit in the soft x-ray spectra of metals. Landsberg" has
shown that this broadening for metals is maximum for
holes at the bottom of the band and falls to zero as the
holes are moved to the top. In semiconductors this
broadening should fall to zero at a point lying below
the top of the band by a forbidden gap width, since
holes can rise no higher than this in subsidiary Auger
processes involving transition of electrons across the
gap. Thus the final-state broadening is least significant
for the upper part of the valence band which is of most
interest in this work.

We further observe that, unlike initial-state broaden-
ing, 6nal-state broadening is independent of ion ve-
locity. Thus final-state broadening can be no larger
than that needed to account for all broadening for the
slowest ions. Estimates to be made presently of initial-
state broadening and broadening due to variation of the
energy of the atomic ground state with distance indi-
cate that together they can account for the broadening
observed for 10-ev ions, leaving little to be ascribed to
final-state broadening. This conclusion is corroborated
by an estimate of final-state lifetime based on a mean
free path for pair production estimated by KolG."
WolfP' considers his value of 15 A for this mean free
path to be essentially what one would expect for a hole
at midband in the present case. Taking the hole ve-
locity to be 10"A sec ', one obtains a lifetime of
1.5)&10 " sec. This leads by the Heisenberg principle
to an energy uncertainty of 0.4 ev. Taking this to be
a,nother hei, like that in Eq. (79), it leads to a width
W(p s) at half maximum of a third convoluting Gaus-
sian q s equal to 0.4/2=0. 2 ev on the s scale. o.s from
Eq. (84) would then be 0.2/2. 36=0.08. It contributes
little to broadening for 10-ev ions for which 0.=0.3
because the components of 0- combine as the square root
of the sum of squares LEq. (81)7. Bronshtein and
Segal'" give values for the range of slow secondary
electrons in several metals which vary from 7 to 12
atomic layers. These results imply a somewhat longer
free path, greater lifetime, and hence srpaller broaden-
ing than does Wo16's estimate. One appears to be on
safe ground in neglecting entirely broadening effects
due to final state lifetime.

XIV. EFFECTIVE IONIZATION ENERGY AND THE
MAGNITUDE OF ENERGY BROADENING

We turn now to a discussion of the effective ioniza-
tion energy near the solid surface. We have seen that it
enters into the theory directly in the change of variable

"H. W. B. Skinner, Phil. Trans. Roy. Soc. London A239, 95
(1940).

» P. T. Landsberg, Proc. Phys. Soc. (London) A62, 806 (1949)."P.A. Wolff, Phys. Rev. 95, 1415 (1954), Sec. II.
~' P. A. Wolff (private communication).
22 I. M. Bronshtein and R. B. Segal', Fizika Tverdogo Tela 1,

1489 and 1500 (1959) Ltranslation: Soviet Phys. -Solid State I,
1365 and 1375 (1956)j.
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formations dictated by Eq. (89) at s= ~ neglecting
the forbidden gap and the Pauli principle and assuming
that one can choose the two electrons to lie initially at
any energy in the valence band.

As s is decreased toward zero, both initial and final
states will vary in energy. The initial state will vary
with s as does the interaction energy, E(i,S), between
the ion (i) and the solid (5). E(i,S) should involve the
image potential and a repulsive term. The Van der
Waals interaction is completely negligible compared to
the energy discrimination of the experiment and is
neglected. We also neglect the possibility of covalent
bonding between ion and solid. Thus we write

E(r', ,5)= —(x—1)e'/4(x+1)s+B, exp( —b,s), (90)

(e-)

E;-a(eo-sy)

~
He+e

~+(n-2) e
in which ~ is the dielectric constant of the semicon-
ductor. The final state varies with s as does the inter-
action E(n,S) between the neutral atom (e) and the
solid (5), for which we write

-12— E(ti,S)=B„exp(—b„s), (91)

-16
0 2 3

2
l

SINA
5

FIG. 26. Potential energy diagram for the Auger neutralization
process [Eq. (89)7 discussed in the text of Sec. XIV.

from e to si, fEqs. (19) and (82)j and that the fit of
theory to experiment yields an empirical dependence of
E, E,' on ion energy—$Eq. (27)j. fdE,'/ds)8=8 helps
to determine energy broadening through Eq. (85). In
this section we shall investigate the dependence of E
on distance s between atom and solid and shall show
that the second and third conclusions of the theoretical
fit to experiment listed in Sec. X are reasonable in
terms of more basic theory.

The dependence of E on s is best discussed in terms
of a potential energy diagram for the whole system of
atom and solid. Such a diagram for the Auger neutraliza-
tion of He+ at the (111)face of silicon or germanium is
shown in Fig. 26. This diagram is to be distinguished
from that of Fig. 2 which is an electron energy level
diagram. In Fig. 26 we consider the Auger process as
the transformation of the system consisting initially of
the He+ ion and m electrons, e~, in the semiconductor
to the isoelectronic system of the neutralized He atom,
a free electron e, and (I—2) electrons remaining in
the solid. The Auger process may thus be written

He++nes —+ He+e + (n 2)es . —(89)

The initial state in Eq. (89), He++mes for He+ at
rest at s= ~, has a discrete energy which we take to be
zero. The final state, He+e + (n 2)e8 for He and e-
at rest at s= ~, may have potential energy anywhere
in a band extending from 2es —E to —LE;—2(es —e„)j.
These limits may be derived from the energy trans-

again neglecting any Van der Waals interaction. Curves
1 and 5 in Fig. 26 are plots of Eq. (90), curves 2 and 3
of Eq. (91). Each curve is plotted with respect to its
corresponding asymptote at s= ~.

Also plotted in Fig. 26 are two Pi(s, v,) distributions,
curves 6 and 7 for 10-ev and 1000-ev ions, respectively.
These are plots of Eqs. (43) or (48) for the case of an
exponential rate function, Note that as incident ve-
locity increases I'& moves closer to the surface as Eq.
(44) demands. Values of the parameters used in the
curves of Fig. 26 were obtained as the preliminary re-
sults of a program mentioned later in this section. For
our present purposes the general structure of Fig. 26 is
all that matters.

The Auger neutralization process is represented in
Fig. 26 as a vertical transition from the initial state
curve 1 to some suitable final state curve. The vertical
transition (constant s) expresses the fact that the
Franck-Condon principle holds for these transitions.
This principle also demands that E&(He+) just before
transition is equal to E&(He) just after. The result of
these conditions is that the kinetic energy, E&(e ), of
the free electron e in the final state outside the solid
is given by the vertical distance between curve 1 and a
final state curve lying below it. The value of Ei, (e )
indicated in Fig. 26 is for a transition from curve 1 to
curve 4 occurring at the maximum (s=s ) of curve 6.
Maximum Ei(e ) is obtained in transitions from curve 1
to curve 2.

Final states which lie below curve 1 at any s will
give rise to electrons which can leave the solid. These
are the transitions for which eI, & eo or EA., &0 in Fig. 2.
Final states lying between curves 1 and 5 correspond to
allowed Auger transitions for which the excited electron
cannot leave the solid (e, &ei&ss). Final states be-
tween curves 3 and 5 are forbidden because they re-
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quire the excited electron to lie either in the forbidden
gap or in the already filled valence band (e&, (e,). These
statements may be compared with the energy limits
stated in Sec. III.

We may now obtain an expression for E,'(s) from the
value of (Eq(e )], , the vertical distance at any s
between curves 1 and 2. This is equal to E, 2(eo ——e„)
+E(i,S)—E(n,S) from Fig. 26. But $E~(e )],„also
equals E'(s) —2(eo —e„) from Kq. (4). These facts lead
to the following expression for the difference between
the free space and effective ionization energies:

E„—E,'(s) =E(e,S)—E(f,S)
= («—1)P/4(«+1)s B; exp—(—b;s)

+B„exp(—b s). (92)

In this expression evaluation of the ionic and atomic
repulsive energy terms at the same value of s is justified
by the Franck-Condon principle.

Equation (92) may be shown to lead to an expression
for E;—E, in terms of ion energy like the empirical
formula (27) found to fit the experimental data. If we
assume that the Auger process occurs at s=s given by
Kq. (44) and that b =b,=b, and use «=16 for ger-
manium, we obtain

E;—E,'(s )=3.2/s +B exp( —bs )
=3.2a/In(A/avo)+B(avo/A)'i (93)

Evaluating this expression at s= s,„, with ~= 16, b; =b„
=b, and 8=8„—8, as before, we obtain

LdE„'/ds]. =;„=3.2/s„'+bB exp( —bs )
=3.2g'/Dn(g/gi )]~+$B(gp /A)~~~ (96)

o.i LEq. (85)] will thus be linear in vo if b a and if the
second term in (96) predominates. Comparison with
Eqs. (93), (94), and (27) taking b~5 A ' indicates that
the two terms in (96) are about equal for 10-ev ions
and that the second term increases to about 10 times
the first at 1000 ev. Thus o-~, and hence o-, will be ap-
proximately linear ill 'vp at the higher ion energies where
broadening is important and the empirical result of
Eq. (28) also appears justified in terms of the more
basic elements of the problem.

It was pointed out in the work on metals' that for
most any interatomic repulsive interaction, whether be-
tween free atoms or between atoms or ions in a crystal
lattice, the coefficient of distance in the exponent is of
the order of 5 A '. It was also shown that an estimate
of a in the exponential rate function based on the over-
lap of exponential wave functions gives a value of about
the same magnitude. This is not unreasonable since both
the repulsive interaction and the Auger matrix element
depend on overlap of the same wave functions.

There remains to discuss the magnitude of o- at 10 ev.
Equations (93), (94), and (96) may be used with (85)
to obtain

in which 8=8„—8; in ev, s and b ' are in angstrom
units. The first term in (93) is the image force inter-
action and varies slowly with s or vp. We shall write it
as a constant, Ki 3.2/s„, where s ——is a mean value for
s over the vo range in question. vo will then be propor-
tional to (E~+Ki)'*where E~ is the incident kinetic
energy. If it is further true that b a, Eq. (93) may
Anally be written as

E,—E =K,+K2(Ep+Ki)'*,

which becomes the empirical formula (27) if Ki 2and-—
E2= 0.06.

The above discussion indicates how the second con-
clusion listed in Sec. X could result from more basic
considerations. The third conclusion in Sec. X con-
cerns energy broadening and indicates that the over-all
broadening parameter o- varies linearly with vo or
(Eq+Ki)'. We have seen that o comprises two com-
ponents o-~ and o-~, given for exponential rate function
by Eqs. (85) and (88) and compounded according to
Kq. (81). If Heisenberg broadening (o.2) predominates
Kq. (88) justifies the empirical result (Eq. (28)] di-
rectly. If o-~ contributes we must determine its depend-
ence on vo through (dL&", /ds). =8 .

Differentiating Kq. (92) yields

dE /ds= («—1)e'/4(«+1)s' —b,B;exp( —b,s)
+b„B„exp(—b„s). (95)

= (0.53/a)[(K, '/3. 2)+b(E,—E,'—K,)]. (97)

If we make the reasonable assumption that b = a= 5 A ',
use E~——2 and E,—E from Table V we obtain o-~ 0.2
ev. o2 is also about 0.2 ev from Eq. (88) which makes
o 0.3 ev using Eq. (81), in agreement with what was
found from the fit to the experimental 1Vo(E~)
distribution.

The above discussion and the potential energy dia-
gram on which it is based illuminate the possibilities
with respect to distance from the surface at which the
ion undergoes Auger neutralization. Comparison of
Eqs. (94) and (27) indicates that at 10 ev, E, E is-
accounted for predominantly by the image force term
with repulsive interaction contributing little. This in-
dicates that at 10 ev the ion is neutralized at such dis-
tance from the surface where the repulsive interaction
is just beginning to be felt. This is shown in Fig. 26 in
the placement of curve 6 relative to curve 2. This must
mean that s for 10-ev ions is about 2 A or about half
the sum of the nearest neighbor distance in the semi-
conductor (2.2 A) and the viscosity diameter of the He
atom (also 2.2 A). This result justifies the view that the
Auger process occurs close to the solid at position 8 in
Fig. 23. As ion energy increases Eqs. (94) and (27)
indicate that to account for the further change in
E;—E,' one must include the repulsive interaction as
neutralization occurs closer to the surface.

We may also conclude from the width and position
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of the I'& function that all ions are neutralized before
striking the lattice (Fig. 26). By Eq. (46) the width of
the P, function is 2.48/a=0. 5 A for a= 5 A '. Thus we
expect all 10-ev He+ ions to be neutralized within
&0.5 A of the mean position of 2 A.

It is observed that the parameters A (or s ), a, 8„,fi„,
8,, and b; could be derived from Eqs. (44), (81), (85),
(88), (92), and (95) using values of P.,'(s ) and o. deter-
mined by fitting experimental Np(Zi, ) distributions at a
series of ion energies. The parameters used in drawing
Fig. 26, which do not differ greatly from those used in
the above discussion, were obtained in this way. The
results must be considered preliminary because they
were based on Gaussian broadening which we have
seen can be improved upon for the higher ion energies.

XV. PROBABILITY OF ESCAPE

Equations (39) and (40) indicate, in agreement with
Eq. (25), that the external distribution in electron
energy, Np(pi, ) is obtained from the internal distribu-
tion, 1V, (pi, ), by multiplying by the probability of elec-
tron escape, P, ( )e.iUsing Eq. (82) for N, (pi, ), we may
write I

Np(ei) =P, ( )pGi'1V, (pi) Tp[-,'(pi+ pp
—E,'(s„))]. (98)

Here G' is the normalization factor in (82) given by:

1/G'=)" 1V,(ei)Tp[-', (pi+ep —E,'(s~))]dpi. (99)
ec

G' differs from G of Eq. (21) only by virtue of the in-
clusion of the final-state density function, N, (pi,).

In Eq. (98) we call attention to four gentle variations
with energy eI, which result if minor changes are made
in (1) the specific form of the P, ( )pfpunction as dis-
tinguished from its general level and form, (2) the
specific form of the N, (pi) function, again as dis-
tinguished from its general level which is taken care of
by the normalization factor G', (3) the specific form
chosen for the N„(p) functions of Eqs. (6)—(10), and/or
(4) the specific form chosen for the q(e) function of
Eqs. (14) and (15).The functions q(e) and N„(c) are in-
volved in Tp of Eq. (98) as indicated in Eqs. (13), (16),
and (80). What is of interest here is that q(e) may not
be strictly linear as assumed nor 1V„(e) built up of exact
parabolas. Minor changes in the forms of P, ( ), ply, (pi,),
q(p), and N„(p) all amount to gentle variations with
energy pi in Eq. (98) which cannot be separated. For
this reason we carry 1V,(pk) no further in the calculation
and revert to the definition of Np(ei, ) given in Eqs. (25),
(19), and (21). The probability of escape is still to be
defined by Eq. (40) with the understanding that it may
contain gentle variations with energy introduced by
the specific choices of q(p) and N. (p), and the assump-
tion that N, (pi) is constant. This is the only way in
which the uniqueness of the theoretical 6t is com-
promised. It can be said categorically that this can

have only a minor effect on the basic conclusions con-
cerning the parameters of the problem.

By Eq. (40), P, ( pi) is seen to depend both upon the
angular variation of the matrix element specified by I'&
in Eq. (66) and the critical angle for escape over the
surface barrier, 0,(ei). If the matrix element, and hence
the N, (pp) distribution, is isotropic, then

Pu(0, eg, s )= 1/4n. . (100)

it follows that

with

H, =fH„ f) 1,

Pni= f'Pup,

(103)

(104)

P,= (1/4~) [1—n cos0,]-',
Pg, (1—n)Po, , 0)0„—— (105)

It is then true for any barrier having cylindrical sym-
metry about the 0=0 normal through the atom that

P, ( i,p) = —,'[1—cos0, (pi,)]. (101)

If the barrier is plane and I'o isotropic, 0, is given by

0, (pi) = cos '(pp/p1)i, (102)

which from (101) results in the P, ( e)ifunction given in
Eq. (22). We have concluded from the theoretical fit
(item 4 in Sec. X) that this probability of escape is too
small by a factor of several times unity. It is our pur-
pose here to see what the general theory we have been
developing has to say on this point. Clearly, one can
depart from Eq. (22) either if Pa is anisotropic or if 0,
is greater than that characteristic of plane barrier
[Eq. (102)].Both effects are most likely operative.

We discuss first the anisotropy of Pu(0, pi„s ). We
have seen in connection with Eq. (63) that the matrix
element is the Coulomb interaction between a charge
cloud eF(1)=eu,~(1)u„'(1) and another cloud eG(2)
=eu, *(2)u„"(2).F(1) is limited to the vicinity of the
atom by u, *(1).G(2) may take on two different forms,
one involving the I, function of Fig. 23 for electrons
which pass over the surface barrier and the other in-
volving I,' for electrons which are internally rejected.
Over the volume of integration about the atom dictated
by the 1/r» interaction, the matrix element involving
I, will be greater than that involving I,'. This will
be true even though u, oscillates through as many
as several cycles in-the volume of integration. Such
oscillation is expected since the wavelength of a 6 ev
electron is 1.6 A. Its effect is to reduce the transition
probability over that which would be obtained for
longer wavelength. However, we do not expect this
effect to be as large as replacing an oscillatory u, with
an exponentially decaying I,'. Thus the matrix element
for 0&0, is expected to be greater than that for 0&0,.
If we take its value to be constant in these ranges,
i.e., to have the value H~ for 0&0, and H2 for 0&0.,
then I'z will have the form shown in Fig. 27. Ke may
take H~ and H2 to be the suitable average values of
the matrix elements in the two angle ranges. Putting
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in which
cr= 1—1/f'

The resulting escape probability is

(106)

TABLE VI. Parameters concerning the state density functions
in the valence bands of Si and Ge.

6v

Si 14—16
Ge 14—16

0.68
0.73

(1-p) "b
5.1
4.3

a Over-all width of the valence band in ev.
b Width of the degenerate p band in ev.

P, (es) =~a(1—cos8,)/(1 —cr cos8,), (107)

for any cylindrically symmetrical barrier. Equation
(107) for a plane barrier [Eq. (102)) reduces to Eq.
(23). Pn in the form of (105) could depend on s„
through f if f varied with distance. This variation must
be small because use of the same P, (es) function for the
¹(Zs)distributions plotted in Fig. 10 for five different
incident energies, and hence s values, showed no
signi6cant departure from the experimental measure-
ments in the variation of total yield with ion energy
(Fig. 9). If the large escape probability were attributed
entirely to anisotropy of Pu, then u in Eq. (23) must
have a value of 0.956 (curve 2 of Fig. 15) for He+ on
Ge(111). By Eq. (106) this requires a ratio of matrix
elements f in Eq. (103) of 4.8.

The second factor which can contribute to an escape
probability larger than that of Eq. (22) arises from the
bulge in the surface barrier caused by the potential
well of the neutralized ion outside the surface. This
bulge in the equi-energy surfaces outside the solid is
cylindrically symmetrical about the surface normal
through the atom. This leads to a greater critical angle
8, (es) than that of Eq. (102) for the plane barrier.
Either Eq. (101)for isotropic Pu or (107) for anisotropic
Pu will give higher P, (es) for larger 8,. Classical orbit
calculations have been made for electrons starting along
radii through the atom and moving in the image Geld

of reasonable approximations to the solid surface and
surface bulge. These result in appreciable increases in
8, (es). In the actual case the electron orbits certainly do
not all pass through the center of the atom. Electrons
may be thought to originate throughout a volume about
the atom in which the Coulomb interaction of the
matrix element has value. The larger this volume, the
less will be the effect produced by the bulge in the
equi-energy surfaces about the atom. It is not possible
without detailed calculations to determine the relative
magnitude of the effects of P& anisotropy and of the
bulge in the surface barrier. But these are the possible
reasons why P, (eI,) is several times larger than what
Eq. (22) specifies. Total electron yield is thus not deter-
mined, as assumed by Shekhter, ' by integrated transi-
tion probability over all distances, which is unity as we
have seen. 7; is determined by the escape probability

Fio. 27. Polar plot of the probability distribution Pu(8, ez,s ).
The I'g surface is a figure of revolution about the surface normal
rr —e. Pu=1/4s is indicated by the dashed circle. The full con-
tour indicates the distribution of Eq. (105). Refraction of the
electron trajectory from 8 to 8' at the surface is shown. 8, is the
critical angle for which 8'=s/2.

and the fraction of the E,( )eidistribution which lies
above the vacuum level.

Other one-parameter P, (e&) functions like Eq. (23)
were derived in the work on metals. ' The two-pa-
rameter function LEq. (24)), used extensively in this
work, permits some freedom of choice of curvature of
P, (es) thus making it possible to take account of the
gentle variations with energy of iV, (e), q(e), and E,( &)s

which P, (es) comprises. We have thus completed our
discussion of the four conclusions listed in Sec. X which
the fit of theory to experiment has forced upon us.

XVI. LEVEL DENSITIES IN THE GERMANIUM
AND SILICON VALENCE BANDS

The 6t of the present theory to experiment provides
a level density function, iV„(e), in the valence bands of
germanium given by curve 1 in Fig. 4. It is determined
by the two parameters e„and p. e, is the total width and
(1—p)e„ is the width of the degenera, te p bands. The
accuracy with which we can determine the width of the
p bands, even though this width is expressed as (1—p) e„,
does not depend upon the accuracy with which we know
e,. Having picked a value for e„, (1—p)e„ is adjusted
until the higher energy peak of the experimental N p(E )s
is matched. Figure 12 shows that a change of ~0.015
in p is certainly discernible. This corresponds to an un-
certainty in the p band width of &0.3 ev. However, e,
must be in a range in which a good fit to the experi-
mental data is possible before (1—p)e„can be trusted
as good value of the width of the degenerate p bands.
This width is 4.3 ev for Ge, 5.1 ev for Si (Table VI).

The over-a11 width of the valence band is determined
with less accuracy than the width of the p bands. The
reason for this is that e„ is so large relative to 8 (He+)
that valence electrons near ~= 0 cannot be raised above
the vacuum level. The value of e„does affect the ability
to fit the ¹(EI,) distribution of electrons which do
escape, however, and it is from this fact that a value
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for e„ is obtained. In a sense, this amounts to an ex-
trapolation of 1V„(e) to the bottom of the band. The
value of e„obtained should thus be more sensitive to
the specific functions used for 1V„(e) than is (1—p) e„.

We have seen in connection with Figs. 17 and 18 that
one cannot 6t the data well for e, much below 14 ev for
germanium. Similar results, although somewhat less
critical, are obtained for silicon. Xo systematic attempt
to fit the data for e,& 16 ev has been made, although it
was shown that a reasonable fit for e„=18 ev could be
obtained for Si. It was indicated in Sec. IX that a lower
bound of 15 ev for e, for both Si and Ge exists if the
disparity in theoretical and experimental p; for Xe+ can
be attributed to resonance tunneling from the valence
band into the ground state of the atom. Consideration
of all these facts leads to the conclusion that e„most
likely lies in the range 14-16 ev for both Si and Ge
(Table VI).

Soft x-ray results for Si have been extended recently
by Kern" who has also re-evaluated earlier work. His
Table II shows that e„ from soft x rays lies in the range
13 to 16 ev in good agreement with the present results.
Since the L emission indicates only the s electrons in
1V„(e) and the E emission only the p electrons, the sum
of the L- and E-emission curves should give something
like the 1V„(e) curve obtained in this work. Comparison
of curve 1, Fig. 4 with the curves given in Kern s Fig. 5
show this, indeed, to be the case. The soft x-ray results
for Ge'4 have been interpreted as giving e, near 7 ev
and are thus in disagreement with the present work.

Several theoretical calculations of the band structure
of silicon and germanium have been carried out. ' '
Of these, the most recent and most accurate is that of
Kleinman and Phillips. " Using a momentum-inde-
pendent potential they find e, =10.3 ev. Their bands
are close to those of a free-electron gas which, for the
electron density of Si, has a Fermi energy of 11.5 ev.
Kleinman and Phillips also quote a value of e„=20.3 ev
obtained from a momentum-dependent exchange po-
tential of a free-electron gas. Phillips" expects that
screening effects of correlation will greatly reduce
momentum-dependent effects leading to a total band-
width which is larger than 10.3 ev by no more than 2
or 3 ev. Phillips" considers the difference between this
theoretical ~, of 12—13 ev and the 14—16 ev value re-
ported here in Table VI to be significant. He would
attribute the difference to the effect of the form of 1V„(e)
used in the present work on the determination of the
total bandwidth as discussed above. Because the elec-
tron densities in Si and Ge differ by less than 10%%uq,

23 B. Kern, Z. Physik 159, 178 (1960).
'4D. H. Tomboulian and D. E. Redo, Phys. Rev. 104, 590

(1956).' F, Herman, Physica 2D, 801 (1954).
T. O. WoodruR, Phys. Rev. 1D3, 1159 (1956); in Solid State

Physics, edited by F. Seitz and D. Turnbull (Academic Press,
Inc. , New York, 1957), Vol. IV, p. 367.

sr L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
s' J. C. Phillips (private communication).

e„ is expected to be the same within about 10%%uo for the
two crystals. This is in accord with present work but
not with the soft x-ray results.

A theoretical estimate of the width of the degenerate
p bands requires that one know the position in the
Brillouin zone of the point in this band which lies
lowest in energy. Phillips" found the lowest lying point
in Si to be 8'2(') and considers this to be close to the
bottom of the degenerate p band because of the very
close agreement between his results' " and those of
Kleinman and Phillips. 'r The theoretical P bandwidth
is then 4 ev with an uncertainty of ~1 ev." Similar
results are expected for Ge. The experimental values of
5.1 and 4.3 ev for Si and Ge, respectively, are thus in
good agreement with the latest theoretical estimates.
The Si result appears to agree with the evidence of the
degenerate p bands in the E-emission results of Kern. "

The present work suggests more strongly than did
that for metals that Auger electron ejection may be
used to determine state densities in the filled bands of
solids generally. Experimentally, the chief problem is
the production of atomically clean surfaces. In extract-
ing the state density function from the experimental
kinetic energy distribution one must work through an
integral transform. In the present work one chooses
iV„(e) and works through the integral transform in the
"forward" direction to fit 1Vs(Es). This requires that
something be known a priori about the form of 1V„(e)
as is the case for the diamond-type semiconductors. A
more general application of Auger ejection to the deter-
mination of state density functions will require a method
of deriving A'„. (e) from 1Vs(EI,) directly without any
assumptions as to its form.

XVII. SURFACE EFFECTS

The experimental results and theory of Auger neu-
tralization at a semiconductor provide several interest-
ing implications or conclusions about the surfaces of
these solids. Since the ion is neutralized outside the
solid, the electrons involved are surface electrons and
the conditions under which the Auger process proceeds
are surface conditions. Thus one must take into account
(1) the existence of surface states in the energy gap,
(2) the fa,ct that the level density distribution and
hybridization of the valence band involved in the Auger
process are those prevailing at the surface, and (3) the
difference between electrostatic potential at the surface
and in the bulk caused by occupancy of the surface
states and the possible existence of a chemical doping
layer in the surface layers of the crystal.

Electrons residing in surface states in the energy gap
should partipate in the Auger neutralization process and
produce a tail on the high-energy end of the 1Vs(EI,)
distribution above the energy limit calculated by Eq.
(4). The experimental 1Vs(Es) distribution when com-
pared with the broadened theoretical curve in Fig. 8

"J.C. Phillips, J. Phys. Chem. Solids 8, 369 (1959).
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shows very little evidence of such a tail. This may result
if the surface density of electrons in such states is small

compared to the surface density of 4)&10" valence
electrons per cm. It could also result if the wave function
of the surface state does not extend as far from the
solid as do the P functions which characterize the top of
the valence band. Recent estimates" " indicate that
the surface density of electrons in surface states neces-

sary to account for the observed bending of bands at
the atomica]ly clean surface lie in the range 10"—10"
per cm' or more. This may, in fact, be above the limit
of what should be observable if the wave functions of
the surface states extend from the surface in a man-
ner comparable to the p electrons at the top of the va-
lence band. If the results of Koutecky and Tomasek""
concerning rehybridization of surface orbitals are valid,
one expects an enhanced probability of Auger neutrali-
zation involving electrons in surface states in possible
disagreement with the present work. A definitive state-
ment concerning the role of filled surface states cannot
be made until their density has been fixed with greater
precision.

All of the results of the present work indicate that
the surface level density distribution and the surface
hybridization of the valence band are close to those
expected for the bulk. One cannot accommodate any
serious distortion at the surface. It shou]d be pointed
out, however, that this statement need not preclude
some surface rehybridization if it involves admixture of
orbitals of higher angular momentum than s and P
leaving the ratio of s to p and its variation through the
band close to that in the bulk. The magnitude of orbi-
tals of higher angular momentum will be quite small

near the atom outside the surface as the functions of
Fig. 24 indicate. The conclusions reached here concern-

ing the relation of the surface level density distribution
to that in the bulk do not agree with the suggestions of
Handler. ""

We expect a difference in electrostatic potential be-

tween surface and bulk to have essentially no effect on

the Auger neutralization process. Electrons involved in

the Auger process come from the outermost surface
layer only and no averaging over the space charge
layer occurs. Values of surface energies such as eo —e,
used in this work were determined for the surface and
thus introduce no error (Table II). States within a few

tenths of an electron volt of the top of the valence
band will no longer communicate with the bulk of the
solid if the energy bands bend up at the surface by this
amount. This apparently produces such a small change
in wave function over such a narrow energy range as to
be unobservable in this work.

' A. B. Fowler, J. Appl. Phys. 30, 556 (1959).
3' P. Handler and W. M. Portnoy, Phys. Rev. 116, 516 (1959).
"P.Handler, J. Phys. Chem. Solids 14, 1 (1960).
33 J. Koutecky, J. Phys. Chem. Solids 14, 233 (1960)."J.Koutecky and M. Yomasek, J. Phys. Chem. Solids 14, 241
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FIG. 28. Plot showing intersections which surfaces of constant
transition rate and constant effective ionization energy might
make with a plane perpendicular to the solid surface passed
through a row of surface atoms (open circles).

Some comment should also be made concerning
possible effects of surface atomicity. A possible depend-
ence on azimuthal angle was pointed out in Sec. XII
which was assumed to average out to independence of

y on integration over the surface. Also the sp' hybridiza-
tion at the surface need only be an average permitting
variation in either direction near individual atoms or
between atoms of the surface. Surface atomicity could
also have an effect on energy broadening which is now
discussed.

We consider the differences to be expected as we

vary the impact parameter relative to a surface normal
projecting, say, from a given surface atom. The im-
portant consideration here is the way in which contours
of constant transition rate, R~(s), vary with respect to
those of constant effective ionization energy, E,'(s),
over the solid surface as s decreases. If the solid surface
were an ideal structureless plane, the contours of
constant R& and E would be planes and R& and E
would bear the same relation to each other at all points
on the surface. If the surface is made up of atoms, the
surfaces of constant Ri, and E undulate with the sur-
face periodicity of atoms and may not have the same
form for all distances s as is indicated in Fig. 28. Here
are shown the intersections of possible contours of
constant R~ and E with a plane perpendicular to the
surface which passes through a row of surface atoms.
The surface atoms are indicated by the open circles.
Let us suppose that 1, 2, 3 are contours of constant E
and 1', 2', 3' contours of constant R&. Under the cir-
cumstances depicted in Fig. 28 an ion coming in along

. the surface normal a will undergo transition at a point
at which the effective ionization energy E differs less
from the free-space value E; than for an ion approaching
along the surface normal b. On a potential energy
diagram like that of Fig. 26 drawn for the normal a,
the I'~ functions would lie farther from the surface
relative to the potential curves than on a diagram drawn
for the normal b. This might result in further energy
broadening over what is expected when the possible
deviation of energy and rate contours over the surface
is neglected. For 10-ev ions an estimate of a. based on
calculations of o-~ and 0-2 accounts for the observed
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magnitude of a (Sec. XIV). We conclude that for 10-ev
ions at least "surface broadening" of the type discussed
here is small. Surface broadening could become im-
portant for faster ions if one were to attempt to
evaluate the component contributions to the over-all
broadening parameter 0..
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A convenient function related to the Auger transform
T(e) of Eq. (16) is

~(~)= T'(~)/C ' (115)

in which Ci is the constant defined in Eq. (11).Then

5(c)= M(e A)M(~+8)dd. —(116)

5(e) has been expressed analytically in terms of the
M„(e) over the range of p values, ~~(p(1. Three ex-
pressions are necessary, one for —',&p& 2, another for
—,'&p&4, and a third for 4&p&1. Expressions for S(e)

XIX. APPENDIX

The details of the calculation of the Auger transform
T(e) of Eq. (16) are given here. The E„(e) and q(e)
functions used in the definition of E„'(e) in Eq. (13) are
made up of the component functions 1V (e) defined in
Eqs. (6)—(10) and q„(e) defined in Eqs. (14) and (15),
respectively. If we now let
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TABLE VIII. Expressions for S„,„(L2,Ll) in terms of X, p, and the integrals I„(L2,Ll,n).

Sll(L2)Ll) = (1—Ae)'Ii(L2, Ll, e) —A'I2(L2, Ll, e)

S12(L2)Ll) = [(1—l e)' —';ll'e&)']I4(L2 2e» Ll 24&)) e 2e&)) AI3(L2 24&)& Ll 2ee& e 24&)) A e))I3(L2 24» Ll 24)) e 24&))

S13(L2)L1) S12+p(1 )le+ elple)&)I1(L2 2pe&)) Ll p2e»e 2pe)))+llpI3(L2 2pe» Ll 2pe» e 2pe„)

S14(L2,Il) = [(1—lie)2+p(1 —lie) —ll'(24„)2+2llpe, ]I4(L2—-', e,) Ll ', e„) e——-',—e„)—lPI3(L2 ——',e„Il ', e,) e———',—e,)
+X(p, lie)))I3(L2 24» Ll 24» e —24&))

S22(L2&L)) = (1—l)e)'Il (L2&L3& 4„—e) —X'I2(L2&L3& e„—e)

S23(L2)Lj) =S22+pL1 —lie ——
2ll (1—p)e&)]I4(L3+'2 (1—p)e» Ll+-', (1—p)e» 4 —-', (1+p)e„)

+ XpI 3 (L2+ 2 (1 p) ee—c Ll+ 2 (1—p) 4» e —2 (1+p) e~)

S24(L2,I1) =Lp (1—Xe)+ (1—Xe)']Il (L2&L1& e, e) )—'I2(L—2)Ll) e, )4+lp—)I (3L L2&)1e,—e)

S33(L2,Ll) =See+p'Il (L2)Ll) e pe, ) +—p)t Ae 2—'A(1—p) e,]—I4(L2 ', (1 —p—)e„—Ll ——', (1—p) e„e—-', (1+p) e,)
—l)pI3(L2 ——',(1—P)e» Il——', (1—P)e, &

e —-', (1+P)e„)
S34(L2)L1)=S24+p(1 lie 2'A—(1 —p)e, +p—]I4(I2 3(1—p—)c„,Ll ', (1 p—)e„—,4 ———',(1+p)e,)

—l pI4(L2 —2(1—p)", Ll —2(t —p)", e —2(t+p)e. )
S44(L2)Ll) = (1—Ae+p)'Il(L2)L3& " e) p'I3—(L2&—Ll, "—4)

are of the form, .

S(.)=P S„„(L„L,), (117)

and are listed in Table VII. For each of the three ranges
of p given above the energy range 0(e&e„breaks up
into 12 regions in each of which a diferent sum such as
(117) is valid. The quantities Li and L2 are the func-

TABLE IX. Expressions for the integrals I (L2 Ll n).

L2
Il (I.2,Ll,n) = (n' —x')bdx

LI
L2

', Lx(n' -xe)b n—' arct—anx(n' —x') 4]b

tions of e, p, and e„given in Table VII. The S„(L2,Li)
terms are polynomials in )t and p, of Eqs. (109) and
(110) and the definite integrals I„(L2,Li,cr) (Table
VIII). These definite integrals are listed in Table IX.
Here the quantities L» and L,2 to be found in Table VII
appear as the limits of the integrals. The computer
program calculates S(e) over the energy range 0( e& e„
at equally spaced points separated by an interval usu-
ally taken to be 0.25 ev.

The broadened S(e) function called Sb(e) and the
change of variable from e to eI, are carried out by a
formula analogous to Eq. (17). 1V, (eb) is then

L2 I2I,(I.,)Ll,n) = X'(n' —X2)bdg = ) Pn2I) —X(n' —X')3]
II

I3 (L2,Il,n) = x(n' g2)bdx =——-33L(ne —xe)&]b,
LI

2 2' —X
L2

I4(L2,Il,n) = (x2—n2)edx= 21/x(g2 —n )4—nein(g+(g2 —n2)4)]
L1

1V, (eb) =GSbf-', (eb+ ee—E,'(s ))j,
in which G is the normalizing factor given by

1/G= ) Sb[-', (eb+es —E (s„))]deb
~c

(118)

L2
2 2Ie(L2,Ll,n) = x'(x' —cP)bdg= —4'Ln2I4+x(x' —ne)3]b,

LI

L2
2 2

L2
Ie(I2,Il,n) = x(x' n')bdx= 3'p(—x' n3)t]s-, —

LI

p
6y

=2) Sb(e)de. (119)
kL~. +« —&"(S~)l

Equations (118) and (119) are the analogs of Eqs. (19)
and (21), respectively.


