
PH YS ICAL R EVIEW VOLUME 122, NUM BER 3 MAY 1, 1961

Ferromagnetic Relaxation. I. Theory of the Relaxation of the Uniform Precession
and the Degenerate Spectrum in Insulators at Low Temperatures*
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A scheme is proposed for the relaxation processes at low temperatures accompanying excitation of
uniform precession spin waves in a ferromagnetic resonance experiment, with particular reference to highly
pure yttrium iron garnet. The processes are: (1) scattering of uniform precession spin waves into the
degenerate spin-wave modes by polishing imperfections on the sample surface; (2) equalization of the
populations of the degenerate spin-wave modes, also by surface imperfections; and (3) relaxation of the
degenerate modes by Raman scattering of thermal spin waves through the magnetic dipole interaction.
Relaxation times for the three processes are calculated and compared with experimental values with
reasonable agreement.

E now know that ferromagnetic relaxation is a
complicated phenomenon because of the multi-

plicity of processes which may play a part between the
initial excitation in a microwave resonance experiment
of the uniform precession of the magnetization (or of
spin waves of low wave vector) and the ultimate
establishment of thermal equilibrium with the lattice.
Many diRerent relaxation processes have been con-
sidered in the past fifteen years, and various processes
may be important under appropriate conditions. Several
recent developments make it profitable for the first
time to undertake a systematic quantitative discussion
of the entire relaxation process under well-defined con-
ditions. Many of the theoretical methods for treating
relaxation problems were discussed earlier by various
workers in the U.S.S.R., starting with Akhiezer, ' for
application to somewhat diferent conditions. We are
also greatly indebted to the work of Kasuya, ' who
delineated the major processes a6ecting the relaxation
of magnons of wave vectors not equal to zero.

The recent developments include:

1. The discovery by Anderson and SuhP of the
portion of the magnon spectrum degenerate with the
uniform precession, and the recognition~' of the central
role the degenerate modes play in the initial stages of
relaxation process in insulators.

2. The discovery' in France of yttrium iron garnet
(YIG), which has the outstanding attributes of (a)
cubic structure, (b) excellent insulator, (c) all magnetic
ions identical and in an S state, and (d) no detectable
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magnetic disorders. One may say that YIG is at present
to ferromagnetic resonance research what the fruit Qy
is to genetics research.

3. The recognition' of the sensitivity of the relaxa-
tion observations to the presence of trace amounts of
impurity atoms which are themselves rapidly relaxed
by spin-lattice mechanisms. In the present paper we
are concerned with intrinsic and geometrical relaxation
processes, rather than with the processes associated with
rapidly relaxing impurities.

4. The prediction by Kaganov and Tsukernik, '
Morgenthaler, " and Schlomann, Green, and Milano"
of direct nonresonant microwave excitation of magnons
having well-defined wave vectors.

5. The experimental program of I.eCraw and Spencer"
and associates, in which a number of individual relaxa-
tion processes in YIG have been studied under a wide
range of conditions.

In the present paper we discuss aspects of the theory
of the initial stages of relaxation in pure ferromagnetic
insulators at low temperatures (T((T,) with particular
reference to yttrium iron garnet. By initial stages we
mean, first, the mixing or scattering of the uniform
precession with the degenerate spectrum and, second,
the interaction of the degenerate spectrum with the
thermal magnons by processes in which not more than
three magnons are involved. "

We do not consider here the intrinsic processes (such
as the 4-magnon dipolar process) which relax the
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uniform mode directly. A subsequent paper will discuss
several of these processes in detail.

MIXING OF THE UNIFORM PRECESSION VfITH
THE DEGENERATE SPECTRUM BY

SURFACE IMPERFECTIONS

In a single-crystal spherical specimen of pure YIG
at suflciently low temperatures the principal contri-
bution to the width of the uniform mode ferromagnetic
resonance line is believed to come from surface imper-
fections as shown by I.eCraw, Spencer, and Porter. '
This relaxation process is a two-magnon process: It
involves the destruction (heo ———1) of a uniform mode
magnon and the creation of a magnon (Dms=+1) in
the degenerate spectrum, containing what we shall refer
to as S magnons or Suhl-Anderson magnons. The
number of magnons remains constant in the scattering
process, and therefore the total s component S, of spin
is constant, but the destruction of a k=0 magnon
decreases the total spin S by one unit. The scattering
process is therefore a relaxation process only for the
transverse component of the total magnetic moment
and may be specified as a relaxation time T&0. The
surface pits are important in causing two spin-wave
collisions, but can be shown not to make any signi6cant
contribution to the three-spin-wave collision interaction.
The linewidth associated with the pits may be in the
range 0.1 to 50 oersteds, according to the polish.

Many other static interactions besides surface pit
scattering contribute to the elastic scattering which

converts uniform magnons into degenerate S magnons,
but all of these contributions in YIG appear to be
small. We have calculated relaxation times for a number
of point processes by standard methods, similar to those
employed by Callen and Pittelli. '

(1) Vacancies and diamagnetic ions in ferric ion
sites. Controlled experiments by Spencer and LeCraw"
show that the substitution of vast amounts of diamag-
netic Ga203 for Fe203 in YIG produces a remarkably
small contribution to the linewidth, of the order of 0.1
oersted per atomic percent Fe sites occupied by Ga.
The value calculated for magnetic dipole interactions
is of the order of 5)&10 4 oe per atomic percent Ga, and
this width is negligible. The pseudodipolar interaction
constant is presumably of the order of (Ag/g)'J and
should not be greater than 10 "erg for (Ag/g)' =10 '
and may be neglected. Pincus, in unpublished work,
has shown that the effect on the linewidth of the
Dzialoshinski-Moriya interaction is also negligible in
YIG.

(2) Hyperhne interaction from Fe" nuclei. The re-
laxation time is estimated to be 10' sec, or 10 4 oe.

(3) Adsorbed molecular oxygen. The linewidth asso-

' R. C. LeCraw, E. G. Spencer, and C. S. Porter, Phys. Rev.
110, 1311 (1958); see also reference 5. Further relevant experi-
ments are reported by A. G. Gurevich and I. E. Gubler, Soviet
Physics —Solid State 1, 1693 {1960)."E.G. Spencer and R. C. LeCraw, Bull. Am. Phys. Soc. 5, 58
{1960).

ciated with the dipole moment of static electronic para-
magnetic impurities may be roughly estimated to be of
the order of 10 'f oe, where f is the fraction of the
total lattice sites thus occupied. We may note, however,
that if adsorbed paramagnetic moments on the surface
are rapidly relaxing in the sense of reference 7, then
their effects may be on the limits of detectability.

(4) Pinned spins. It may be possible for the spin
directions of certain random ferric ions to be frozen in
direction either by strong exchange coupling with a
paramagnetic ion having a large crystal field splitting
with a nondegenerate ground state, or by (with the aid
of the Meiklejohn-Bean effect)" exchange interaction
with an antiferromagnetic region. It is hard to say
anything very specific about such effects without using
an ad hoc model, but a pinning 6eld of 10' oe would
give a linewidth in YIG of the order of 1 oe per atomic
percent pinning sites, which would make such defects
the most important static point defects for the present
problem.

The specimens of YIG used in the ferromagnetic
resonance experiments are spherical, having been
polished into this shape by the Bond process. Exam-
ination reveals that the surface is covered with pits
having diameters about two-thirds the diameter of the
grit of the polish used. The experimental ferromagnetic
resonance linewidths dH for several sizes of polishing
grit show that AII increases approximately linearly with
the radius E of the surface pits on the sample; 5B was
observed over a range of about 0.5 to 10 oe. We now
calculate the linewidth for the pit scattering process,
The result has approximately the correct order of mag-
nitude and depends linearly on the pit radius.

We treat in the Born approximation the problem of
scattering by a small spherical cavity in an infinite
medium, and later we interpret the result in terms of
surface pits. The scattering potential V which arises
from the interaction of the magnetostatic field H, of
the cavity and magnetization M is

M+(r) = (4tiM, /V)& P e'"'ag, (2)

M'(r) =M,—(2p/V) P e"—"i+""'ai i'ai (3)

here ti is g ~
tie ~/2, and V is the volume of the specimen.

This representation does not diagonalize the magnetic
dipolar energy, but the approximation should be ade-
quate provided B& ~2m M, . The macroscopic sig-

"W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413
(1956).

V= —-' ~H Mdr,c 2J c

where the factor —,
' is appropriate to a self-energy.

The Holstein-Primakoff transformation of the mag-
netization to spin-wave operators correct to second
order is
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dnp/d1 = —(ne —np)/Tsp (6)

where the transverse relaxation time T2p is given by

)&m

[F(k,R) ['p„dk,
T2p & ~p

(7)

where pI,dk is the number of states per unit energy range
with ~kt in dk at k. The dispersion relation for the 5
magnons in a sphere is

~s= ~st H, —(4~M,/3)+ (D/e&) ks)

XLHe —(4rrM, /3)+ (D/Ay) k'+47rM, sin'8s]. (8)

Here D is the exchange constant and 0I, is the angle
between k and the s axis; Hs is the external applied
magnetic field; in (7) the upper limit k is given by
(D/Ay)k '=4rrM, /3 and has the value k 4&(10s cm '
in YIG. The evaluation of the density of states for (8)
is fairly complicated (reference 5). For Hs))4nM, /3.
and k~))10,

16m' (3 cos'8s —1)'
R'(pM, /V) Lji(kR)]'d(kR).

T2p cos8p p

(9)

Here 8s is the value of 8 satisfying (8) for k -+ 0; the
definite integral has the value m./6. We now convert
the result from a spherical cavity to a hemispherical
pit having half the volume and situated on the surface
of the specimen. We suppose plausibly that the scat-
tering matrix elements are reduced by a factor ~, of
which ~ arises from the reduction in the e6'ective mag-
netic moment of the scatterer and a further ~ arises
from the reduced range of angular integration; thus
1/Tse is reduced by (s)s. If we suppose that the surface
of the specimen is covered entirely with pits, their
number will be 4rs'/R', where rs is the radius of the
specimen.

Finally, if the pits scatter independently,

where
AH = 1/~T's, =4M„(R/ro) G(8o), .

G(8s) = (3 cos'8s —1)'/cos8e.

ni6cance of this approximation is that the precessional
motion within a spin wave is taken to be circular,
whereas it'is actually elliptical. The terms in V, which
relax the uniform mode are, as derived in Appendix A,

V, (O,k) = 16m'R'(pM, /V) (3 cos'8s —1)
Xfji(kR)/kRj(asap +as aa) (4)

where R is the radius of the cavity and j& is a spherical
Bessel function. It is convenient to write

V, (O,k) =P(k,R) (asagt+astas), (5)

so that, if the occupation numbers nq (for k WO) of the
S magnons are all equal to some value Fzp, the kinetic
equation for ep is

The predicted dependence of AII' on pit radius R and
specimen radius rp is in qualitative agreement with
the results' of Spencer and LeCraw and of Gurevich
and Gubler. For H=3300 oe, 3f,=195 gauss, and a
representative (reference 14) specimen radius re ——0.018
cm, we have ep 62 deg; this estimate is based on
D =0.55&(10 ' erg cm . Then, from (10),

AB = 1.2)&10'R oe. (12)

For R=5&&10 ' cm, we calculate AH=6 oe from (12),
which may be compared with the observed 6 oe. The
agreement with experiment is better than one could
expect, in view of the irregularities in the actual shape
of the surface, with the possibility of superposition of
fracture indentations of various shapes and sizes.

For the constants given, G(8s) has a value near ss.

We have used this value of the angular factor in (12)
above, but one shouM note, first, that the factor would
be appreciably smaller at room temperature because
the numerator of (11) will vanish at some temperature
and, second, the angular factor is a consequence of our
particular model of a spherical cavity and it may be
modified somewhat for the distribution of pits and.
fractured cleavages on the actual surfaces. It is likely
that quadrupolar and higher terms in (A.6) contribute
significantly to the broadening, with the net effect of
smoothing out the dipolar variation calculated for G(8s).
Nevertheless, it would appear interesting to carry out
measurements of AH in pure but rough YIG under
conditions such that one sweeps through the zero of
G(8p).

The linewidth resulting from a single spherical cavity
of volume e is

DH =2 r M7s, (w/V)G(8 )s (»)
It is interesting to compare this result with a linewidth
calculated by Schlomann. "He assumed that the line-
width is just the width of the distribution of the
Quctuations in magnetic field caused by the demag-
netizing effect of the cavity, and obtained the result:

AH =6m M, (u/ V)/L1/ (8/V) $. (14)

For YIG at O'E, Eq. (13) gives DH =4M,s/V, so that
the linewidth given by spin-wave theory is smaller by
a factor of about 5 than that obtained when correlation
between the spins is neglected. We have here an ex-
ample of the dipolar narrowing which occurs when the
linewidth is due to a perturbation causing field Quctu-
ations with a period large compared to the lattice
constant but small compared to sample dimensions. ' '

RELAXATION OF DEGENERATE S MAGNONS BY
THREE-MAGNON DIPOLAR PROCESSES

A preliminary account of the first calculation of this
section has appeared. " The calculation is concerned

'~ E. Schlomann, Proceedings of the Boston Magnetism Con-
ference, 1956 (unpublished), p. 600."S. Geschwind and A. M. Clogston, Phys. Rev. 108, 49 (1957).

"A. M. Clogston, J. Appl. Phys. 29, 334 (1958).
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with the results reported by Spencer and LeCraw" for
the relaxation of the magnetic-moment component
parallel to the static magnetic field, in ferromagnetic
resonance experiments on highly purified YIG at low
temperatures. It is appropriate, with reference to the
Bloch-Sloembergen equations, to denote this relaxation
time by 1/T&. The best experimental estimate" of 1/Tt
at 9.34 kMc/sec between 2 and 30'I is fitted roughly,
after correction for what may be impurity relaxation, by

1/T, —1)&10s T sec ' (15)

with T in deg K; below 5'K the curve appears to flatten
out above the values given by this relation. The result
is roughly independent of pit radius.

It is possible to relax the uniform precession directly,
as by intrinsic four-magnon dipolar (Not exchange)
processes, but such processes have a rate proportional
to T' and will be slower than the observed rate at
su%ciently low temperatures, particularly in view of
the low magnetoelastic coupling believed to characterize
materials such as YIG which contain only 5-state ions
(Fe'+). The three-magnon dipolar process discussed
below does not relax the uniform precession, but does
relax the S magnons in the degenerate spectrum at a
rate directly proportional to T and with an absolute
value in quite fair agreement with (15).

Some general assumptions should be noted. We give
results only for a spherical specimen, because this is the
only geometry used so far in the more relevant experi-
ments. We assume that all magnons involved have
the form of uniform plane waves; this is not always
true'(' at wave vectors below 10' cm—'. We have not
made the second Holstein-Primakoff transformation on
the spin operators which diagonalizes all the quadratic
terms in the Hamiltonian; this transformation takes
account of the elliptical motion of the local magnetiza-
tion in a spin wave —we treat this motion as circular,
although we do use the exact dispersion relation. The
relevant correction has been studied by Schlomann"
and at most amounts to 4% in YIG at E band and

5% at X band. We also neglect spin pinning at the
surface. We assume that the exchange constant D is
independent of the state of excitation of the spin system.
Keffer and Loudon" have shown that Dyson's criterion
for the validity of this assumption has a simple, firm,

and cogent physical basis. We assume further that the
mean free path A. of all magnons involved is long in
comparison with the wavelength ) of the incident
magnon. "In the 3-magnon process the thermal magnons
which have the most important effect in relaxing
microwave magnons k~ turn out to be those having

ks =ho&r/2Dkr 10' to 10' cm '. These have a group
velocity of 2&&10' to 2X10' cm/sec and will have a
mean free path &2X 10 ' cm provided that v & 10 ' sec.

'0 P. Fletcher and C. Kittel, Phys. Rev. 120, 2004 (1960).
~' E. Schlomann, Phys. Rev. 121, 1312 (1961).
'~. F. Eever and R. I,oudon (to be published)."C. Kittel (to be published).

The inequality A) ) appears to be satisfied in most con-
temporary experiments on pure YIG at room tempera-
tures or below, except for the uniform mode. The
4-magnon exchange process is, at high temperatures,
a promising vehicle for the relaxation of the relevant
thermal magnons.

We neglect the ferrimagnetic nature of YIG and
treat it as a ferromagnet having the same macroscopic
properties; we neglect the optical branches of the
magnon spectrum. Several workers have suggested that
ferrimagnetic effects are important above the low-tem-
perature region.

In the three-magnon process the magnetostatic field
of an 5 magnon couples it to the magnetization of a
thermal magnon (and vice versa), producing a third
magnon at slightly higher energy. Two magnons are
destroyed in the process and one magnon is created.
All three magnons must have k/0, so that S is
unchanged while AS, =+1 in the process. The rate of
this process appears to control the intrinsic relaxation
of S, is the low-temperature range, provided that the
coupling between the uniform and the S modes is not
a bottleneck.

Recently nonresonant double-frequency pumping
experiments have been carried out by LeCraw and
Spencer'4 in which the relaxation rate of spin waves of
given k are studied directly, using a method of non-
linear rf excitation proposed by Schlomann. " These
studies give highly detailed evidence for the three-
magnon relaxation process and have the advantage
that they do not involve special assumptions about the
excitation of the 5 magnons by surface scattering.

We first calculate the relaxation frequency 1/Tts of
an individual S mode of wave vector k& by magnetic
dipolar Raman processes, which change 3', t/' by ~2p, ~.
The role of magnetic dipole coupling in the related
problem of relaxation, averaged over a thermal dis-
tribution, has been treated by Akhiezer. "A qualitative
calculation similar to ours was made by Kasuya' in
1954, before the line-broadening process was under-
stood; so our present calculation amounts to a nu-
merical refinement, on a firmer physical basis, of his
result.

The magnetic dipole part of the Hamiltonian for the
process is determined by

Bc=——,
' Jd MH„

where M is the magnetization and H„ the volume
demagnetization field of the system of spin waves, is
determined by

V (H,+4 M)=0; V&&H, =O.

'4 R. C. I.eCraw and E. C. Spencer (to be published)."A. I. Akhiezer, J. Phys. U.S.S.R. 10, 217 (1946).
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Setting H, = &—hf, the solution is

V M(r')
f(r) = — dr'

I
r—r'I

In terms of spin-wave creation and destruction operators
a„t and a„ for spin wave k„, the magnetization com-
ponents are given by, taking hr= glypt I/2,

M+(r) = (4h&,M,/V)'[Q e'""'a„—(p/2VM, )

XQ e&( )r"+)r„+)r&) ra ta a)]+. . . . (19)

M*(r)=M, —(2p/ V) P e'& ""+"~)'a ta +
We now write

the Holstein-Primakoff Hamiltonian, as shown by
Akhiezer. 25

The nonvanishing matrix elements of K(3) in the
exchange magnon representation are

(n),+1& n„—1, n„+1
I

BC(8)
I n)„n»n, )

= [(n),+1)n„(n.+1)]~(c),„.+C„„),), (23)
and

(ny —1, n„+1,n, —1
I

K(3)
I n)„n„, n„)

= [n), (n„+1)n„]~(C),„„+C„„),) (24)

This representation does not diagonalize the lower
order dipole terms, but the approximation should be
adequate when II& 2xM3. By standard perturbation
theory, the probability per unit time

W(n)„n„, n, ; n),—1, n„+1,n, —1)

with
p —$(()+p(2)+p(&)+. . . of a transition from state In),n„n„) to state In), —1,

n„+1,n„—1) is

we find

~ik r~

~ik. r

I
r r'I —k'

H."'=—4r(yM. /V)~ Pq k),k), (k),) 'e'"& 'a),+c.c.;

H "'= (8~V/V)E( —k)+k~) (—»*+k.*)

X
I

—k),+k„l 'e'& ~"+~~)'a),ta .

H, (3) =2~M, (p/VM, )& g(—k),—k„+k„)

&7 M(')
f(&)—— dr&

Ir—r'I

here M&') is the part of M in (19) containing i spin-wave
operators. In a short straightforward calculation using

W(n)„n„, n„; n),—1, n„+1,n„—1)
=(2~/A)

I (n;—1, n„+1& n„—1I ~'"
I n„n„, n„) I'

XI)(ho)),—ku„+ho)„), (25)

where Aruq is the energy of magnon kz. By taking nz =n(,
where the k) magnon is the S magnon whose relaxation
frequency 1/T)), we are calculating, and summing Eq.
(25) over hr and ) magnons, we get" the probability
per unit time 5' that m~ decreases by one:

W =g W(n), n„, n„; n) 1, n„+1,n„—1)—. (26)

The probability per unit time 8"+ that rs& increases by
one is obtained from (26) by interchanging s,ll plus and
minus signs. The net rate of change of m~ is

dna/dh= W+—W = (2x/A)g IC(„.„+C»(l'

X (—k,+—k„++k,+)
I

—k,—k„+@I-2

Xe'(—~& "~+"")'a) ta„ta„+c.c (20)

X[(n)+1)n„(n,+1)—n((n„+1)n,]
X5 (Aa) x A(v„+A(a„) —(27).

With an earlier expression for C~„, and C„„~,we have

2

K(')= ——,
' Q dr M&') H, &' ')

i=0 J
(21)

where c.c. denotes Hermitean conjugate.
The three-magnon terms of the dipolar Hamiltonian

XQ Ikg'kg (kg) '+k 'k (k) 'I'

whence

BC("= Q C&„„a(a ta„+cc.
lmn (22)

C&„„———8&rhr(pM, /V)lkg'k& (k() 'A(ki —k +k„),

and where 6(k)=1 for k=0 and zero otherwise. In
this calculation, direct evaluation of the integral
J'dr M, &"H„(3) gives the indeterminate value 0/0.
This integral may be shown to vanish by writing
H„&"= —8$(')/Bs and integrating by parts. The result
(22) is also obtained from the magnetic dipole term of

Xh(k) —k„+k„)[(n)+1)n„(n„+1)
—n) (n„+1)n„]()(Aa)g —A(u„+A&a„). (28)

The evaluation of this expression is considered in detail
in Appendix B.The detail is essential to an understand-
ing of the region of validity of the results. The relative
sizes of kgT, Dk~, and Acro dictate the assumptions
which must be made in evaluating (28).

'6 Thus we neglect the process in which the 5 spin wave splits
into two spin waves; this process cannot conserve energy in the
high-ield limit.



796 SPARKS, LOU DON, AN 0 KI TTEL

For the regime in which the exchange part of the
energy of the magnon of wave vector kr is much less
than the total energy itio~i of the magnon (Zeeman
+magnetostatic+exchange), we have

1 16m@,'MsklkaT
L1+(17/2) sin'8i

Tly 3Dh 400 —(35/4) sin'8i), (29)

where 8i is the angle between ki and the s axis; the
dispersion relation (8) connects tot, ki, and 8i. This
result is valid provided: (a) 8Dkis«ho&i and (b)
kg T))(hoii)'/4Dkis.

We note several features of (29). The minimum value
of the angular function falls at 8i=s/2; near this angle
the factor in the square brackets is Ls+9n'), where
cr=8t—-', s-. The fact that the minimum is at s/2
enhances the likelihood that only s/2 magnons will be
produced at the threshold rf 6eld in a parallel-pumping
experiment, provided that the 3-magnon process
dominates the magnon relaxation.

At constant or& and 0l the relaxation frequency of the
3-magnon process is directly proportional to kl. In
parallel-pumping experiments we are chief concerned
with the s./2 magnons, and it is not dificult to arrange
an experiment to vary kl over a wide range while

holding col constant, or nearly constant. We note that
the process of relaxation by impurities which relax
rapidly is roughly independent of k at fixed oii, as is
also the 4-magnon dipolar coupling process. The
3-magnon dipolar process is rigorously zero in a sphere
when one of the magnons has k=0; this is not true of
the 4-magnon dipolar processes.

A convenient form of (29) for numerical work is, with

M, =195 and p, =0.93X10 "erg/oe:

T(kiX10 ')
=3.2& X104

(oiiX 10 ")(DX10")

XL1+(17/2) sin'8i —(35/4) sin'8i), (30)

where TlI, is in sec; T in deg K; kl in cm '; orl in
rad/sec; and D in erg cm'. At the time of preparation
of this paper it appears likely that for YIG at O'K

the value of D is close to 0.9X10 ' erg cm', but a
value near 0.5X10 ' has not yet been excluded.

The Schlomann correction" amounts to multiplica-
tion of (30) by a factor which varies between unity for
el ——0 and

( 4tr i ( 8s'

I
~.—~. II ~o+—~

I

3 2 ( 3 )
for 8i=s./2; at the latter angle the factor in YIG at
O'K is 0.95 for H 3000 oe and 0.94 for Hp 8000 oe.

It has been established experimentally'~ that D is
essentially independent of temperature in YIG from

"R. C. LeCraw (private communication); see also reference 22.

1/Ts» =2k'�(1/Tso), (32)

roughly, where Tse is given by (10). As kiR»1, the
di6usion of the S waves among the degenerate states
proceeds quite rapidly.

Making then the assumption of uniform mixing, we
need to calculate

1/Ti t (1/Tis) p(k)dk —— i" p(k)dk, (33)J, 0

4'K up to room temperature. It appears reasonable
that one should use for M, the value at the actual
temperature rather than at O'K.

The results we have just given are intended to be
applicable within the approximations stated to that
part of the relaxation of individual magnons which is
linear in T and in k&. The calculations may therefore
be compared directly with measurements of 1/T, s in
parallel-pumping experiments.

In uniform-mode resonance experiments the s com-
ponent of the magnetization is relaxed at low tem-
peratures only through the S modes. The uniform mode
is scattered into the S modes with conservation of 3f„
and then the 3-magnon process allows 3f, to relax.
A broad spectrum of S modes necessarily results from
the scattering process, and to calculate the relaxation
time for 3f, we must take the appropriate average over
(29).

We have some reason for believing that under ordi-
nary conditions with y(B,H)s))Tis ' it is not a bad
approximation to assume that all the degenerate modes
are populated equally; this is in contrast to assuming
that the output spectrum of V, (0,k) in Eq. (4) for a
particular pit size E should be used as the input spectrum
of the 3-magnon process. First, the Fourier spectrum
of the surface roughness will cover a substantial range
in k, because sharp cracks and boundaries between
cleavage planes will contribute higher Fourier com-
ponents than those contained in the analysis of the
basic spherical pits related to the size of the grinding
particle. Further, there is scattering among the various
S modes. We have calculated the scattering potential
between two modes ki, ks interacting by a spherical
cavity. The result contains too many terms to be
worth quoting here, but the dominant term in the scat-
tering potential connecting two degenerate states kl
and ks, neither being zero, is

V,(k„k,)=(8/3)~sos(pM, /V)
X L12 cos'8x —8+3 cos'8i i+3 cos'8l, )
xLJi(l&l~)/I&I~)L~»~»'+~»'~»), (»)

where K=ki —ks. This is the dominant term when
ki&, ks&»1. Now the relaxation rate from k, to k, ,
will be faster than from 0 to k, for small E, because of
density-of-states factors. On integrating the transition
probability over the degenerate spectrum we find, for
pit scattering,
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f' sp+ss sin'8i+s4 sin'8i

J
do'

0 [(3M,/pp, )+0J cos8i

d0
& p [(3(u;/cp, )+oj

(34)

where pp, =y[Hp —(4prM, /3)J; pp, =4irvM„and sp, ss,
and s4 are functions of &r which are defined under (B.28).
The integrands in (34) are functions of applied field
He=cop/y, but are independent of D. The calculation
was carried out numerically for the frequency 9.34
kMc/sec used by Spencer and LeCraw. "We find, taking
a=0.9X10 "erg cm',

1/Ti=0. 24&(10'T sec ' (35)

where T is in degrees Kelvin. This should be lowered by
not more than 5% by the Schlomann correction, and it
would be increased by a factor of 2.1 by using the
earlier value a=0.55)&10 "erg cm' for the exchange
constant. In any event (35) is in satisfactory agreement
with (15) within the accuracy of the experiment.

Also, it now appears that the original experimental
result (15) may be too large" because the correction for
what may be impurity relaxation may have been
underestimated.

RELAXATION OF THE pp/2 MAGNONS
BY THREE-MAGNON DIPOLAR

PROCESSES

We now consider the relaxation of the pr/2 magnons
as a function of their wave-vector amplitude k». The
result (29) is valid for s./2 magnons with small exchange
energy [assumption (a) under (29)7 in the high-tem-
perature limit [assumption (b) under (29)jprovided the

. high-Geld approximation Hp& 2+M, is satisfied. In
the parallel-pumping experiments it is easy to measure
the relaxation frequency of the s/2 magnons when
these have such a large exchange energy that assump-
tion (a) is not valid. Now, (B.28) does not apply to
magnons with large exchange energy because the
assumption co~—cop is not valid for such exchange
magnons. For high-energy magnons, the "splitting"
process, in which the input magnons split into two
magnons, must also be considered.

"R.C. LeCraw (private communication).

where p(k)dk is the number of states per unit energy
having ) k) in dk at

)
k (, where the energy is taken at

Appp. Here Tip is given by (B.28).
In Appendix B we obtain (B.28) by evaluating the

summations in (27) without making assumption (a),
which is not well satisfied at the upper limit k~=k of
the integral in (33). On substituting (B.28) into (33)
and making the transformation o = (ki/k )', we find

1 2(3 sM.)ip'kaT

Ti y&(AD) &

We consider only the high-field limit Hpp 2+%„
i.e., ~p) 2oi,/3, where we define o~, by the relation

co,=4~y3f, . (36)

The reader is reminded that cop) s&,/3 is the condition
required for saturation of the magnetization in spheres;
hence, the present calculations are inapplicable only
over the small range of applied magnetic field o~,/3(&op( 2',/3 (i.e., 0.8 koe(Hp(1. 6 koe in YIG).

Schlomann" has calculated the relaxation frequency
of the pr/2 magnons for the small-magnetic-field case
in the limit of vanishing wave vector of the pr/2 magnon.
The splitting process relaxes the uniform mode when
cop(2&a, /3 (even at absolute zero temperature).

(coi 1
X» 1+[ —

I

4(op) 1+(Aoip/4Dkis)

This result, which is valid in the high-field

(ppp) 2pp, /3),

~ (37)

high-temperature

(kaT)&Appp[1+ (Acop/4Dkir) j)
limit, is represented by the solid curve in Fig. 1. Ke

+Pt&&

(stw. /o)ss

FxG. i. Variation of relaxation frequency with wave-vector
amplitude for the con8uence and splitting processes. The mag-
nitude of (1/T&s)«~n at the maximum is (2+10') (T/300)
&&LM, (T)/M, (300)$ (9.34kMc/sec/vs) sec '.

Relaxation of the pr/2 Magnons by the
ConQuence Process

For the "conRuence" process, in which two magnons
are destroyed and one is created, it would be easy to
reevaluate the integral in (B.13) without making the
assumptions 8Dk~'&&Ace~ and or~—cop, however, for both
the conRuence and splitting processes, we simplify the
calculations of 1/Tip by neglecting the angular de-
pendence of the interaction. The result of the calculation
in Appendix C is, for the confluence process,

( 1 ) 7rpsM, kiiT

(Tip) open AD ki
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now show that (1/Tik)„„„is linear in ki in the Zeeman
limit and varies as k» ' ink» in the exchange limit.

(1
~Tik~ canfI

4m.p'M, k»kgT

DAG) 0

ConQuence Process in the Exchange Limit

In exchange limit 4Dki2))Atop, (37) reduces to

( 1 q ~y'3E, koT (toiy

~ppfi AD ki ( (00)
(39)

Relaxation of the ir/2 Magnons by
the Splitting Process

The essential features of the rather complicated
result (C.7) for the splitting relaxation frequency
follow: In the high-field approximation tdo) 2cp,/3,
the splitting process relaxes only those ir/2 magnons
with ki ~ (2Atdo/D) &; the splitting process cannot
conserve energy and momentum for magnons with wave
vectors smaller than this threshold value.

Splitting Process for A» near the
Threshold Value

For ki near the threshold value ktq= (2Atpo/D)'* the
relaxation frequency of the ~/2 magnons is

f' 1 ) 4iry, 'M, kiiT f ki —ktg) '

(Tik 3 .pi;t 3AD'*(A(oo) ( ktg i (4o)

Splitting Process in the Extreme Exchange Limit

In the extreme exchange limit Dk»'&)2Acvo, the re-
laxation frequency of the ir/2 magnon is

~Tik~ split

i''M, kiiT
ln( —[. (41)

In the extreme exchange limit, the splitting and con-
Quence processes contribute equally to the relaxation
frequency. The results (40) and (41) are valid in the
high-field (top) 2(p /3), high-temperature k&T))A&pi
limit. In Fig. 1 we present these results as the dotted
curve (1/Tik) „„„+(1/T, k),»;t.

Relaxation of Exchange Magnons
by Other Processes

In addition to the three-magnon processes, other
processes are important at high temperature in relaxing
magnons with large exchange energy. The four-magnon
processes will be considered in a subsequent publication.

ConQuence Process in the Zeeman Limit

In the Zeeman limit 4Dk»'«Acro, expansion. of the
logarithm in (37) gives

In order to observe the sharp increase in 1/Tik from the
splitting process (Fig. 1), the temperature must be
lowered below room temperature to reduce the con-
tribution to 1/Tik from the higher order processes. Of
these higher order processes, the most effective in
relaxing the exchange magnons at high temperature
will probably be the four-magnon exchange process.
Using Dyson's result" for the relaxation frequency of
the four-magnon exchange process, we estimate that
for too 2tp,——/3, i.e., Hp ——1.6koe in YIG, the effect of
the splitting process should be observable at 120'K.
Lower applied magnetic fields should be avoided in this
experiment, for corrections associated with the noncir-
cular precession of the spins must than be applied. In
the above estimation of the temperature at which the
splitting process is observable, the rather low value of
field tpo

——2&0./3 was chosen to put the microwave fre-
quency within the present experimentally available
range. The sharp rise in 1/Tik as a function of ki at the
onset of the splitting process (Fig. 1) occurs at

30 kMc/sec in YIG for this value of field. (The
magnon frequency is one-half of this microwave
frequency. ) Pote added in proof. LeCraw has recently
observed3' the initial departure of the relaxation fre-
quency of the ir/2 magnons from linearity in ki, as shown
in Fig. 1. The onset of this concave downward region
was observed at k»—1.6)&10' cm ' for magnons with a
frequency of 5.7 kMc/sec. From (37), with a slight cor-
rection for the four-magnon process, we estimate that
the onset of the bendover should occur at k»—1,5&10'
cm ', in agreement with the observed value within the
accuracy of the estimation. The inAection point be-
tween the concave downward region (three-magnon
confluence) and the concave upward region (four-
magnon exchange) should occur at ki near 3X10' cm '
for T=300'K and =5.7 kMc/sec.

ACKNOWLEDGMENTS

We are grateful to Mr. R. C. LeCraw and his co-
workers for their kindness in discussing fully with us
their unpublished data. Professor F. Keffer and Mr.
Philip Pincus have contributed- greatly by discussions
of various points. We are grateful to Professor Y.
Rocard and Professor P. Aigrain for the hospitality of
the Ecole Normale Superieure, where these calculations
were completed. One of us (M.S.) would like to thank
the National Science Foundation for a predoctoral
fellowship.

APPENDIX A. SCATTERING OF UNIFORM MODE
SPIN WAVES; DERIVATION OF

EQUATION (4)

The components of the magnetization M are given
in (2) and (3) of the text. In calculating the interaction
which relaxes the uniform mode, the important terms

2' Freeman J. Dyson, Phys. Rev. 102, 1217 (1956).
~T. Kasuya and R. C, LeCraw, Phys. Rev. Letters 6, 223

(1961).
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are those in a0taA, and a0aAt, and it is convenient to harmonics as follows:
split up the magnetization into parts M0 and M~
defined by: 00 re m(cos8)eime ~

Mp+= (AM, /V) *ap Mo = (4',/V)'aot, '

Mo'= M, ; (A.1)

Mp+= (4pM, /V)'* exp(ik r)ap,

Mq ——(4@M,/V)& exp( —ik r)apt, (A.2)

Mz'= —(2p/V)[exp( —ik r)a&tao+exp(ik r)aptap].

The required interaction is then contained in

n=0 m=1,0,1

C„„r " 'P—"—(cos8)e™- (A.9)
n=0 m=—1,0,1

because @, and p, can contain only those spherical har-
monics contained in 8&pr/Br Th.e components of II.
are expressions of the form

V,=——Q (Mp He+Me Ho]dr,
2 &80'

(A.3) H'= Q Q D„'r " 'P m(cos8)e™ (A.10)
n=l m=0, +1,+2

the terms in —Mp Hp and M& Hz making no con-
tribution to the scattering.

In the above expression Ho and Hp represent the
magnetostatic ffelds due to the magnetizations Mp
and M~, respectively. There are two types of magneto-
static held to consider: the magnetostatic held due to
the dipole moment induced at the cavity and the mag-
netostatic field in the bulk material of the sample. This
latter makes a contribution to the cavity spin-wave
scattering, since the integrated magnetostatic energy
of the sample is changed by the introduction of the
cavity.

Consider for simplicity the case where the spherical
cavity of radius E is at the center of a spherical sample
of radius r0. We treat hrst the magnetostatic field of the
cavity alone. The magnetic potential P. in the sample,
caused by the introduction of the cavity, can be evalu-
ated by ordinary potential theory. We suppose that g;
is the magnetic potential in the interior of the cavity
and we let &jr be the potential of the magnetization,
such that M= —'7&pr. Then the boundary conditions
at the surface of the cavity are

It is important to notice that H' contains no term in
Pp(cos8), i.e., no spherically symmetric term. Because
of this, only those terms in M which vary spatially can
make a contribution to V„ i.e., we need consider only
the second term in the integrand of (A.3), as far as the
cavity is concerned. The calculation of Hp is simple,
since Mp is constant; and g, therefore contains only a
dipole part:

@,= (4 R'/3)(4@M, /V)'(1/2)[apt exp(/)
—ap exp( —iP)]r ' sin8 —(4n.R'/3)M, r ' cos8. (A.11)

Hence, the contribution to the scattering interaction is

—orR'(2pM, /V)P (3s'—r')/r't papaetxp( —ik r)

+aota p exp (ik r)]dr. (A.12)

The radial integral falls off as j&(kr)/kr and the integral
may be extended to a good approximation over all
space, excluding the cavity volume, to give

We have

84. 84 or
+4~

Br Br Br
(A.4)

Sx'Ro(pM, /V)gp(3 cos'8p —1)Lj~(kR)/kR]
X (aoatt+aotax). (A.13)

8&~/8r= (1/2) sin8(M exp(+)
—M+ exp( ig)5 M—' cos8—. (A.S)

The spatial dependence of the components of M is
given by terms in

Now consider the magnetostatic field which exists in
the absence of the cavity. A uniform magnetization has
no such demagnetizing held, so now it is the first term
in the integrand of (A.3) which contributes to scattering
interaction. Now H& is determined by

exp(ik r) =P(2m+1)i"j„(kr)P„'(cos8). (A.6)
n=o

From (20),

|7 (Hp+4vr Mp) =0, V'XHp ——0. (A.14)

8$~/8r= P P A„(r)P„(cos8)e' ~ (A 7)
n=o m=—1,0,1

It follows that 8$~/Br can be expressed in the following
way: H~ ——{—2or(AM, / V) l(1/k') $k+a~t exp( —ik r)

+k a~ exp(ik r)]+4or(2p/V)(k'/k')
X Lap ap exp( —ik r)+ap"ap exp(ik r)]}k. (A.15)

Now P, and P. can be expanded in a series of spherical The contribution to the scattering interaction is,
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therefore,

—or (2pM, ./ V)P j,(3 cos'Oq —1)(aotaq+aoazt)

exp(ik r)dr

= —44r'(2pM, /U) Pq(3 cos'Oq —1)

the high-frequency approximation Aoo —Dk'+A4oo to
fur„and Acr„, so that

A~.=Dlk.+kll'+h~o (8 5)

With the help of (8.5) the delta function becomes,
wlltlllg k ' kl/kpkl )pl ~

8(hool+ ho4p Aoo„)—~(1/2Dklkp)8()pl kok —') (8.6)

X (aota&+aoa&t) [r'jl(kr)/kr)"'. (A.16) where

For sufBciently large t'0, the value at this limit is
vanishingly, small. The value at the lower limit is equal
to (A. 13).Both terms in (A.3), therefore, make equal
contributions to the scattering interaction, which is:

V,= 164r'R'(pM, /V) P q(3 cos'Oq —1)
X [jl(kR)/kR)(aoazt+ao az). (A.17)

APPENDIX B. EVALUATION OF THE TRANSITION
RATE FOR S MAGNONS BY THE

THREE-MAGNON PROCESS

We first consider the factor

[(nl+1)n„(n„+1)—nl(n„+1)n,)
in Eq. (28), which we denote by [n), where the bars
indicate thermal equilibrium values. We subtract from
[n) the same expression but with nl replaced by nl , the'
quantity which we subtract is identically zero. The
result is

ko ——(A4ol —Dkl2)/2Dkl. (8.7)

With k,dk„= (r /2D) d( A4o, /r), (8.4) becomes

1/T'U, (4v'M, /——AD2k, )[exp(h~l/r) —1)
F00

X d(A4o„)
Dko'+ oooo

f2 7P

dppIkl*kl (kl) '+k, *k. (k„) 'IS„,=l,ol„o-
6 p

Xexp (A4o, /r)/[exp (A4o„/r) —1]

X{exp[h( + )/ )—1} (89)

In evaluating the angle integrals in (8.4) we choose
the polar axis along kl,' the integral over 8. may written

0 for k„&kp
d~„,8(P„—k,k-l,)= (B.S)

1 for k,&kp.

[n]= (nl —nl) (n„—n„). (8.1)
The angular term in (8.9) may be written, referred now
to the z axis as the polar axis,We substitute the Bose factors for n„and n„and use

oo„=&ol+4o„ to obtain
Ik 'k (k ) +k, 'k, (k,)

= [cos'8l sin'8l+cos'8„sin'8„+2 cos8l cosO„

X (COSOpl —COSOl COSOp))ooooo„o —pop„-o. (8.10)
[n]=—(n,—nl) [exp (A4o4/r) —1]

Xexp

(A4d„/r)/[exp�

(A4o„/r) 1)—
X {exp[A(4o,+4ol)/r] 1}. (8.2—)

After some tedious trigonometry we find
We may eliminate p, as an independent variable in

(28) by using momentum conservation, so that 4o(k„)
=4o(kl+k„) =—4ol+„. We then replace p, by [V/(24r)']
XJ'dk„; then, with the help of (8.2), (28) may be
written p

f2x

dg, lIkl*kl (kl) '+k. 'k„(k„) 'Ig„, =y,y„-
~o

=or[L+M(ko/k, )'+X(ko/k, )4), (8.11)
where

dn, /d&= —(1/2"ll) (nl —nl),
where

1/T, l.= (16p,'M, /A) [exp(A4ol/r) —1]

(8.3) L= sin'8l —(3/4) sin48l,

M=2 —3 sin'8l+ (3/2) sin48l),

S=—2+10 sin'Ol —(35/4) sin48l.

(8.12)

~co ~2m ~l
dk,k„2~

'

doto„d(cosO, )
0 0 —1

X Iklokl
—

(kl)
—2+k 'k —

(k )
—2I2

XO (A4ool+A4op A4olyp)

Xexp (A4o,/r)/[exp (A4o„/r) —1)

X {exp[A(4o„+4ol)/r) —1}. (8.4)

The energy delta function is simplified by applying

On substituting (8.11) into (8.9) we find

1 4m p'M, 00

[exp(A4ol/r) —1) ' d(A4o„)
2lg AD'kl ~ Dkoo+hoo

exp (hoo./r)
X

[exp(hoo. /r)+1) {exp[A(4o,+ool)/r] —1}

~koq ' pkoq
'

x L+MI —I+&I —
I

. (8»)
(k„i
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convenience of the reader we list the following equations:

2Aauq(&Dkp2, (8.21)

AGoy—Dkp ~ (8.22)

Dkp2«kgT, (8.23)

kp' —(Ao~i/2Dki)', (8.24)

The I. term in (8.13) can be integrated exactly and
M and E terms can be integrated. approximately.
Experiments involving 1/Tip have been performed at
temperatures ranging from a few degrees Kelvin up to
the Curie temperature, and in the parallel-pumping
experiments it is possible to measure the relaxation
frequency of magnons with any energy from the
Zeeman region through the exchange region. Thus, the
conditions of any particular experiment dictate the
assumptions which must be made in evaluating the
integral in (8.13); the results vary markedly for dif-
ferent experiments.

kgT))Aa) i. (8.25)

Equation (8.15) is satisfied exactly in the modulation
experiments and is well satisfied for 7r/2 magnons which
have negligible exchange energy in the high-6eld limit
o~o) 2oi,/3, where oi, is defined by (36). For' example,
from the dispersion relation (8) with Dk'=0 and
sin'8= 1, it is easy to show that cop and co& di6er by no
more than 6'Pz for p~p) 1.8(oi,/3).

In (8.13) the minimum value of Dk„' is Dkoo; with
(8.21) this gives (8.14). With kp given by (8.24),
(8.21) is assumption (a) and (8.23) is assumption (b).
The validity of (8.24) requires that Dkio«Ao~i, a less
severe restriction than (a). In (8.13), Dkg)'Dko",
hence, using (8.24)

Dk„') (A(ei/4Dki')Aoii.

With assumption (a) this gives Dkg))Aori and (8.22)
is satisfied. Finally, (a) and (b) are consistent only
if (8.23) is satisfied.

In the low-temperature resonance experiments" of
Spencer and LeCraw, the maximum wave-vector mag-
nitude k for S modes, as determined by the dispersion
relation (8), is

Case I. Relaxation Rate of S Magnons for (a):
SDkip((Apoi, and (b): kiiT&) (Apoi)'/4Dki'

We consider first case I, where the exchange energy
of the input magnon is much smaller than its total
energy and where the high-temperature approximation
[e px(Ao&/ )r1]=A—oo/r is valid for each of the three
magnons. We show later that under these conditions

Dkv2))2AM
and

(8.15)Any —A(op.

Thus, in (8.13) we set

exp (Apo„/r)/[exp (Apo„/r) —1]
X {exp[A(oi„+o~i)/r] —1)—r'/(Ao~„)',

and Dk„'—Aoi„; and in the limit of the integral in (8.13)
we set Dkp'+Apso Dko'. We ex—amine the assumptions
below. With these assumptions we find from (8.13)

4n-p, 'M, 7-'

[exp(Ao~i/r) —1]F(8i),
Tgp 3AD'kgkp'

where
F(8i)=1+(17/2) sin'8i —(35/4) sin'8i,

kp' —(Aoii/2Dki)'.

This approximation for kp' is valid for

k = (Aoi,/3D)&, (8.26)

with ~, defined by (36). In YIG, where M, = 195 gauss
and D=9)&10 ' erg cm', k =4.1)&10'cm '. The reso-

(3.16) nance experiments reported are at 9.34 kMc/sec; hence,
Appp ——0.45kii erg. Assumption (b) is satisfied for all
k~))1.2& 10~ cm ' if T ~ 5' Kelvin. The maximum value
of Dkip for magnons degenerate with the uniform mode
is Dk '= Aoi,/3 =0.11kii erg, and (a) is not well satisfied
for the largest k~'s. We therefore evaluate the integrals
in (8.14) for case II, in which we do not make assump-
tion (a).

Finally, for
Dkg'&(Log.

kgb T))Ahoy

(B.lg)

(8.19)

Case II. Relaxation of S Magnons for (b):
kiiT)) (Apoi)'/4Dki' and (c):AiiT))2Apoi

In (8.13) we set
the exponential factor in (8.16) may be approximated
by Aoii/r. Using these approximations

1/Tip= (16orp'M, kikiiT/3DA'pip)F(8i), (8.20)

with F(8i) defined by (8.17).The angle 8i is determined
by the dispersion relation (8).

The result (8.20) is valid provided (a): SDkio«Aoii
and (b): kiiT)&(Ao~i)P/4DkP. We now show that
assumptions (a) and (b) are equivalent to the earlier
assumptions (3.14), (8.15), (8.18), and (3.19).For the

exp(A~ /r)/[exp(M, /r) 1]{exp[A(~.+oui)/r] —1)—ro/(Dk, o+Apop) (Dkg+Ao~p+Apoi)

and define s=DkP/Aoip. In the high-field limit, poi—Gop,

thus

4vrIJ, 'M, r 1
ds

TiI, AD'ki ~ni, ~/p~, (a+1)(s+2)
Dko' Dko') '

x«L+~l l+~l I
. (8.27)(Aoios) L Ap~oz)



802 SPARKS, LOU DON, AN D K I TTEL

On evaluating the integrals by partial fractions, we find thus, in (8.9) we set

1/Tii, = (4iry'M, r/AD'ki) (sp+sp sin'Oi+s4 sin'oi), (8.28)

where
sp =m —(1/2) ii,

sp
——t—(3/2)m+ (5/2)n,

s, = —(3/4) t+ (3/4) m —(35/16) e;

tk, 'k (k )-'+k 'k-(k)-'I'=-'

The constant ~~ is chosen to give agreement between
the exact result (29) and the result of the present cal-
culation in the limit of low k~. In the high-temperature
approximation ksT))Api„+Apri, (8.9) becomes

and where
l=»[(so+2)/(so+ 1)],

m= sp ln[(sp+1)'/sp(sp+2)],

1 mp, '3f,7 A~g
ln 1+

Tip AD'ki Dkp'+Apso
(C.1)

(so (so+2) ) 2
e=sP ln(

( (sp+1)' ) sp

3pio t'ki ) (km) pea

Sp

4pi, &k„& Eki ) 3p&p

Case III. Relaxation of S Magnons for (a):
8DA, '«Appi and (c): kiiT«(Appi)'/4Dkl'

We now evaluate the integral in (8.13) for the other
limiting value of Dkoo/r, i.e., Dkp'))r. In this limit

exp (Api„/r)/[exp (Api„/r) —1]{exp[A (co,+coi)/r] —1}
—exp[—A (pi,+pi i)/r],

and the integrand is a rapidly decreasing function of
A~„at the lower limit of the integral. Thus defining
x=Dk.o/r,

dx exp {—[x+(2Apip/r)] }(Dkp /rx)"

where kp is given by (8.7). We make the approximation
Ap&i —Dki'=Apso, which is well satisfied for all pr/2

magnons provided pip) 2pi,/3. For example, Apii —Dkio

and Apip differ by 6%%uo for 3pip/ro =4 and Dkip«Apip.
Thus

Dkp' —(Ap~o)'/4Dkis.

On substituting this value of Dko into (C.1), we obtain
(37).

Relaxation Rate of pr/2 Magnons for the
Splitting Process

We now calculate 1/Tip for the splitting process.
The nonvanishing matrix elements of Ki'& [Eq. (22)]
for the splitting process in the exchange magnon repre-
sentation are

((e,+1,e,—1, e„—1)Xi'&
) ~„~„n„)

~

'
= (64 ger' M, /V) A(ki —ki —k„)ei,ii„(rii+1)

&(~ki'ki (ki) '+k'k (k,) '~'

Setting the angle factor equal to 8 as in the confiuence
=exp{ I (Dkp'/r)+(2Apip/r)]}i calculation, we find by the method of Appendix 8

that in the high-temperature limit k~T))kcoI,
for N=O, 1, or 2. This gives, for Dkp'))2Acop,

1/T» ——( 32xv' M. r/AD'k)[exp(Auo/r) —1]
&(exp{—[(Apip) /4Dki'r]} sin'Oi cos'ei. (8.29)

This is a, good approximation to 1/T piirovided as-
sumption (a) is satisfied, and further (c): kiiT
«(A, )'/4DkP.

In the Spencer and LeCraw experiments (c) is
satisfied at T=5'. Kelvin for kj«0.29k . The factor
exp{—[(Apso)'/4DkPT]}, when (Apii/4Dki'r)))1, makes
1/Tiz very small when assumption (c) is satisfied. We
notice also that 1/T» ——0 for 8i——0 or x/2 in (8.29).

where Aport, =Dkzl, '+Appo, App r.=Dk z,'+Ap&o, and krz,
and k„l, are the two roots of the equation

thus

tkq p kq

2Dkio (ki& 5 kii

AMp

ki ( 2Apip) *

(C.3)

(1/T») ppiii = (re'Mar/2AD'ki)

p
A cotsg

d(Api„ )/Api„(A(oi —Api„), (C.2)

APPENDIX C. EVALUATION OF THE TRANSITION
RATE FOR pp/2 MAGNONS FOR THE

THREE-MAGNON PROCESSES

Relaxation Rate of pr/2 Magnons for the
Con6uence Process

and
ki ( 2Apio) '

2 0 Dkio)
(C.4)

We shall first derive (37), the relaxation rate for the In deriving (C.2) a factor of s is included in 1/Ti~
ir/2 magnons by the three-magnon confluence process. to account for the equivalent output magnons, and in

We neglect the angular dependence of the interaction; obtaining the expression (C.3) we made use of. the



FERROMAGNETI C RELAXATION. I 803

equation Relaxation Rate of ~/2 Magnons for the Splitting
Pxocess in the Limit Dk&'))2@up

4
d (cosgpi) 5 (A&i AM p AMp)

~1
= (1/2Dkik„) d (cose„i)8 (cose„i+$0)

For DkP))2fuoo, (C.4) may be approximated by

kLL= (A~0/2Dkl) q 4L=k1 kLL

Thus

This equation has real solutions for all k„'s between the
two values of k„defined by the equality, which is just
(C.3).

The splitting process cannot conserve energy (in the
high-field approximation &vo) 2&v,/3) unless ki ~ kta,
where the threshold wave vector k~~ is defined by

kia = (2A(up/D) '*. (C.6)

t
(1/2Dkik„) for fog 1

otherwise,

where $0= [Dk,2+(fuao/2)]/Dkik, . With this expression
for $o, the inequality $0 ~ 1 may be written

A(ao k„( k„)

2Dki2 ki ( ki)

A~i, r,—A~o+ L (Mo)'/2Dki'], A~„r, A~,—A~o.—

On substituting these expressions into (C.7) we find

( 1 q irli'M, ~ ((u, )
(Tip&,pi;i AD'ki Ergo&

which is valid for 2A&uo«DkP«kiiT.

Relaxation Rate of ~/2 Magnons for the Splitting
Process in the Limit Dki' —2Aiao

For the other limiting case of Dk~' only slightly
greater than 2Acop we define k' as the small difference
between ki and kia, where ki is the magnitude of ki,
and kia is defined in (C.6); thus k'= ki—k,a. Then for
k'«kia, Eqs. (C.4) approximate closely to

We obtain this threshold by noticing that momentum
conservation requires that O~k„~k~, and since the
maximum value of (k„/ki)L1 —(k,/ki)] for k„on this
range is ~i, (C.S) has no real solutions unless

and
ki, r.=(kia/2) [1 (2k'/4—a)'],

k„z,=(kia/2) L1+ (2k'/k, a)-:].

(Aa)0/2Dki2) & (-,').
On evaluating the integral in (C.2), we find

We substitute these values of kl, L, and k z, into the
equation ~l, z, =Dkr, z,'+Achro and the same equation
with Ll. replaced by ul. and find

( 1 ) xp'M, r ( Alai

KTii),pi;t 2AD'ki (A~al r,

( A(ai

(A(o r, i
(C.7)

and
Acor, r, (Dkga'/4) $1 ——(2) l(k'/kta) &—]+Acro)

A~a. r, ——(Dkta'/4) $1+(2)&(k'/kia) l]+A(uo.

We simplify this expression in the two limiting cases Finally, on substituting these expressions into (C.7)
Dkg2))2j4rp and Dki2~2Acop. and expanding the logarithm, we obtain the result (40).


