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Low-Temperature Lattice Thermal Conductivity
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The eBect of point imperfections on lattice thermal conductivity is discussed with particular attention
to the case in which the temperature is low but the normal three-phonon scattering is still dominant. The
experimental results of Walker and Fairbank on the conductivity of isotopic mixtures of solid helium
are analyzed.

INTRODUCTION
' 'N previous work, a simple, phenomeoological model
~ - for the calculation of lattice thermal conductivity
was proposed and applied to the study of the conduc-
tivity of germanium at low temperatures. ' The assump-
tions of this theory were: (1)All phonon-phonon scatter-
ing processes can be represented by relaxation times
which are functions of the wave vector of one mode
only. (2) The phonon distribution is characterized by a
Debye spectrum. sects due to anisotropy and disper-
sion are neglected. (3) The additivity of reciprocal
relaxation times for independent scattering processes is
assumed. A correction has to be made to allow for the
special character of normal three-phonon scattering
processes. These processes, which conserve the sum of
the wave vectors of the phonons, can not by themselves
produce a thermal resistance.

On the basis of these considerations, the following ex-
pression was obtained for the thermal conductivity, ~,
LEqs. (16), (19)—(21) of reference 1j:

E /ET ~
' p"r r,x4e*

dx
2sr'e & 5 ) " (e —1)'

p'~~ r, x'e*
+ dx

&o rv (e'—1)'

cofr 1
t

w, q x4e*

(
1—

I
dx . (1)

r~ ( re) (e —1)'

In this equation, E is Boltzmann's constant, e, is the
velocity of sound, 8 is the Debye temperature, and x is
the usual dimensionless variable fur/ET. The relaxation
times appearing in Eq. (1) are the following: r~ is the
relaxation time for the normal three-phonon scattering
processes mentioned above; 7., is a combined relaxation
time, whose reciprocal is the sum of the reciprocal relaxa-
tion times for all the scattering processes. If, for in-
stance, in addition to the normal three-phonon scatter-
ings, we consider Umklapp processes, scattering by
point defects, and boundary scattering (relaxation times
r„, ro, and rrs, respectively), then

r = r~ +r„'+rD +res . (2)

The thermal conductivity as given by (1) becomes

' J. Callaway, Phys. Rev. 113, 1046 (1959).

infinite in the limit in which r, approaches v~, as is
required by general considerations.

In a subsequent report, the contribution of point im-
perfections to the thermal resistivity was studied in
detail, ' and the results were applied to an analysis of
the data of Berman et al. on the eGect of varying the
relative concentration of the isotopes Li' and Li' on the
thermal conductivity of lithium fluoride. The discus-
sions of that paper were, for the most part, concerned
with situations in which the approximation of the
additivity of reciprocal relaxation times is valid. This
occurs at high temperatures, or at low temperatures if
either the point defect scattering or the Umklapp scatter-
ing is large. (Precise criteria will be developed below. )
Under these conditions, the second term in (1) may be
neglected.

The relaxation time for Umklapp processes should
exhibit an exponential temperature dependence at low
temperatures' (r„~ eo~ r). Consequently, the contribu-
tion of the Umklapp processes to the thermal resistivity
decreases very rapidly with decreasing temperature. In
pure, single-isotope material, the situation may then be
attained in which the addition of reciprocal relaxation
times is not valid, and the second term of (1) dominates
the conductivity. Such a situation was apparently
achieved in the experiments of Walker and Fairbank on
the thermal conductivity of isotopic mixtures of solid
helium. ' ' Under these circumstances, the thermal re-
sistance shows a dependence on the residual isotopic
disorder or defect content which is abnormally strong
compared to that obtained when the additivity of
reciprocal relaxation times is justified. This result was
erst predicted by Zimanv; it was observed in reference
2 that Ziman's result is a consequence of Eq. (1).

The object of this work is to study the effect of point
imperfections on the thermal conductivity in detail for
circumstances in which the second term of Eq. (1) must
not be neglected. The data of Walker and Fairbank will

then be analyzed with the object of showing that the

2 J. Callaway and H. C. von Saeyer, Phys. Rev. 120, 1149
(1960).This paper is referred to as I.

3R. Berman, P. T. Nettley, F. W. Sheard, A. N. Spencer,
R. W. H. Stevenson, and J. M. Ziman, Proc. Roy. Soc. (London)
A253, 403 (1959}.

R. E. Peierls, Quantum Theory of 5ol@'s (Oxford University
Press, New York, 1955},Chap. 2.' E.J.Walker and H. A. Fairhank, Phys. Rev. 118,913 (1960).

'F. W. Sheard and J. M. Ziman, Phys. Rev. Letters 5, 139
(196O}.

r J. M. Ziman, Can. J. Phys. 34, 1256 (1956).
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low temperatures, the upper limit of the integrals in (3)
may be made infinite. Then

W = Wz = 1 202r 2v, AT/h.

In this limit, the defect resistance is twenty-five times
greater than that predicted for the situation in which
Umklapp processes dominate the phonon scattering
PEq. (16) of reference 2j. Equation (5) must be re-
garded as pertaining to an idealized limiting case (which
will be called the Ziman limit) and should be an upper
bound to the defect resistance.

To extend the calculation, it is necessary to make
some assumptions concerning the form of the relaxation
time for the normal three-phonon scattering processes.
As in I, we set

VN —~N~ + (6)
O.I
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500 l000 We then define the variable y2 as the ratio of the relaxa-
tion times re/r& at a frequency KT/fl:

FIG. 1. The ratio of the conductivity of material containing
point defects to the conductivity in the Ziman limit is given as a
function of the variable: y'= O'Br4T/K2A. The upper curve shows

.the total conductivity; the lower curve is the normal process
correction discussed in the text.

simple theory is capable of giving a, reasonable account
of the experimental results, without requiring arbitrary
assumptions as to the distribution of the isotopes.

CALCULATION OF THE THERMAL RESISTIVITY

Let us consider first a case in which Umklapp and
boundary scatterings may be neglected, so that the only
scattering processes to be considered are defect scat-
tering and normal three-phonon scatterings. Then
r, '= rD '+re '. If rD))re for frequencies of the order
KT/f2, we may make an asymptotic expansion of the
integrands in Kq. (1).The leading term in the expression
for the resistivity (W=z ') is

22rsv ( l24 )' t'~r 1 x4e'
W=

I f

— Cx
h t KT) "2 rD (e*—1)'

&8/r He~ -2

dx . (3)
(e*—1)'

This is essentially the formula derived by Ziman~ from
a variational principle. It has also beed found inde-
pendently by Tavernier. ' According to Klemens, ' the
relaxation time for scattering by point defects is
inversely proportional to the fourth power of the
frequency:

rD ' Acu4= A (KT/A)4—x4—.— (4)

Klemens has also given an approximate expression for
estimation of the proportionality constant, A. At very

J. Tavernier, Ph.D. thesis, University of Paris, 1960
(unpublished) .' P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955).

If we define az ——Wz ', where Wz is given by (5), we
find after some algebra that

K a"b,8/T)—=6o Ai(y, 8/T)+y'
4 (y,8/T)

(9)

The first term of (9) is equivalent to the thermal con-
ductivity as calculated in I, the second term represents
the normal process "correction" which leads to the
Ziman limit as y2~ ~.

In order to simplify the evaluation of the integrals
in (9) and in the subsequent discussion, we consider
only temperatures suKciently low so that the upper
limit 8/T may be made infinite. We shall refer to the
limit of rJ„(y,8/T) as 8/T ~ 4o as g„(y). The necessary
computations are greatly simplified by a recurrence
relation which is a consequence of the substitution of
the simple algebraic identity,

x2 (x2+y2) 1 1 y2 (x2+y2) 1

into (8):
8-(y) =8-(0)-y'8-- (y) (1o)

The quantities r! (0) are standard definite integrals.
We have

g„(0)= (222—2)!|-(222—2),

where t represents the Riemann zeta function.
The result of the evaluation of Eq. (9) is exhibited in

Fig. 1. The upper curve represents the entire conduc-
tivity as given by (9); the lower curve shows the con-
tribution from the second term of (9).It is seen that the

y'= O2B&T/K2A.

It is then possible to express the thermal conductivity
simply in terms of certain integrals of the form:

~8/T g2n

A-(y, 8/T) =
x'+y' (e*—1)'
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normal process correction is less than 10% of the con-
ductivity for y2&15; for y2 as large as 100, it amounts
to only one-third of the conductivity. Consequently,
the results given in I, in which this correction was
largely ignored, have a substantial range of validity.
The additivity of reciprocal relaxation times would
appear to be a very useful approximation in many
circumstances.

Let us now consider the effect of inclusion of Umklapp
and boundary scattering. In the limit that the relaxa-
tion times for these processes are much longer than
r~, we obtain, instead of (3)

1 1
+ + ds.rD r re. (e*—1)'

1 x4e

~8/T g4eX

dp
dx . (11)

(e' —1)'

An expression equivalent to this has been given by
Klemens. ' Evidently, the thermal resistivity can, in
this limit, be represented as a sum of terms arising
from defect scattering, Umklapp scattering, and bound-
ary scattering. However, these resistivities are rot
computed in the usual manner as reciprocals of con-
ductivities calculated by averaging the relaxation time
for the process concerned over the vibrational spectrum;
rather the reciprocal relaxation times themselves are
averaged. To evaluate these resistivities, we assume for
the relaxation times, as in I (and let 8/T ~ eo):

rz r= V,/L. (12)

The multiplier B„ in (11) contains the characteristic
exponential temperature dependence of Umklapp proc-
esses. The quantity L entering into the relaxation time
for boundary scattering is some characteristic length of
the specimen. In an obvious notation, we may write

TABLE I. The functions
+2n

8-(2) = dx
& o (*'+r') (e —l)'

are given for I= 1, 2, 3, 4.

0.00
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0

10.0
20.0
50.0

100.0
200.0
500.0

1000.0
2000.0
5000.0

10000.0

15.79
10.758
6.545
4.5096
3.0673
1.8013
1.1766
0.74940
0.39302
0.23128
0.13102
0.058565
0.030802
0.015873
0.0064811
0.0032646
0.0016385
0.0006569
0.0003287

$2(r)
3.2899
3.1319
3.0747
2.9626
2.8389
2.6764
2.3892
2.1133
1.7911
1.3248
0.97707
0.66942
0.36162
0.20970
0.11519
0.049301
0.025280
0.012811
0.005166
0.002590

gab)
25.976
25.944
25.914
25.828
25.692
25.440
24.781
23.862
22.394
19.352
16.205
12.587
7.895
5.006
2.938
1.325
0.6952
0.3566
0.1449
0.07285

84b)
732.48
732.23
731.97
731.19
729.92
727.40
720.09
708.62
687.70
635.73
570.44
480.7
337.8
231.7
144.9
69.97
37.24
19.39
7.955
4.013

cussed in the next section, it is desirable first to obtain
the thermal resistance of pure material containing no
defects. This will be called W„Lin the limit of r„»rv,
it is given by (13)$ and is computed by setting
rD = rz ——0 in Eq. (1).

150 he, ( 1+s
W„= B„T'/

7 E2 41+25s/7)

6he, (B +B~)T2

(16)
K2 1+(7/25)B~/B~

If B&&&B„, H/'„reduces to the quantity referred to as
W» in I. The ratio W/W„can now be determined:

W= Wz+Wz+W,
where Wz is given by (5) and

(13) W 72r' ( 25sy

W„75&. 7 jI
1+

150hz, 15m, 2 ( i2 )'
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(
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The extension of these results to cases in which the
ratios r~/r„, etc. , are not small is tedious but straight-
forward. It is convenient to introduce the variable t2

h' (B~+B )Tt2- =y'(1+s),
E2 A

where s=B /B&. In order to simplify the resulting
formulas, we will, in the following, neglect boundary
scattering. To facilitate the analysis of the experimental
results of Walker and Fairbank, ' which will be dis-

"P. G. Klemens, in Solid-State Physics, edited. by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1958), Vol. 7, p. 33.

$/ 3 (l)/l2g 22 (])]+ (sy2)
—IL$4 (l)/l2g 22 (l)$

X (17)
1+sos(&) rlr (&)/$2'(l)+$4(&)ri&(&)/y'$2'(&)

This rather formidable formula applies for all values
of the strength of the normal processes relative to the
defect and UInklapp scatterings. A brief tabulation of
the functions g„ is presented in Table I.

APPLICATION TO SOLID HELIUM

The thermal conductivity of solid helium, containing
various proportions of the isotope He', has been meas-
ured in the range 1.1'K to 2.1'K by Walker and Fair-
bank. ~ These authors observed that the additional
thermal resistivity produced by the isotopic mixture
(in comparison with pure He4) was much too large to
be explained by the theory of Klemens, assuming a
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random distribution of the isotopes. They attempted
to account for their results by supposing that the He'
was arranged on lines in the solid. Subsequently, Sheard
and Ziman noted that the thermal resistance due to the
isotopes was in order of magnitude agreement with 5'g
as given by (5), using Klemens' estimate of A and
assuming a random distribution of the isotopes. '

In this work, a fit has been made to the data of
Walker and Fairbank (Table II of their paper) in the
following manner: The thermal resistance of material
containing no He' was attributed to Umklapp processes.
It was possible to obtain a good fit to the resistance of
the pure material using Eq. (16) with s= B„/B~
=9.12e "~ . This fit is shown in Fig. 2. It was then
possible to choose y', utilizing the fact that A must
be proportional to c(1—c), where c is the relative con-
centration of one of the isotopes, so as to obtain a good
fit to the ratio W/W„ for the other samples measured.
This fit is shown in Fig. 3. It is seen to be possible to
account for both the concentration and temperature
dependences of the thermal resistivity.

The values of the constants appearing in the ex-
pressions for the relaxation times used in this fit to the
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Fj:G. 3. The ratio of the thermal resistivity, W, of solid helium
containing a relative concentration c, of the isotope He, to the
resistivity of pure material, W'„, is shown as a function of tempera-
ture. The solid curves represent the predictions of Eq. (17), with
values of the constants given in the text. The circles are the experi-
mental results of Walker and Fairbank.
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The value of A used here is approximately three times
greater than that obtained from Klemens' formula for
mass difference scattering. ' A more refined calculation
of this constant from fundamental considerations would
be very desirable if the actual vibrational spectrum of
the crystal could be taken into account. However, it
seems unlikely that the standard result is in error by
this large factor for the long waves which are principally
involved. If so, it is possible that the defect scattering
includes, in this case, not only simple mass difference
scattering but a contribution due to lattice distortion
as well. Such distortion would cause additional scatter-
ing as discussed in reference 9. Since zero-point motion
is important in a crystal with such light atoms, the
possibility of existence of lattice distortion around the
light isotope should be investigated in detail.

FIG. 2. The quantity W'„/T', where W'„ is the thermal resistivity
of pure solid He4 is given as a function of reciprocal temperature.
8' is measured in units of watt ' cm 'K. The solid curve is ob-
tained from Eq. (16); the circles represent the experimental
results of Walker and Fairbank.
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