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A new model of dislocation motion is presented. The behavior
of a dislocation in the presence of an applied stress is described
in terms of a redistribution of kinks along its length. In contrast
with previous models, in which a kink is envisaged as a smooth
step extending over many lattice constants, we suppose a kink
to be abrupt. Consequently, kink diffusion is considered to be a
thermally activated process. Transport equations are formulated
which include the effects of generation, diffusion, and collision of
kinks. General results obtained from these equations show that a
dislocation does not behave like an extensible string in this model.
Particular application to small harmonically-time-dependent
stresses leads naturally to a new theory of the Bordoni anelastic
peak. The characteristic relaxation time depends on line length
as well as the attempt frequency and activation energy for

I. INTRODUCTION

IN this paper a new theory of dislocation motion is
developed. The response of a dislocation to an
applied stress is expressed in terms of a redistribution
of kinks along its length. We consider here only dislo-
cation loops which are firmly pinned. This first appli-
cation of the model is shown to yield a new theory of
the Bordoni anelastic peak, and provides a natural
explanation of the shape of the peak and its behavior,
both in magnitude and temperature, upon alloying,
neutron irradiation, cold work, and annealing.

Although, in a general sense, some of the ideas
contained within the model are not original with us,
in detail we differ substantially from previous authors
upon certain basic points. Accordingly in Sec. IT we
shall give an outline of the concepts which are later
developed, expressed particularly from our point of
view. In Sec. III we then formulate the mathematical
problem and consider some of the general consequences
of our treatment. Section IV is devoted to a study of
internal friction and to a detailed discussion of the
experimental properties of the Bordoni peak in terms
of the theory we derive. Finally Sec. V contains a brief
recapitulation of this research.

II. DESCRIPTION OF THE MODEL

The model is based upon the hypothesis that an
isolated dislocation in a given slip plane would prefer-
entially be oriented along a single close-packed crystal

diffusion. As a result the decrease in the peak height and slight
lowering of the peak temperature upon alloying or neutron
irradiation are explained. Assuming an exponential distribution
of line lengths, the results of the theory are used to evaluate the
merit of different published values of the activation energy.
Calculated attenuation peaks for different frequencies are shown
to account for the experimentally observed large half-widths in
pure cold-worked metals. The absence of a peak in well-annealed
metals is explained if dislocations are then arranged parallel to
the close-packed directions, thereby eliminating the kink density.
The process by which cold-working annealed materials can give
rise to kinks is discussed. Experiments are suggested which might
further test the theory.

direction. In real crystals, containing many dislocations,
few can be expected to obtain this most favorable
configuration. Because of their mutual interactions
within the network and with other lattice imperfections,
almost of necessity there will be many lying at some
average inclination relative to a particular close-packed
direction. We assume that at 0°K a possible steady
state of a dislocation of this type is one in which,
microscopically, equal segments are arranged parallel
to the close-packed direction, each displaced laterally
from its preceding neighbor by the same unit lattice
vector, so that the average line direction is preserved.!
This arrangement is illustrated schematically in Fig. 1.
It is of course only one of many possible decompositions
based upon our original premise and indeed we believe
that others can also be important (see Sec. IV-3).

Fic. 1. A schematic illustration of the composition of a dislo-
cation containing kinks. The dislocation segments are represented
by the heavy lines.

1W. Shockley (private communication), quoted by W. T.
Read, Jr., Dislocations in Crystals (McGraw-Hill Book Company,
Inc., New York, 1953), p. 46.
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However, for the present we shall ignore the alternatives
and pursue the consequences of the example we have
cited.

The transition region between two adjacent segments
is known as a kink.! In contrast with previous models,
in which kinks are considered to extend over many
lattice distances, we shall suppose, as indicated in Fig. 1,
that they are abrupt and well localized. It will be
necessary to distinguish between two types of kinks,
namely “left” and “right.” These may be defined
operationally as follows: looking along a segment of
the line, if the adjacent segment is displaced one lattice
vector to the left (right), the two are connected by a
left (right) kink. In the dislocation drawn in Fig. 1,
five left kinks are shown; a dislocation drawn at (—6)
would contain five right kinks in the same interval.

A kink produces additional atomic displacements in
its environment. It constitutes a source of extra energy
of the dislocation. We assume that kinks are inde-
pendent and that the total energy of the dislocation is
determined by the sum of the lengths of the different
segments and the number of kinks.

At any finite temperature, kinks may be generated
by thermal activation.? If the dislocation is constrained
by pinning points, the generation process must involve
the simultaneous production of a right and left kink.
Assuming that they are mobile, any nonuniform distri-
bution of kinks along the dislocation will produce kink
diffusion® which, since our kinks are abrupt, is also
assumed to be thermally activated. As a result of this
motion, collisions between right and left kinks will
occur, causing their mutual annihilation. Thermal
equilibrium is attained when the diffusion currents are
zero and the generation and recombination rates of
right and left kinks are equal at each point in the
dislocation.

The application of a stress is an additional force for
kink motion.? Right and left kinks are driven towards
opposite ends of the dislocation. The pinning points
are assumed to be rigid and therefore act as perfect
reflectors. Consequently, if the stress is time inde-
pendent, there results a pile-up of kinks of predomi-
nantly one type at different ends of the dislocation.
On a macroscopic scale, this process corresponds to
the familiar bowing-out of a dislocation in the presence
of an applied stress. Again, in the steady state, the
kink currents are zero and the generation and recombi-
nation rates are everywhere equal. For since we regard
kinks as regions of high energy density, this conclusion
is assured by the second law of thermodynamics.

III. TRANSPORT EQUATIONS FOR KINKS

The model can be formulated by methods already
familiar from kinetic theory, for example. Coordinate
axes are chosen as shown in Fig. 1. We divide the

2 A. Seeger, Phil. Mag. 1, 651 (1956).
3 J. Lothe and J. P. Hirth, Phys. Rev. 115, 543 (1959).
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projected length of the dislocation on the x axis into
elementary regions of length 6x such that éx is small
compared with L but larger than the average spacing
between kinks. On this scale, we may define the number
of left and right kinks in the element of length éx at «
as n(x)éx and p(x)dx, respectively, and consider the
densities #(x) and p(x) to be continuous functions of a
continuous variable. The kink densities are related to
other coarse-grained variables which describe the
configuration and energy of the dislocation. The
position of the dislocation, y(x), is

y(x)=a f (n—p)dz, (1)

and the energy density, E(x), is
E(x)=Eot (n+p)er. 2)

Here ¢ is the spacing, in the y direction, between
lattice planes; e is the energy of a kink, and E, is the
energy per unit length of a dislocation lying parallel to
the « axis.

Equations governing the kink distributions may be
derived from the principle of continuity. Consider the
right kink density, p(«), in a region of length éx at .
In general, p(x) will vary with time as a result of kink
motion, thermal generation, and recombination with
left kinks. The generation rate per unit length along
the x direction is taken to be independent of x and of
the total kink density and is denoted by a temperature-
dependent parameter, g. Recombination occurs only if
kinks of both species are present. We assume the rate
of recombination is simply proportional to the product
of the local kink densities. Then the continuity equation
for right kinks becomes

ap 9,
—+— —gmp=0, ®)
ot  ox

where I, is the right kink current and 7 is a constant.
Similarly, for left kinks, we obtain

on oI,
—+— —g+rnp=0. (4)
ot ox

It will be noted that, at any “point” in the dislocation,
the generation and recombination rates of right and
left kinks are set equal. This must be the case since
the processes involve either the simultaneous appear-
ance or disappearance of one kink of each type.

The kink currents, I, and I,, consist of a “convec-
tion” current arising from the applied stress and a
diffusion current. For right and left kinks, each char-
acterized by the same mobility p and diffusion coeffi-
cient D, they are, respectively,

I,=Fup—Dp/ds, 5)
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and
I,=—Fun—Dn/dx. (6)

F denotes the effective force exerted by the stress on a
right kink. We assume that it may be obtained from
the increment in strain-energy per unit lateral displace-
ment of a kink. Thus we set

F=gab, @)

where o is the component of shear stress along the
direction of the Burgers vector of magnitude b. As
stated in II, we consider D to be of the form

D=Dyexp(—W/kT), (8)

and in addition we shall suppose p and D satisfy the
Einstein relation
uw=D/kT. 9)

Finally, we note that the coefficient of recombination

which appears in (3) and (4), is not an independent
parameter. In the absence of any stress, the kink
currents must vanish. Hence, from (3) or (4),

r:g/nOPO: (10)

where 79 and p, are the kink densities when ¢=0. By
elementary statistics one finds that at low temperatures
(kT <) their product is given by

nopo~b—2{1— (b/a)|tand|} -exp(—2ex/kT). (11)

The relatively larger probability of collisions in dislo-
cations with 670 which contain kinks at 0°K is
therefore automatically included in (10).

We shall consider, exclusively, the motion. of a
dislocation which is firmly fixed by pinning points at
2=0 and x= L. The problem is then completely defined
if Egs. (3) and (4) are supplemented by the following
boundary conditions:

I1,=0

I—O} at =0 and x=L, (12)
=

which insure that the pinning points are immobile, and

f (n—p)dx= (L/a) tand, (13)

which defines their relative orientation in the slip plane.

Two general results can be established without too
much analysis. For example, subtracting (3) from (4),
one obtains

d(n—p)/dt=0(I,—1,)/dx. (14)

Upon integrating (14) from O to x and multiplying by
ob, with the aid of (1), one finds

cbdy/dt=cab(I,—1,). (15)

The interpretation of (15) is simply that the power
supplied by the external source is dissipated in driving
the kink currents,
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Furthermore, integrating the sum of (3) and (4),
we find, with the use of (12),

%j{: (n—l—p)dx—j; (g—rnp)dx=0. (16)

When departures from the steady state are small,
(16) may be put in a more transparent form by means
of (2) and (10), namely,

I¢] -+ p0 €
—AE+ TO% P) V‘f ( )dm (17
ot 4a2

where AE is the increment in the total energy of the
dislocation associated with the (variable) displacement
Ay. Thus, for a given displacement, the energy relaxes
in a time 75 given by

75=2/r(no+po), (18)
to a steady-state value where
AL= e/ (not+po)a®]Al, (19)

Al being the increase in the macroscopic line length.

A proportionality between changes in energy and
line length has been derived previously from continuum
elasticity theory.* It has been interpreted as illustrating
that a dislocation is the analog of an extensible string.
However, as we shall now demonstrate, our model
provides a counter-example showing that such a con-
clusion cannot be general. For consider the dislocation
displacement produced by a static stress. It may be
verified by direct substitution, with the aid of (5) and
(6), that the following are time-independent solutions
of (3) and (4):

p=pr exp(\x),
A=cabu/D,

n=mn exp(—Ax), (20)
where

@y

and #z) and p) are functions of the stress which are
related by

PA= RoPo. (22)

Both of the densities, (20), correspond to zero current
flow and, for reasons stated in Sec. II, are the only
steady-state solutions of physical interest. The bound-
ary conditions, (12), are automatically satisfied. Im-
posing (13), together with Eq. (22), we derive

m={(\L tand)/azx=[ (AL tan)?/a?
+nopo sinh?(AL/2) ¥} /2[1—exp(—AL)].

The choice of sign in (23) is governed by the sign of
(AL tand), being + or — according to (AL tand)>0 or
<0. In both cases py may be obtained from (22) and
(23).

(23)

*N. F. Mott and F. R. N. Nabarro, Report on Strength of
Solids (The Physical Society, London, 1948), p. 1,
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According to our model then, one finds from (1),
(20) and (23) that if 6=0, the displacement of the
dislocation is described by the catenary

y= (2noa/\)[cosh(3AL)—coshA\(3L—=x)], (24)
which in the limit of small stress reduces to
y=nea \x(L—x). (25)

In contrast with (25), if a string analog existed, the
dislocation configuration would be equivalent to that
of a string of line tension, S, defined by

AE=SAl (26)

subject to a force ¢b, per unit length, normal to the
line direction. Then the displacement of the line would
be, for small stresses,

ys=obx(L—x)/2S. 27)

For (19) and (25) to be compatible with (26) and (27)
would require setting (D/u) equal to e.. Consequently,
an analogy with an extensible string is alien to the
concepts contained in the present model.

IV. INTERNAL FRICTION

The dissipation of power in a sample in some mode
of mechanical vibration is known as internal friction.
Experimental studies of this phenomena have evidenced
several interesting effects which have been attributed
to the presence of dislocations. An investigation of the
anelastic behavior to be predicted upon the basis of a
dislocation model is therefore of direct practical
interest. This section is devoted to such a study in the
light of our abrupt-kink model. We are thus led to a
new theory of the Bordoni attenuation peak observed
in lightly cold-worked metals. A detailed comparison
with experiment is made and the theory shown to
account for several hitherto unexplained properties of
the peak.

Dislocations influence the vibrational characteristics
of a solid by virtue of the inelastic strains which result
from their motion in the presence of the internal stress.
Hence the preliminary burden of this section is the
calculation of the contribution made by a single
dislocation to the total strain. The internal friction is
then calculated by standard methods. We consider
only effects which occur at extremely low stress levels
and thus are concerned entirely with amplitude-
independent internal friction phenomena. Also, for the
sake of simplicity, the sample is supposed to be in a
state of homogeneous strain. Although this is hardly
ever the case in practice, it has been shown elsewhere
that results such as we derive are generally applicable
to conditions of inhomogeneous strain.®

If a dislocation is displaced from its steady-state
position, the average shear strain, es, which is produced

5 A. S. Nowick, Progr. Metal Phys. 4, 1 (1953).
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in a sample of volume V is

€= (b/V)f (y—9y0)dx. (28) .

In general, the position of the dislocation, and hence
the strain, as a function of time is to be found by
solution of (3) and (4) for the individual kink densities.
However, when, as in the present case, only a first
order approximation is required, the same result may
be derived more directly. For if as independent variables
we use the total kink density and the dislocation
displacement itself, we find after integrating (14) and
substituting for the currents that

dy 9%
——D—=0cba?u(n+9p). (29)
ot Ix?
To first order in the stress, o, given by
o=ua exp (iwt), (30)

then, the solution we require is

n (i) i sin[ (2n+1)mx/L] 31)
0 1 EXpLw.
FTITIHEP n=0 (2n+1)[iwr+ (2n+1)2]

yl = 40‘0ba2L2 (no“}'po)/k T7r3,

where
(32)
and

7,=1% D’ (33)
Substitution of (31) in (28) yields eq. It develops that
terms in the sum in (31) give contributions decreasing
like (2+1)~2 with increasing # and so for all practical
purposes we need consider only the term %=0. There-
fore, the contribution of each dislocation to the total
strain is found to be

2by1L
e

The amplitude of e being complex, stress and strain
are out of phase and there results a net energy dissi-
pation during one period of the stress. The fundamental
measure of this effect, A, is defined as the ratio of
energy lost per radian to the maximum stored energy.
It is related to experimentally determined quantities
such as the Q factor of a sample in forced vibration or
the logarithmic decrement, 8, of free vibrations as
follows: A=Q~'=4§/x.% Thus the internal friction arising
from one dislocation in a sample subject to a homo-
geneous strain is

27w
As= (G/2mo?) Ref o eqdt,
0

exp(iet) (wt)
('Lw’r .+ 1)

(34)

(35)

which upon substitution from (32) and (34) yields

Ag=A(L,T)wrr/ (14+w?rL?), (36)
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where

A(L,T)=8Ga*b*L3 (no+ po)/ VET*, (37

G being the shear modulus.

Only the imaginary or out-of-phase component of eq
contributes to Ag. The component in phase with the
stress constitutes a strain in addition to the purely
elastic strain and thereby gives rise to an apparent
lowering of the modulus. This has been called the
“AM effect.” It is usually measured in terms of the
fractional decrease in modulus—the modulus defect—
AM. Thus the dislocation contribution, AM g4, to the
modulus defect is by definition

AM4=G Re(ed/O'), (38)
and in particular, from (34), is found to be
AM =A(L,T)/ (14o’r.2). 39)

The total internal friction and modulus defect of a
sample containing a network of dislocations is found,
in the present approximation, by summing the contri-
butions appropriate to each mobile length. By virtue
of (33) and (37) the net results evidently will depend
upon the distributions, both in length and in orientation
relative to the close-packed directions, of dislocations
in the network. However we anticipate that in general
their behavior will be qualitatively similar to that of
the individual contributions, (36) and (39), to which
we restrict the discussion for the present. The latter
become particularly simple if provisionally we exclude
the possibility of thermal generation of kinks. For
then, the total kink density in (37) being constant,
Aq and AM 4 describe a simple relaxation process in
which, with increasing temperature, Aq passes through
a maximum at a temperature 7 given by

exp(—W/kTo)~wl?/Dor?, (40)
and AM,; exhibits a step-wise increase. Such behavior
is characteristic of the Bordoni attenuation peak and
accompanying modulus change, commonly attributed
to the presence of dislocations, which is observed in
lightly cold-worked metals.® This suggests, and it is
later confirmed by other experimental evidence, that
we identify the above relaxation mechanism with the
Bordoni peak. We conclude then that the thermal
generation of kinks is indeed negligible at temperatures
near T,. Thus we find that dislocations lying exactly
along close-packed directions play a negligible role in
determining the internal friction in the cold-worked
state. In contrast with Seeger’s theory,? our model
requires that the dislocations which make the major
contribution to the Bordoni peak are oriented in some
random fashion relative to the close-packed directions,

6 D. H. Niblett and J. Wilks, Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd., London, 1960), Vol. 9, p. 1.
This is a review article containing a general survey of all the
properties of the Bordoni peak to which we refer later in the text.
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Fi1G. 2. The internal friction as a function of temperature. The
full curve was calculated from the theory, for a value of the
frequency given by (wle?/Der?) =10-8. The broken curve corre-
sponds to a single relaxation process with the same peak temper-
ature.

thereby containing a sequence of “built-in” kinks at
0°K.

In view of the preceding discussion, at the tempera-
tures of current interest, either 7o or p, is negligible in
a given dislocation. Then

(41)

in (37). No other parameters in A4 depend critically
upon angle within the largest possible range of 6 (||
<w/6, for fcc). Consequently, beyond the stipulation
of randomness, the total internal friction is insensitive
to the detailed distribution in orientation. Therefore,
for a network of N dislocations, the total internal
friction is essentially

noFpo=a~t|tand|

A=N f AT —T Pyl
(14w?r2)

where A is obtained from (37) by substituting an
average kink density (assumed ~1/10a) and ! is the
macroscopic line length, to which we ascribe the
probability distribution, P (7).

It is evident from (42) that A is the synthesis of a
weighted sequence of relaxation peaks. Therefore the
width in temperatures of the internal friction must be
greater than that of a single relaxation process. Natur-
ally any estimate of this increase in width depends
upon the form of P(Z), which in reality is not known.
Thus we resort to the most plausible choice, namely

P(l)dl=exp(—1/ls)di/, 43)

corresponding to a random distribution with mean
length, .

With P(I) given by (43) we have computed A as a
function of temperature over several decades of fre-
quency. One typical result which illustrates the broad-
ening is plotted in Fig. 2 where for comparison we

(42)
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show A and also a single relaxation peak. The respective
widths are in the ratio 1.5:1. Also, as a consequence of
the broadening, the change in modulus defect near the
peak is enhanced relative to the maximum value of A.
Thus, whereas in a single relaxation process the ratio
of modulus change to maximum internal friction is 2,
the same ratio, with AM found by the same arguments
as those leading to (42), yielded the value 2.7. Further-
more, we found that at all frequencies the maximum
value of A was given by

Amax=2.1NA(ly,To) (44)
and occurred at a temperature such that
wre=1, (45)

where 7, defines an effective length, /., given by 1.°
=10/%. Again, (44) and (45) are a consequence of our
choice of P (7). With the wisdom of hindsight they are
easy to understand. Since A(},T) « I3, the most effective
lengths are those for which BP(J) is a maximum,
namely /,=3l,. Hence the internal friction has its
maximum near 9wrp=1 and there has the value
~(N/2)A(l,To) X [average of (1/1y)*], or 3N A(lo,T).

The above discussion completes the mathematical
analysis. Henceforth we shall be concerned with the
comparison of theory with experiment. Since the
majority of work in the latter field has been devoted
to studies of the Bordoni peak exhibited by pure Cu
or dilute alloys with Cu as solvent, we shall be dealing
mainly with this metal. Many different properties of
the peak have been established. We shall discuss each
separately together with its interpretation in terms of
our model.

1. Effect of Frequency

The Bordoni peak has been observed in cold-worked
Cu at various frequencies between 380 cps and 10
Mc/sec. It has generally been assumed that the
frequency, f, and temperature of the peak satisfy a
relation of the type

J=foexp(=W/kTy), (46)

where fo is some intrinsic parameter, but attempts to
fit the data obtained from all specimens, irrespective
of the amount or nature of the pre-strain, on the basis
of (46) have not met with great success. While (46)
does indeed correlate the data in a rough manner,
individual deviations far exceed the quoted experi-
mental errors and there appear to be no universally
accepted values of W and f,. For example, in order to
cover a wide frequency range with specimens of the
same purity Bordoni et al.” have investigated the peak
in a set of plates machined from the same bulk sample,
and quote values of W=0.12 ev for fo=3.8X10, On
the other hand, Niblett and Wilks® have suggested

7P. G. Bordoni, M. Nuovo, and L. Verdini, Nuovo cimento
14, 273 (1959).
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that, since the peak temperature has been found to be
affected by the amount and nature of the pre-strain,
a better way to determine these parameters is to
consider only data from specimens deformed in the
same manner by comparable amounts and thereby
they obtain the values W=0.08 ev and fe=~108.

The discrepancies find a natural explanation in our
theory. For, identifying (46) with (45), one finds

fo= (wDy/212).

Thus, in contrast with what has previously been
supposed, fo, by virtue of its dependence upon the line
length, is evidently a structure-sensitive parameter. In
every instance, its value will depend upon the previous
history of a specimen. It is hardly surprising then that
the experimental data as a whole, obtained from
samples of differing purity, prepared by various modes
of deformation, do not correspond to (46) with a unique
value of fo. One might hope, however, that the varia-
tions in effective line length, and hence fo, are not too
extreme in specimens which have been similarly pre-
pared. Accordingly the procedure adopted by Niblett
and Wilks appears to be the best method of estimating
W from the data presently available. In fact an analysis
based upon their criteria shows that the data of Bordoni
et al. are also not incompatible with an activation
energy of about 0.08 ev. The extreme value of fo=3
X 10° so found differs from that quoted by Niblett and
Wilks but this is no longer surprising. It simply implies
that in the specimens considered by the latter authors
the mean line length was roughly five times larger than
in the machined samples of relatively low purity which
were used by Bordoni and his co-workers.

We have demonstrated that variations in f, are to
be anticipated. It remains to be shown, however, that
the magnitude of fy can be accounted for with reason-
able values of the fundamental parameters. To this end
we must first estimate the pre-exponential term, Dy, of
the diffusion coefficient. As usual, this will depend upon
the jump length, £, and the attempt frequency » in the
following way:

(47)

Dy vE, (48)

where in our case £ is a lattice spacing and » might
typically be of the order of the Debye frequency. The
only question is whether the entropy term, i.e., the
factor of proportionality relevant to (48), issubstantially
different from unity. We believe this not to be the case
for two reasons. First because the changes in atomic
configuration accompanying the lateral displacement
of a kink are small, so that variations in the vibrational
frequencies of the lattice should not be too great and
secondly, moreover, because T is so much smaller than
the Debye frequency that any changes in the lattice
modes that do occur will not be fully evinced at temper-
atures of interest to us. We consider then that a reason-
able estimate is Do=~10'2. Consequently /. can now
be determined from (47) and the only other unknown
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parameter, N/V, obtained from a comparison of (37)
and (44) with the observed magnitude of the peak.
Thus we find from the data considered by Niblett and
Wilks an effective line length, Z,~4X10% and N/V=6
X102 cm—3, corresponding to a planar dislocation
density A(=Nly/V)=~2X107 cm™2

2. Effects of Impurities

Caswell® has made a systematic study of the effects
of impurities upon the Bordoni peak. He found that
after addition of small amounts of gold or nickel to
copper the peak was appreciably reduced in height and
also moved to slightly lower temperature.

These properties are but further ramifications of the
dependence of fy and An.x upon I, It is generally
believed that impurities have the effect of decreasing
the line length. By (37) then, a reduction of Anax with
increasing impurity is to be expected, and the accom-
panying decrease in 7' follows from (46) and (47). In
particular, combining these equations we find that

(Amax/A) exp(W/kT,)= const. (49)
(We neglect the slight dependence of A upon TY.)
Although (49) is strictly valid only for measurements
in the same specimen, it should form a fair basis for
comparison of internal friction in different samples
provided all are deformed in the same manner, as was
the case in Caswell’s experiments. Assuming then that
all his specimens had the same value of A, the tempera-
ture shifts can be calculated from a knowledge of the
relative peak heights. Thus for two specimens con-
taining 0.065 and 0.25 at. 9, Au, respectively, we calcu-
late from (49), with W=0.08 ev, and Caswell’s data,
temperature shifts of 4°K and 10°K below the peak
position in pure Cu, which should be compared with
the experimental values of 2°K and 6°K. In view of
the uncertainties involved, this agreement to within
a factor of two is probably all that can be expected.
For example, since essentially perfect agreement is
obtained if we assume instead that the number of
dislocation loops is the same in all specimens, further
refinements are inappropriate until more is known
about the variations in distribution of dislocations with
alloying.

Under this same category we might mention the
effects of neutron irradiation. Unfortunately as far as
we are aware only two samples showing well developed
peaks have been investigated before and after irradi-
ation.®® Both exhibited a decrease in peak height but
in one instance! it was apparently too small to produce
a noticeable change in 7. In the other specimen a

8 H. L. Caswell, J. Appl. Phys. 29, 1210 (1958). Further details
of this work are available in Technical Report No. 3, Cornell
University, 1957, AFOSR-TR-57-69 (unpublished).

9 D. H. Niblett and J. Wilks, Phil. Mag. 2, 1427 (1957).
(1;"5]9)). 0. Thompson and D. K. Holmes, J. Appl. Phys. 30, 525
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reduction of the peak by roughly a factor of six was
accompanied by a lowering of T by about 4°K.* This
again is somewhat lower than we calculate with W
=0.08 ev. Clearly, further experimental work in this
field would be of great interest since potentially it
offers the best means of testing (49) without reserva-
tions as to changes in A.

3. Effects of Annealing and Cold Work

The Bordoni peak is absent in well-annealed speci-
mens. It appears upon cold-working and, with increas-
ing deformation, initially increases in height and moves
to slightly higher temperatures. These effects do not
continue indefinitely but appear to saturate after ~2%
pre-strain, Further cold work does not produce any
significant change. Conversely, annealing plastically-
deformed specimens usually reduces the height of the
peak (although there is a range of annealing tempera-
tures in which an increase is observed at first) and
moves it to slightly lower temperatures.®

We have already pointed out that the peak arises
from dislocations which have built-in kinks. Therefore
its absence in well-annealed materials implies that
dislocations are then oriented along close-packed direc-
tions, which essentially eliminates the kink density.
One could then envisage the experimentally observed
behavior being a manifestation of the following process
(see also Fig. 3). In the annealed state all the kinks
are condensed to form one or more large steps, pre-
sumably thereby attaining the lowest self-energy
configuration, Under plastic deformation, kinks are
broken off these steps, which act as barriers to kink
motion. The steps continue to disintegrate with
increasing cold work until the final metastable state is
attained when kinks are distributed uniformly along
the entire length. In this manner one can synthesize
the increase in peak height, its shift in temperature,
and the subsequent saturation.

The annealing properties of the peak we attribute to
the reverse of the above process. The observation of an
initial increase at certain temperatures suggests that
there may be preliminary changes in the dislocation
network as a whole which activate more loops.® How-
ever, we emphasize that the lowering of the peak
temperature generally is strong indication that the
dominant mechanism, whatever its nature in detail,
involves the reduction of the individual line lengths.

Jm—_————
/ —_—

— /
— - - X / Z, Close - packed directions

F16. 3. A schematic illustration of the dislocation configuration
which we propose for the annealed state. This is represented by
the step PQRS. The corners at Q and R act as sources of the
kinks which are produced by cold-work.
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4. Structure of the Peak

Experimental studies have established that the peak
cannot be associated with a single relaxation process.
With even the most favorable values of W and f, the
half-width of the peak is roughly twice as large as
would obtain if this were the case. Since we have found
by other computations based upon (42) that a suitable
choice of P(I) will yield almost any half-width, it would
appear that this problem could be dispensed with
immediately. However, in the present crude state of
the art, we repeat that the exponential distribution
(43) appears to be the most plausible. Moreover, in
view of preliminary achievements, one is encouraged
to explore the consequences of the abrupt-kink hy-
pothesis to the full. Thereby an additional feature is
revealed: namely, that in the mixed dislocations lying
near to the close-packed directions at 60° to the
Burgers vector, right and left kinks are not simply
transformed into each other by rotation about the
close-packed directions but are instead quite distinct
configurations. These are illustrated schematically in

Fig. 4, the dislocation segments having been connected

Fi16. 4. An acute kink (on the left) and an obtuse kink (on
the right), in a mixed dislocation oriented at 60° to the Burgers
vector.

at the kink sites by lines drawn parallel to the Burgers
vector. Because of the resulting geometry, we shall use
the names ‘“acute kink” and “obtuse kink” for the two
types of configuration. This terminology also conveys
the invariance property of the different kinks under
rotation about the close-packed direction.

We would expect an acute kink and an obtuse kink
to have different self-energies and more particularly
different activation energies for diffusion. Therefore
the model predicts that the main peak should have at
least two components characterized by different values
of W. Such is indeed the case in AL,'* where two compo-
nents are clearly resolved and even in Cu.there is
substantial evidence that the peak is not a singlet. In
several instances the data show some fine structure
near the attenuation maximum. We believe therefore
that the peak half-width results not only from a
distribution of line lengths but also from the near
superposition of the components of an as yet incom-
pletely resolved doublet. That the fine structure is
reproducible in repeated experiments on the same
specimen and yet varies from one specimen to another!

L. J. Bruner, Phys. Rev. 118, 399 (1960).
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F16. 5. A comparison of the calculated internal friction (broken
line) with the data of Niblett and Wilks (open circles). The
high-temperature background attenuation has been subtracted
from the experimental points.

is not too surprising since the two types of kinks,
having different self-energies, could well be produced in
varying numbers depending upon the mechanical
history.

In view of these conclusions one should in general
return to the original equations (3) and (4) and reformu-
late the problem for kinks having different transport
coefficients, etc. However, for our application this is
not really necessary since we are concerned with such
low temperatures that kinks of only one type are
present in a given dislocation. In this instance, as we
have verified in detail, the only result of these general-
izations is that instead of (42) the total internal friction
becomes the sum of two such terms with different
values of .

In order to determine how these ideas might further
compare with experiment we have calculated the
internal friction which results from two peaks derived
from (42) of equal strength and with activation energies
of 0.07 and 0.09 ev (thereby retaining the same mean
value we have used previously). In Fig. 5 is shown
the result of a comparison with data of Niblett and
Wilks?® taken at 1.1 kc/sec on a specimen deformed 8%,
in tension. The doublet structure in the calculated
curve is here partially resolved because the separation
between individual peaks was slightly greater than
their half-width. Figure 6 on the other hand shows how
the resolution rapidly disappears at higher frequencies,
due to the increase in the broadening of each component.
The experimental data are those of Caswell,3 obtained
at a frequency of 40 kc/sec, on a specimen which had
been cross-rolled. Incidentally, it is interesting to note
that in this case we had to assume an effective line
length one half that for the tensile specimen, perhaps
because of more intersections between dislocations in
different slip systems, in order to obtain the peak at
the correct temperature. Although the numerical values
we have used are naturally speculative, the over-all
agreement demonstrates that the theory can account
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F16. 6. A comparison of the calculated internal friction (broken
line) with the experimental data of Caswell (full curve). The
high-temperature background has been subtracted from the
experimental data.

for the shape of the peak without too much refinement.
We would suggest, then, that experiments at very low
frequencies (=1 cps), despite their difficulty, would be
very valuable. In this region the individual components,
if they really exist, would be much narrower and their
resolution would provide a further test of our model.

5. The Subsidiary Peak

In addition to the main Bordoni peak, a subsidiary
peak of smaller height has been observed at lower
temperatures both in Cu® and AL Since we have
already attributed the main peak to the mixed dislo-
cations, the subsidiary peak we associate with kinked
dislocations which are approximately pure screw type.
Systematic studies of the properties of this peak are
difficult since it is also influenced by the main peak.
However, one piece of evidence, the relative insensitivity

2 E. Lax and D. H. Filson, Phys. Rev. 114, 1273 (1959).
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of the peak temperature to impurity content, is com-
patible with our assignment.
This concludes our discussion of internal friction.

V. SUMMARY

A new model of dislocation motion has been devel-
oped. It is based upon the following assumptions
concerning kinks:

1. They exist and are abrupt.

2. They are mobile, diffusion being a thermally
activated process.

3. They can be manufactured by cold work; ther-
mally generated, or annihilated as a result of collisions,

4, In fcc lattices, there are two distinct species,
namely acute kinks and obtuse kinks, relevant to the
mixed dislocations lying close to 60° to the Burgers
vector. :

Transport equations for kinks have been formulated.
It has been shown that a dislocation does not behave
like an extensible string in this model. A new theory of
the Bordoni anelastic peak observed in cold-worked
metals has been presented. A detailed comparison with
experiment has demonstrated that this theory can
account for (1) the large peak half-width in pure Cu,
(2) the decrease in the maximum decrement and
accompanying shift in peak temperature with alloying,
(3) the annealing properties of the peak, and (4) the
initial growth of the peak, and its subsequent saturation
with increasing amounts of cold-work. On this basis,
subjects believed worthy of further experimental study
have been suggested.

ACKNOWLEDGMENT

It is a pleasure to thank Dr. A. W. Overhauser for
suggesting this problem and for his helpful advice on
numerous occasions during the course of this work.



