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Ground State of Liquid Helium (Mass 4)*
FA YUEH WU AND EUGENE FEKNBZRG

Washington University, St. Louis, Missouri

(Received December 22, 1960)

The wave function describing the ground state of a boson system
is approximated by the function %= II expL-', Nlr;;)). The super-
position approximation is then used to derive a linear, inhomo-
geneous integral equation for dl/dr in which the only other
quantities occuring are the experimentally observed two-particle
distribution function g(r) and its first derivative. A numerical
solution for He4 is computed and compared with the explicit
approximate solution derived by Abe. Using the computed u(r)
and a proper smooth extrapolation of g(r) into the region below
the apparent cuto6 at r =2.34 A, the kinetic energy of liquid He4

at absolute zero is estimated at 2.91X10 "ergs/atom.
A functional J(dN/dr) is constructed with the property that

Abe's integral equation for du/dr is just the Euler equation associ-
ated with the problem of finding a u for which J takes on an ex-
treme value. The extreme value of J (actually a maximum) is
simply related to the expectation value of the kinetic energy. The
variational property is used to determine the best 1(r) from a
family of trial functions.

The calculated value of the kinetic energy and the measured
total energy are used, in conjunction with the virial theorem, to
determine the coefhcients of a 6-n Lennard-Jones potential. At
n= 12, the calculation yields a deeper potential well and a slightly
wider repulsive region than is calculated from the properties of
the gas phase.

I. INTRODUCTION

A TRIAL wave function consisting of a product of
two-particle correlation factors appears to provide

a reasonably good description of liquid helium II at
absolute zero. Abe" has recently developed a powerful
technique for deriving physical consequences from this
description with only observed quantities appearing in
the final formulas. The present note is devoted first to
the further development of Abe's relations. Some con-
sequences of the virial theorem are developed in Sec. IV.

The wave function

4'=p ei"i""& 1&i&j&X
i&j

is used to describe the ground state of an X-particle
boson system confined to the volume 0, where r;, is the
distance between the ith and jth particles, u(0) = —~,
and u(~) =0.

We need the two- and three-particle distribution
functions

ps(ris) —=pg(res)=Q(1V —1) "I+I'«3«4" «iv

Ie I'dr, driv, (2)

p, (1,2,3)—=Q($—1)(7—2) I% I'dr4. .dr~

Also

g(r) = 1+ —

I $(k) —1]e-'"'dk
8 pJ

gives g(r) in terms of the liquid structure factor S(k),
a quantity determined experimentally by analysis of
x-ray diGraction patterns.

Formulas involving p3 are evaluated by introducing
the superposition approximation,

ps(1 2 3)=p g("i&)gpss)g(rsl). (6)

In our calculation, experimental values of S(k) for
liquid He4 in the ground state are taken from Goldstein
and Reekie' after imposing the normalization suggested
by Feynman and Cohen4; namely, multiplication by a
factor 0.97 throughout and linear extrapolation near the
origin to S(0)=0. The function g(r) and its derivative
are calculated from Eq. (5). Because of the limitation
of experimental data, we follow Goldstein in setting
S(k) = 1, k) 6 A '. From the definition g(r) &~0; however
the cutoQ in wave number space has the consequence
that the computed g(r) approaches the axis sharply and
crosses at r—2.34A. Below r=2 34A, E.q. (5) must
be replaced by g(r) =0.

II. BASIC RELATIONS

The Hamiltonian of the system is

t
I
e I'dr, dry (3)

where
H=1'+V,

in which p—=X/Q is the mean-particle density. The
function g(r) is subjected to boundary conditions
g(0) =0, g(~) =1, and the normalization condition

T= 2' '

r —1 dr= —1.

3 L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).
R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
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Lg( ) ()
are the kinetic energy and potential energy operators,

* Supported in part by the Air Force Ofhce of Scientific Re-
search of the Air Research and Development Command.

'R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57 (1958).'R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 407 (1958).
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TAsLE I. Estimate of kinetic energy.

d (A)

2.6
2.5
2.4

g(d)d

1.381
0.715
0.184

1.125
1.320
1.203

11.0
15.4
47.2

4x g'2 g r'dr

380
308
237

J
598
649
783

42
42
42

(&)/&
(10 '3 erg/atom)

2.91
3.15
3.76

J.„3 ,

——g'(r i)2u'(r12)dr 2

to extrapolate g(r) below r=d. The parameters )i and (16), the extreme value is
22 are chosen so that we have g'(d)=g'(d) and g"(d)
=g"(d). Using Eq. (14) we find

42r (g"/g)r'dr=42rg(d)d n'A+r3 1—(—n —1)

$1
exp@,(1 I/x"))dx . (15)

0

Numerical results are collected in Table I.
Cur've g(r) for d=2.6 A exhibits the excellent fit to

g(r) up to r=3 A as shown in Fig. 1. The corresponding
extrapolation function for d= 2.4 A is unsatisfactory be-
cause it falls below g(r) in the range 2.34 A~& r(2.40 A.
This behavior permits the conclusion that the last row
of Table I provides a safe upper limit on the true value
of the integral and, therefore, a safe upper limit on the
kinetic energy. In the following calculations we have
extrapolated g(r) by Eq. (14) for d=2.6A.

consequently by Eq. (8),

(T)=EP(fi2/8M) J. 3. (18)

The form of J in Eq. (16) permits the introduction
of an amplitude parameter p in conjunction with any
trial function u(r). Thus we write

with

Ji—— g'(r) I'(r)dr

g (r)AN (r)dr,

IIL EQUATION (11) AS AN EXTREMUM CONDITION

Equation (11) is exactly the condition for giving an
extreme value to the integral

fJ=
J g(ri2)LQ (r'i2) j dl'2+2J g (ri2)Q (ri2)dl2

—p ~g(r )g(r )g(r3)~'(ri)~'(r»)

and obtain

+p ~g(ri2)g(r23)g(r31)23 (r12)N (r13)

Xcos(12,13)dr,dr„

V. 3=Ji/J2,
J. i= J(V. 2)=JP/J2.

(19}

(20)

Xcos(12,13)dr2dr3 (16)

as a functional in I'(r). Our numerical results in Table II
are consistent with the extremum being actually a
maximum. This extremum property permits us to choose
from a family of particular trial functions the best
approximation to N(r). Introducing Eq. (11) into Eq.

TABi,E II. Evaluation of Eq. (20) for 23(r) = —(b/r)~.

To illustrate the usefulness of Eqs. (18)—(20), the
integrals J~ and J2 have been evaluated for the trial
function N(r) = —(b/r) . The results are shown in
Table II. A maximum value of J, t is observed at m= 10
which gives N(r)= —(2.69 A/r)" as the best approxi-
mation to the solution of Eq. (11) for this particular
family of trial functions. This result is numerically

TABLE III. Evaluation of Eq. (23).

5
6
7
8
9

10
11

$ —(~ )1/m (A)

3.41
3.14
2.98
2.87
2.80
2.74
2.69
2.65

J,, (A)

455
505
545
575
596
608
612
610

(T)/N
(10 "erg/atom)

2.07
2.30
2.48
2.62
2.72
2,77
2.79
2.78

6
8
9

10
11
12
13
14

C (A ")

3.042X10 '
2.830X10 4

9.254X 10-e
3.115X10 e

1 072X 10-e
3.759X10-6
1.338X10 6

4.832X10 7
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TABLE IV. Evaluation of the potential.

8
9

10
11
12

13
14

tr (10 "erg-A")

0.309
0.630
1.40
3.26
7.75

[4.388]
18.7
45.2

P (10 "erg-A')

0.0415
0.0319
0.0271
0.0243
0.0223

[0.01574]
0.0210
0,0199

o (A)

2.728
2.702
2.682
2.665
2.651

[2.556]
2.638
2.627

c (10 "erg)

2.52
2.05
1.82
1.69
1.61

[1.411]
1.55
1.52

r* (A)

3.150
3.093
3.047
3.009
2.975

[2.869]
2.946
2.920

1.06
1.21
1.36
1.49
1.61

[1.411]
1.73
1.84

6.30
6.94
7.56
8.08
8.52

[6.96]
9.00
9.37

o* (10 i' erg) Mc*r"'/l'ts

consistent with the zeroth order approximation of
Eq. (11), namely g'(r)= g(r)N'(r), in the region where

Eq. (14) is used for g(r). For m=4, p. t has also been
computed by a cluster expansion procedure using a
Lennard-Jones 6—10 potential. ' The result is b=2.92 A,
not far from corresponding value in Table II.

A fairly general trial function results from introducing
two amplitude parameters into the right-hand member
of Eq. (12). The resulting variational problem exhibits
an extensive and very Rat plateau in the parameters
and the variable g. The best value of the kinetic energy
is 2.85X10 "erg/atom.

IV. VIRIAL THEOREM AND THE 6-n
LENNARD-JONES POTENTIAL

In this section we determine the relations connecting
the range and depth of a 6-n Lennard-Jones potential
with the energy per atom 8p(= —0.97X 10 "erg/atom')
and the kinetic energy per atom Tp (estimated at
2.91X10 " erg/atom in Table I). The connection is
made by employing the two-particle distribution func-
tion g(r) to compute the expectation values of the
potential energy. The assumed potential is written

The parameters r* and e* are now determined by the
conditions E(1)=1VSp, and clE()i)/N, =O at )i=1 (the
virial theorem for zero pressure). Thus

r*"e*=(2Tp —38p)/3C„,
r"Pe*=L(n —2) Tp nB—p)/nC p

(24)

The parameters r* and e*, hence cr, P, o, and e, com-
puted from Eq. (24) appear in Table IV.

Values of these parameters are known for e= 12 corn-
puted by quantum mechanics' from the properties
of the gas phase. These values appear in brackets in
Table IV. Unfortunately the corresponding parameters
have not been computed for other values of m. The
discrepancy at e= 12 is substantial. A smaller value for
Tp (say 2.50X10 " erg/atom) does not bring agree-
ment; e* is reduced, but r* is increased by the change.
It is also noteworthy that r* is quite insensitive to small
variations in 80, e is also insensitive, but to a lesser
degree.

An informative comparison is possible, at m= 10, with
the critical potential which just fails to posses a bound
state. Under this condition the two-particle eigenfunc-
tion for the zero-energy S state is exactly

~()=(/') —(W")—=4 L(-/)"—(-/)')
—=Le~/(n —6)) [6(r*/r)"—n(r*/r)'), (21)

1
4(r) =- expL —l(r*/r)'). (25)

where r* is the separation at minimum potential and
—e* the depth at the minimum.

We start from the trial wave function +p()tri ' ' ' )trrr)
generated by introducing a scale parameter X into the
normalized ground-state eigenfunction at zero pressure.
The expectation value of the energy is then given by

One finds easily that Eq. (25) satisfies the Schrodinger
equation

3A' (r* ti
" (r* t

'—~+ 6~
—

I
—10~ —

[ P(r) =0 (26)
M 2Mr*' (r) (r)

E(),)/1' =) 'T +e*(6r*-z-c.—nr*) 'C,)/(n —6), (22)
Thus

in which /& )critic@i= 6.

C„=2srp Jt g(r)r' "dr—
0

(23)

is given in Table III for v=6, 8, 9 . . 14.
5 Clayton Williams (private communication).
K. R. Atkins, Liquid Helium (Cambridge University Press,

New York, 1959), p. 22.

The corresponding number from the analysis of the
liquid state is (from Table IV)

M e*r*'/I't '= 7.56.
7 R. B. Bird, J. O. Hirschfelder, and C. F. Curtiss, Handbook

of Physics (McGraw-Hill Book Company, New York, 1958),
Part 5, Chap. 4, Table 4.1.


