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The wave function describing the ground state of a boson system
is approximated by the function ¥=1I exp[4«(r;;)]. The super-
position approximation is then used to derive a linear, inhomo-
geneous integral equation for dw/dr in which the only other
quantities occuring are the experimentally observed two-particle
distribution function g(r) and its first derivative. A numerical
solution for He* is computed and compared with the explicit
approximate solution derived by Abe. Using the computed «(r)
and a proper smooth extrapolation of g(r) into the region below
the apparent cutoff at r=2.34 A, the kinetic energy of liquid He?
at absolute zero is estimated at 2.91X 10715 ergs/atom.

A functional J(du/dr) is constructed with the property that

Abe’s integral equation for du/dr is just the Euler equation associ-
ated with the problem of finding a # for which J takes on an ex-
treme value. The extreme value of J (actually a maximum) is
simply related to the expectation value of the kinetic energy. The
variational property is used to determine the best #(r) from a
family of trial functions.

The calculated value of the kinetic energy and the measured
total energy are used, in conjunction with the virial theorem, to
determine the coefficients of a 6-» Lennard-Jones potential. At
n=12, the calculation yields a deeper potential well and a slightly
wider repulsive region than is calculated from the properties of
the gas phase.

I. INTRODUCTION

TRIAL wave function consisting of a product of
two-particle correlation factors appears to provide

a reasonably good description of liquid helium IT at
absolute zero. Abe!? has recently developed a powerful
technique for deriving physical consequences from this
description with only observed quantities appearing in
the final formulas. The present note is devoted first to
the further development of Abe’s relations. Some con-
sequences of the virial theorem are developed in Sec. IV.

The wave function
W=]] et
i<y

1<i<j<N 1)

is used to describe the ground state of an N-particle
boson system confined to the volume Q, where 7;; is the
distance between the ith and jth particles, #(0)= — «,
and #()=0.

We need the two- and three-particle distribution
functions

p2(712)Epg(712)EQ(1V—1)f"I’I2dr3dr4' . 'drN/

f]\1/|2dr1~--drN, (2)
ps(1,2,3)=Q(N— 1)(N—2)f|\1/{2dr4- : -drN/
f]\If[Zdrln-drN, @A)

in which p=N/Q is the mean-particle density. The
function g(r) is subjected to boundary conditions
2(0)=0, g(«)=1, and the normalization condition

) f [e()—1Jdr=—1. )
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L R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57 (1958).

2 R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 407 (1958).

Also

1
g(r)=14+——| [S(k)—1]eix7dk (5)
8o

gives g(r) in terms of the liquid structure factor S(k),
a quantity determined experimentally by analysis of
x-ray diffraction patterns.

Formulas involving p; are evaluated by introducing
the superposition approximation,

03(1,2,3)=20%g (712)g (723)g (r31). (6)

In our calculation, experimental values of S(&) for
liquid He* in the ground state are taken from Goldstein
and Reekie? after imposing the normalization suggested
by Feynman and Cohen*; namely, multiplication by a
factor 0.97 throughout and linear extrapolation near the
origin to S(0)=0. The function g(r) and its derivative
are calculated from Eq. (5). Because of the limitation
of experimental data, we follow Goldstein in setting
S(k)=1, k>6 A~L. From the definition g(r) > 0; however
the cutoff in wave number space has the consequence
that the computed g(r) approaches the axis sharply and
crosses at r=22.34 A. Below r=2.34 A, Eq. (5) must
be replaced by g(r)=0.

II. BASIC RELATIONS
The Hamiltonian of the system is

H=T+V,
where
72
T-——7 4,
2M

V=3 V(r;)

<7

™

are the kinetic energy and potential energy operators,
respectively.

3 L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).
4R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
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F1c. 1. The two-particle distribution function.

Using the wave function (1), the expectation value
of the K. E. operator is readily reduced to the form

(T)=N, Ly d 8
)= p@fgmu(r) r. (8)
Also

(V)=1Np f ¢(DV()r. ©)

An equation expressing #(r) in terms of g(r) can be
derived by computing Vig(r12) from Eq. (2). With the
help of Eq. (3) and the superposition approximation
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F16. 2. Solutions of Eq. (11): #o=Ing(r), zeroth approximation;
uy, first approximation; #, exact solution. Curves in dashed lines
are computed from Eq. (12).
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Eq. (6), the resulting equation is
V1g(r12) =g(r12) Vine(r12)

Fog(ris) f 2(ra)g(ro) Van(ron)drs, (10)

which is equivalent to the scalar equation

g (re)=g(ri)u'(r12)+pg (712)fg (r23)g (rs)u’ (r31)

Xcos(12,13)dr;.  (11)

Equation (11) is a linear inhomogeneous integral
equation for #’(r). Abe obtains a formal solution in the
form of an infinite series by a process of iteration. Each
term in the series can be represented by a cluster dia-
gram of a simple closed loop and a complete set of cross
links radiating from particle 1. The approximation of
replacing g(r1») by a constant £<1 in all the cross links
leaves a form which can be summed. The resulting

formula is
f [S(k)—1P

T T ek,
1445 (k) —1]

u(r)=Ing(r)— (12)

8wdp

Abe’s approximation results from setting ¢=1.

Equation (12) has been integrated for £=1,0.98, 0.95,
and 0.80, with the results shown as the curves in broken
lines in Fig. 2. We have also computed essentially the
exact solution by setting up the iteration procedure on a
high speed computer. The #(r) found in this manner is
shown in Fig. 2. It is seen that the approximation
represented by Eq. (12) is best when £ is somewhat
smaller than 1. Furthermore the solution corresponding
to the approximation of retaining only the first term in
the iteration series is also shown in Fig. 2. Apparently
both the approximations of setting £=1 and of retaining
only the first term of the iteration series are inadequate
if our purpose is to compute %(r) accurately.

The kinetic energy is calculated by inserting Eq. (11)
into Eq. (8). We get 2

(T)= Npg[(JaJer), (13)

where

Tu= f (g/g)dr,

Jp= —pfg(f]z)dl‘zfg(rgs)g(f:n)74,(1’31) COS(12,13)dl'3.

The integrand of J, is poorly defined below r=2.4 A
by the available information on g(r). We have tried to
obtain a reasonable estimate by using the function

g(n)=g(d) exp(A\[1—(d/r)"]} (14)
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TasLE I. Estimate of kinetic energy.
a. (T)/N
i (A) 2(d)d N e f @ orar T (10715 exg/atom)
2.6 1.381 1.125 11.0 380 598 42 291
2.5 0.715 1.320 15.4 308 649 42 3.15
2.4 0.184 1.203 47.2 237 783 42 3.76

to extrapolate g(r) below r=d. The parameters A\ and
n are chosen so that we have g'(d)=g'(d) and 3" (d)
=g"(d). Using Eq. (14) we find

47rf (g"*/g)r2dr= 47rg(d)d[n)\+n— 1—(n—1)

Xf exp[)\(l—‘l/x")]dx]. (15)

Numerical results are collected in Table I.

Curve g(r) for d=2.6 A exhibits the excellent fit to
g(») up to r=3 A as shown in Fig. 1. The corresponding
extrapolation function for d=2.4 A is unsatisfactory be-
cause it falls below g(#) in the range 2.34 A<7<2.40 A.
This behavior permits the conclusion that the last row
of Table I provides a safe upper limit on the true value
of the integral and, therefore, a safe upper limit on the
kinetic energy. In the following calculations we have
extrapolated g(r) by Eq. (14) for d=2.6 A.

III. EQUATION (11) AS AN EXTREMUM CONDITION

Equation (11) is exactly the condition for giving an
extreme value to the integral

J=— f g(re)[o (rm):lzdrz—{—ng’ (r12)et’ (r12)dry

"‘Pfg (712)g (r23)g (rsn)u’ (r12)u’ (731)

Xcos(12,13)drodr;  (16)

as a functional in #’ (7). Our numerical results in Table IT
are consistent with the extremum being actually a
maximum. This extremum property permits us to choose
from a family of particular trial functions the best
approximation to #(r). Introducing Eq. (11) into Eq.

Tasre II. Evaluation of Eq. (20) for u(r) = — (b/r)™.

(T)/N
b= (yext)/m (A)  Jext (A) (10716 erg/atom)

m
4 3.41 455 2.07
5 3.14 505 2.30
6 2.98 545 2.48
7 2.87 575 2.62
8 2.80 596 2.72
9 2.74 608 2.77

10 2.69 612 2.79

11 2.65 610 2.78

(16), the extreme value is

Jextzfg'(f’m)u’(hz)dl’z, (17)
consequently by Eq. (8),
(T)=Np(#2/8M)J ext. (18)

The form of J in Eq. (16) permits the introduction
of an amplitude parameter v in conjunction with any
trial function #(r). Thus we write

J(V)=29T1—=2"T,
with

Ji= fg’ () (r)dx

=— f g(r)Au(r)dr,
19)
7= [ 400w ) pan (
+p f g(r12)g(ras)g (rs)u’ (r12)u’ (r13)
X cos(12,13)drydrs,
and obtain
’Yexc=J1/J2, (20)

cht=](7ext) = J12/J2.

To illustrate the usefulness of Egs. (18)-(20), the
integrals J; and J, have been evaluated for the trial
function #(r)=—(8/7)”. The results are shown in
Table IT. A maximum value of J o is observed at m= 10
which gives u(r)=—(2.69 A/7)1 as the best approxi-
mation to the solution of Eq. (11) for this particular
family of trial functions. This result is numerically

TasiE III. Evaluation of Eq. (23).

Cn (A™)

n

6 3.042X1073

8 2.830X10~*

9 9.254X 1078
10 3.115X107®
11 : 1.072X 1078
12
13
14

3.759X10-¢
1.338 X108
4.832X1077




742

F. Y. WU AND E. FEENBERG

TasLE IV. Evaluation of the potential.

n a (10 0erg-A") B (1079 erg-AS) a (A) e (10715 erg) 7* (A) e (105 erg) Me*r*2/h2
8 0.309 0.0415 2.728 2.52 3.150 1.06 6.30

9 0.630 0.0319 2.702 2.05 3.093 1.21 6.94
10 1.40 0.0271 2.682 1.82 3.047 1.36 7.56
11 3.26 0.0243 2.665 1.69 3.009 1.49 8.08
12 7.75 0.0223 2.651 1.61 2.975 1.61 8.52

[4.388] [0.01574] [2.556] [1.411] [2.869] [1.411] [6.96]

13 18.7 0.0210 2.638 1.55 2.946 1.73 9.00
14 45.2 0.0199 2.627 1.52 2.920 1.84 9.37

consistent with the zeroth order approximation of
Eq. (11), namely g'(r)=g(r)u'(r), in the region where
Eq. (14) is used for g(r). For m=4, vyex has also been
computed by a cluster expansion procedure using a
Lennard-Jones 6-10 potential.® The result is 6=2.92 A,
not far from corresponding value in Table II.

A fairly general trial function results from introducing
two amplitude parameters into the right-hand member
of Eq. (12). The resulting variational problem exhibits
an extensive and very flat plateau in the parameters
and the variable £. The best value of the kinetic energy
is 2.85X 10715 erg/atom.

IV. VIRIAL THEOREM AND THE 6-n
LENNARD-JONES POTENTIAL

In this section we determine the relations connecting
the range and depth of a 6-» Lennard-Jones potential
with the energy per atom §o(= —0.97X 10 erg/atom?)
and the kinetic energy per atom 7T, (estimated at
2.91X 10715 erg/atom in Table I). The connection is
made by employing the two-particle distribution func-
tion g(r) to compute the expectation values of the
potential energy. The assumed potential is written

V(r)=(a/r")— (8/r")=4e[ (¢/r)"— (a/7)"]
=[e*/(n—06)J[6(r*/r)"—n(r*/r)*], (21)

where 7* is the separation at minimum potential and
—¢* the depth at the minimum.

We start from the trial wave function ¥o(Ary,- « - Ary)
generated by introducing a scale parameter A into the
normalized ground-state eigenfunction at zero pressure.
The expectation value of the energy is then given by

E\)/N=NT ¢+ e*(6r*"\"Cn—nr*\Cs)/ (n—06), (22)

in which

0

Cn=2mp f g(r)yr—rdr (23)
0

is given in Table III for =6, 8, 9, - - -, 14.

5 Clayton Williams (private communication).
K. R. Atkins, Liguid Helium (Cambridge University Press,
New York, 1959), p. 22.

The parameters »* and €* are now determined by the
conditions E(1)=N&,, and dE(\)/OA=0 at A=1 (the
virial theorem for zero pressure). Thus

r¥ne*= (2T4—38,)/3Cn,
r*et= [(%— 2) To— %80:]/1’LC6

The parameters #* and ¥, hence a, 8, ¢, and ¢, com-
puted from Eq. (24) appear in Table IV.

Values of these parameters are known for #=12 com-
puted by quantum mechanics’” from the properties
of the gas phase. These values appear in brackets in
Table IV. Unfortunately the corresponding parameters
have not been computed for other values of #. The
discrepancy at #=12 is substantial. A smaller value for
T (say 2.50X1071% erg/atom) does not bring agree-
ment; €* is reduced, but #* is increased by the change.
It is also noteworthy that 7* is quite insensitive to small
variations in &; €* is also insensitive, but to a lesser
degree.

An informative comparison is possible, at #= 10, with
the critical potential which just fails to posses a bound
state. Under this condition the two-particle eigenfunc-
tion for the zero-energy .S state is exactly

(24)

1
zl/(r)=; exp[—(r*/r)*]. (25)

One finds easily that Eq. (25) satisfies the Schrodinger
equation

oo Y Jpo o

Thus

[M 6*7’*2/ hz]critical= 6.

The corresponding number from the analysis of the
liquid state is (from Table IV)

MM+ /12=1.56.
7R. B. Bird, J. O. Hirschfelder, and C. F. Curtiss, Handbook

of Physics (McGraw-Hill Book Company, New York, 1958),
Part 5, Chap. 4, Table 4.1.



