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Using a phenomenological approach, it is shown first that solid He* in equilibrium with liquid He? IT along
the phase separation line, as well as at pressures somewhat above the melting pressure, should have anoma-
lous thermal properties over a finite temperature range or, at least, at isolated temperatures. Such a behavior
of the solid results from a correlation of thermodynamic character of its thermal properties with those of the
anomalous liquid. The predicted anomalies of the solid will then be effectively verified in terms of rigorous
thermodynamics and somewhat incomplete data available on liquid and solid He! along the melting line
over a finite temperature interval. A specific anomaly of the melting pressure consisting in a shallow tempera-
ture minimum will be predicted at low temperatures, where both the liquid and solid phases are assumed to
exhibit normal static thermal properties. The persistence of the anomalous equilibrium properties of liquid
He* II on solidification will be discussed qualitatively as suggesting a similar origin of these anomalies in both
phases, such a situation having been shown previously to exist with respect to the thermal anomalies of

liquid and solid He3.

1. INTRODUCTION

N recent work on the dense phases of the lighter He
isotope He?, we have studied! the liquid-solid phase
transformation from the point of view of the statistical
thermodynamics of the nuclear spin systems of these
phases. Observations? seemed to indicate that the
nuclear spin paramagnetism of the compressed liquid
was preserved in the solid phase or that this important
physical property was invariant under the phase trans-
formation. On the basis of this interpretation of the
nuclear magnetic properties of these phases, we have
analyzed, in a semiquantitative way, the pathological
character® of the liquid-solid transformation. This has
led us to predict the anomalous thermal properties of
the solid! at or near the phase transition line. These
anomalous thermal properties were shown to originate
with the anomalous partial thermal properties of the
nuclear spin system of the solid. The spin system was
shown*~¢ previously to be responsible for all the anoma-
lous thermal properties of the liquid phase, over a
limited region of the state surface associated with the
liquid, the boundaries of the region included. Actually,
these dense phases of He?® have at least two competing
groups of thermal excitations localized, respectively, on
the system of spin degrees of freedom and on that of the
degrees of freedom other than spin.*=67
The dense phases of the He isotopes, as collections of
neutral atoms, represent systems where the pertinent
quantum statistics, with the interatomic forces, would
be expected to lead to specific distinctive thermal

T A short communication on this paper has appeared in Phys.
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properties. The fundamental differences between the
flow properties of the two liquid isotopes notwith-
standing, there appeared to be also peculiar similarities
between some of their static equilibrium thermal prop-
erties. We had the opportunity recently® to call atten-
tion briefly to such similarities. In liquid He?, as is the
case* with liquid He?, the anomalous static equilibrium
properties can be accounted for in terms of the competi-
tion between at least two groups of thermal excitations,
one giving rise to normal, the other to anomalous partial
thermal properties. In that region of the thermodynamic
state surface of He?, reserved to its liquid phase, where
the anomalous group of thermal excitations is dominant,
the liquid is anomalous. In those regions of the state
surface of the liquid, where the group of thermal
excitations of normal partial thermal properties is domi-
nant, the liquid must be normal. We could predict in
this way® that at lower temperatures where the domi-
nant thermal excitations of liquid He* have been shown
to be phonons®® associated with the compressional
elastic modes of motion of the liquid, the static thermal
properties of the latter must become normal, con-
trasting with their anomalous behavior at higher tem-
peratures''!? over a finite temperature range.

The anomalies of solid He? as predicted! from those of
liquid He? and indirectly verified experimentally,' raise
the following problem in He!: Does solid He?, in equi-
librium with the anomalous liquid along the phase
separation line or somewhat above the latter, exhibit
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Kramers, Physica 23, 625 (1957); A. H. Markham, D. C. Pearce,
R. G. Netzel, and J. R. Dillinger, Proceedings of the Fifth Interna-
tional Conference on Low-Temperature Physics and Chemistry,
Madison, Wisconsin, August 30, 1957, edited by J. R. Dillinger
(University of Wisconsin Press Madison, Wisconsin, 1958), p. 45.
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THEORY OF SOLID He!*

also thermal anomalies or not? If the answer were
affirmative, as was the case in He?, it would point toward
the existence in solid He! of at least two groups of
thermal excitations, as in liquid He? as well as in liquid
and solid He?®. It would raise in solid He* the important
problem of the extent of the anomalies, since the pe-
culiar liquid-liquid transformation would be expected to
be restrained. At any rate, the partially or completely
anomalous solid He?, as a collection of interacting atoms
subject to symmetrical statistics, would raise the prob-
lem of the existence of a possibly mild transformation-
like process in this phase. These problems may also
shed, indirectly, additional light on the phase trans-
formation of liquid He!, whose nature has not been
explained satisfactorily either.

The object of the present paper is to give an account
of various studies into several aspects of the above-
stated problems in He?,

II. LIQUID-SOLID TRANSFORMATION IN He*

II.1. Anomalous Region of Liquid He* II
Near the Melting Line

The first group of problems which will concern us re-
fers to the anomalous liquid He* I at temperatures
T£1.8°K. Above this temperature, it was shown ex-
perimentally™ that both liquid and solid He?, along the
phase separation line, have normal thermal properties.
The anomalous thermal properties of liquid He* IT
along the phase separation line are characterized by a
set of interdependent thermodynamic relations. When
needed, we shall make use of the subscripts / and s to
refer to some property of the liquid or of the solid. In the
liquid phase, one has, V denoting its volume, S its
entropy, Cp and C, its constant pressure and constant
volume heat capacities,

ap(p,T)= (V($,1))7"(8V/3T),
==V (,1)7(35/9p)r

=[Co(p,1)/TV (p,1)1(3T/0$)s<0, (la)
and,
(0p/3T)v=(8S/0V)r
=—[C.(V,T)/T1(6T/0V)s<0. (1b)

By virtue of the equation of state,

(ap/aT)V=QP(P7T)/KT(P7T)) (2)
kr(p,T)=—LV($,T)I*(0V/3p)r>0,  (2a)

is the positive-definite isothermal compressibility, the
discussion of the anomalous thermal properties of any
system requires the consideration of a single property
entering into (1a) and (1b). The anomalous thermal
properties refer to the negative isobaric volume ex-
pansion coefficient, a,(p,T), or the increase of entropy
on isothermal compression, or the cooling on adiabatic

where

4 E. R. Grilly and R. L. Mills, Ann. Phys. 8, 1 (1959).
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compression, since
Co(p,1)20, Cu(V,1)20, ©)

these heat capacities being semidefinite positive quanti-
ties. The relations (1b) are equivalent to the relations
(1a). They express the anomalous thermal properties
through the negative temperature coefficient of the
pressure, the entropy decrease on isothermal expansion,
or the temperature increase on adiabatic expansion.

These characteristic anomalies of the thermal prop-
erties of liquid He? exist over a limited region of its
equation of state surface reserved to the liquid phase. In
a cartesian coordinate system of the variables of state
(p,V,T), the anomalous domain of the liquid region of
the state surface, when projected onto the (p,7") plane,
is limited by four lines. Two of these correspond to the
phase separation lines between vapor and liquid, pe.(T),
and liquid and solid, p,.(T), respectively. The anoma-
lous thermal properties of the liquid extend over finite
arcs of these lines. These finite arcs of the saturation and
melting lines, psat(7) and $,(T), result from their
intersections by the two loci,

T1=Ta(p)1, Tu=Tu(p)u, 4)

of vanishing expansion coefficients in the liquid He* I
and He* II regions. The anomalies of the static thermal
properties along these loci are given by the set of rela-
tions (1a) and (1b) with vanishing right-hand sides.
The temperature coordinates of the four intersection
points of the four lines, pei(7), pu(T), To(p)1, and
T.(p)u are thus, respectively:

Ta (Psat)II, Ta (Pm)II, Ta (psat)l, Ta (pm)l-

We have to consider now the two loci To(p)1 and
T o (p)11 somewhat in detail since the latter, in particular,
has not even been studied so far, while the former is
being currently investigated experimentally and has
been located approximately.!®

As briefly mentioned in the Introduction, we have
been led to predict® the change in sign of the anomalous
negative isobaric expansion coefficient of liquid He* IT
in the low-temperature region where the thermal excita-
tions of the liquid are phonons predominantly. Let
S(p,T) denote the total entropy of the liquid. At a
precise temperature, in a state of thermodynamic equi-
librium of the liquid, the atoms involved in the two
groups of thermal excitation, associated with low- and
high-energy states, may be said to form independent
subsystems within the liquid, the total multiplicity of
the states involving the two independent subsystems
being

P ;=P ,pP hy

in a state (p,V,T) of the liquid, the total entropy is, by
Boltzmann’s theorem,

18 0. V. Lounasmaa and L. Kaunisto, Bull. Am. Phys. Soc. 5, 200
(1960) ; Ann. Acad. Sci. Fennicae Ser. A, VI, No. 59 (1960).
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where S, and S, refer to the partial entropies arising
from the excitation of the phonons and of the higher
energy states, respectively, Taking negative partial
derivatives with respect to the pressure on both sides of
(5) and dividing by the total volume V(p,T), one
obtains, by (1a),

ap(?rT)=ap.¢(P7T>+ap,h(P’T)~ (6)

The total isobaric volume expansion coefficient a,(p,T)
is the sum of the partial expansion coefficient arising
with the thermal excitations of the phonons, ay,,, and
with those of higher energy a5, . Observations indicate™
that in liquid Het,

a(pTISO, (9p/0T).<0, -
Ta(p)u<T<Tu(p)r, pn(T)Zp2psur(T),
and since
>0, (8)

the phonon expansion coefficient being semidefinite
positive, one finds, with (6) and (7),

apn(p,T)<0, (854/3p)r=0, ©)

over the temperature and pressure intervals given in (7).
The equal signs in (8) and (9) would only apply at the
absolute zero.

In the phonon system, the pressure arising with the

excitations is
Pw(V;T) = %E,,(V,T)/V,

-E, being the total energy of phonon excitations. In the
system of high-energy excitations, the pressure may be
written as

(11)

where the parametric function e,(V,T") describes the
nonideal character of these excitations of higher energy
E,(V,T). Within the formalism of thermodynamics, one
is led to show®6 that

ap,sﬂ(P:T):%(KT(P7T)/V)C7J,¢(V7T): (12)
and

azJ.h(V’T) Z%(KT(PaT)/ V)eh(V’T)Ct‘,h(VyT): (13)

provided that the parametric function e.(V,T) varies
far less rapidly with temperature than does E,(V,T).

By (6),
ap (9, 1) =%z (p, 1)/ V)[Co,o+2e(V,T)Co,1].

In order for @, to be positive at low temperatures and
negative at high temperatures, it is necessary that
throughout the range of validity of (11) and (13),

Ph(V7T)<07 EIL(V,T) <0,

(10)

(V. T)=3e(V,T)EA(V,T)/V,

(14)

(15)

since En(V,T), the energy of the associated thermal
excitations must be semi-definite positive.
Experimental determination of a,, xr, V, and the
prior evaluation of C,,, and C,,;, the latter through
C,(V,T), the total heat capacity, yields the parametric
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function €,(V,T), to the approximation of (13). As
mentioned, this is equivalent to neglecting the tempera-
ture variations of €, (V,7T) in comparison with those
of Ex(V,T).

The preceding analysis of the contributions to the
total isobaric expansion coefficient of the two groups of
thermal excitations, (¢) and (%), leads one to assign the
characteristic thermal anomalies to those arising with
the group (/). This result is, of course, imposed by the
empirical findings according to which, in the completely
anomalous region of liquid He? II, the partial thermal
properties associated with the group of excitations (%)
completely dominate the thermal properties of the
liquid.

It is equally advantageous and important, in an
analysis of the thermal anomalies of the system, to
study the total parametric function e,(V,T") associated
with the thermal excitations of the system as a whole.
This is defined through the representation of the total
pressure due to the thermal excitations as

Pt(VyT):%6¢(VsT)E(V’T)/V7 (16)

where E(V,T) is the total energy of thermal excitations.
It is seen that the numerical coefficient 2, on the right-
hand sides of (11) or (16), corresponds to a normaliza-
tion of the pressures p, or p; so as to insure their reduc-
tion to the ideal limit as e, or ¢;— 1. Equation (16)
leads then,>® under the assumption of not too rapid
temperature variations of ¢,(V,T), to

ap(p,T) =3 (ke (p,1)/V)e.(V,T)Co(V,T),  (17)

which allows one to evaluate ¢,(V,T) in terms of the
thermal properties entering into (17). We have thus
used previously” (17) in connection with liquid He? and
water. Clearly, in anomalous systems, where a;(p,T)
changes sign, €,(V,T) will also change sign, its zero
being common with that of a,(p,T).

Recent experimental work on saturated liquid He* by
Kerr and Taylor'® locates the zero of e (T), that is, the
expansion coefficient along the saturation line ps.+(T") at
about 1,17°K. Since

asat(T) Zap(?sat) - KT(P:T) (d?sat/dT)y

and since

(18)

KTdPsat/dTZ 0, (19)

the zero of a, is displaced toward a temperature at which
@t 1S already negative or which is somewhat higher
than the zero of a.¢. For all practical purposes, however,
the above low temperature zero of ag+ may be taken to
be the same as that of a,(psat). The intersection of the
locus To(p)1r with the saturation line at Te(psat)rr at
1.17°K occurs at about the value of 0.54 of the reduced
temperature (7°/T(psat)) where the transition tempera-
ture Th(psat) is about 2.17°K. If, in some approxima-

16 E. C. Kerr and R. D. Taylor (to be published). The zero of
asat(T) was estimated earlier to be at 1.15-1.16°K by K. R.
Atkins and M. H. Edwards, Phys. Rev. 96, 551 (1954).
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tion, the locus intersected the melting line p,(7) at
about the same value of the reduced temperature
T/Tr(pm), one would find T 4(pm)11 to be about 0.95°K.
The locus temperature T (p)x would thus be decreasing
with increasing pressure, as is the case with the locus of
the lambda points T'\(p), the lambda point T\ () being
taken to be 1.76°K approximately.!517 There is a recent
indirect determination of the temperature To(p)mr of
this locus in the liquid at a pressure close to 25 atm due
to Grilly and Mills."* The temperature Ty (p=25 atm)
obtained by graphical extrapolation is at about 1.05-
1.10°K. Since the melting pressure at about 1.0°K is
somewhat higher than 25 atm, one would have to con-
clude that T4 (p»)1i<1.1°K, confirming thus the nega-
tive pressure slope of the locus To(p)1r.

The high-temperature locus T (p);1 is entirely in the
liquid He* I region.'®'® The existence of this locus is
qualitatively in accord with the observation!8 that Cgat,
the saturated liquid heat capacity, appears to have a
sharp peak at the lambda temperature and not a finite
discontinuity as older measurements seemed to sug-
gest.!? The existence of a heat capacity peak at the
transition temperature was shown' to impose the con-
tinuity across the transition point of the latent heat of
vaporization, L(T), with an inflection point of this
property at the transition temperature. It was also
shown that whether the tangent (dL/dT), at the transi-
tion point T'\(psat), had a finite, though large, negative
slope or whether this slope tended to become negatively
infinite, depended on the finite or infinite height of the
heat capacity peak. At any rate, if the existence of a
heat capacity peak were confirmed, the locus of transi-
tion temperatures, T\(p), instead of being a locus of
discontinuities of the first derivatives of the variables of
state, could become associated with second derivatives
of these variables which would thus exhibit changes in
- sign of their curvatures at the crossing of the transition
point T\(pst) or, more generally, the transition line
Tx\(p). With the existence of a heat capacity peak in-
stead of an actual discontinuity in the heat capacity, the
liquid-liquid transition stopped to be a lambda transi-
tion and became a transformation of milder character.

It is instructive to recall here that in our previous
discussion® of the liquid He! IT — liquid He* I trans-
formation, we made use of older density measurements
which implied that the transition coincided with the
onset of both the thermal and transport anomalies of
liquid He!. The implications of the heat capacity
measurements, through the appearance of a heat ca-
pacity peak, led to attribute a cusp or a double point to
the liquid density or volume at the transition tempera-

17 C. A. Swenson, Phys. Rev. 79, 626 (1950); 86, 870 (1952); 89,
538 (1953).

18 W. M. Fairbank, M. J. Buckingham, and C. F. Kellers, Pro-
ceedings of the Fifth International Conference on Low-Temperature
Physics and Chemistry, Madison, Wisconsin, August 30, 1957,
edited by J. R. Dillinger (University of Wisconsin Press, Madison,
Wisconsin, 1958), p. 50.

9 L. Goldstein, Ann. Phys. 2, 177 (1957).
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ture. The temperature derivatives of the latter had to be
such that

lim dV_/dT — — «, or large and negative,
T—T\—-

lim dV,/dT — 4, or large and positive,
T—-T\+

according as the heat capacity peak tended toward
infinity or only toward a finite though large value at T'.
The former case would have required

lim (d*V_/dT?) — — =, or large and negative.
T-T\—

Inasmuch as (d?V1/dT?) appeared to be still (— ) or
large and negative at T\ and since it had to change
rapidly to become positive at Th-+7, = being a small
temperature interval, because V, (T") becoming concave
upward at 7> T, the latter volume branch had to have
an inflection point close to T'.

Recent Los Alamos measurements!'® seem to show
that, under saturation condition, both the liquid volume
and its temperature derivative are continuous at T\.
The volume continues to decrease at T>T\ or the
thermal anomalies extend into the liquid He! I region
in contrast with the implications of older volume meas-
urements. The onset of the thermal anomalies is thus at
the locus T«(p)1 beyond the locus Th(p) of the trans-
formation temperatures. The locus T (p)1 is a locus of
volume minimas. But the volume is concave toward
smaller volumes at T'< T’ ; hence there must be a change
in sign of the volume curvature at 7<T,(p)1. On the
basis of the Kerr and Taylor measurements,!® one is led
to expect that the vanishing of (d?V/dT?), under satura-
tion, might occur at T\(psat). Along isobars, one would
expect

(8°V_/0T?),<0, T<T\(p),
(32V+/6T2)p> 07 > T)\(p)’
(0°V_/0T?) = (3*V4/3T%),=0, T=Tx(p).

(20)

The first direct measurements of (3p/97T),, due to
Lounasmaa and Kaunisto,'s seem to suggest a similar
situation. Here the qualitative results may correspond,
with due regard to the determinations'® of isochores
p(T)» across Th(p), to

(32P—/3T2)v<0; T<T)\(p))

(8%4/9T?),>0, T>T(p), 1

and, possibly,
(9%-/8T?)s= (8°p4/9T*),=0, T=Tx(p).

So far, a satisfactory experimental verification of the
rigorous equality of (9p_/dT), and (9p4./37T), at Tx(p)
is lacking. Also, the occurrence of the inflection point of
the isobars p(T), at the transition line is conjectural,
although the volume measurements!¢ tend to favor such

(21b)
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a behavior.22 It should be noted that the isochores!®
seem to suggest also the continuity of #(7), and
(8p/9T), across the transition point. Considering the
(8p/9T), values alone, these are given'® as having a
cusp-like behavior at T\(p) with an attendant discon-
tinuity of (82p/97%), at Th(p). It will be necessary to
reconcile the latter behavior, if confirmed, with the
shape of the isochores p(7'), themselves, which could
have an inflection point at 7\(p), as seems to be the case
with the V(T) curve of Kerr and Taylor'é along the
saturation line.

We should like to invoke here an argument of geo-
metric character on the qualitative behavior of the
isochores p(T), around the transition line. In the (p,T)
representative diagram, the locus of transition tempera-
tures Th(p) decreases monotonically with increasing
pressure; the inverse function pa(7) decreases mono-
tonically with increasing temperatures. The isochores
p(T), are also monotonically decreasing functions of the
temperature at 72> T (p)11. The isochores of the liquid
cannot reach the He? I region unless they cross the locus
of transition points (7). The latter is such that

dpr/dT <0, (d*p»/dT?) <0,
T)\ (Pm) _<. TS T)\ (psat)-

In order for p(T), to cross pa(T), it is necessary that,
with

(22)

(8p—/9T),<0,

(23)
To(P)u<T<Ta(p)1,
one should have
0> lim (8p_/0T),> (dpr/dT), V=V, (24)
T-Tx
since
p—(T)v>P)\(T)’ (25)

T<T\(p), V=V

It is an empirically established fact'? that (dp/dT) is
finite along the major part of the transition arc pa(T).
Hence, with (23) and (24), (9p—/387T), must be finite
over the transition arc, where (dp»/dT) is finite.

Before considering the behavior of (dpx/dT) at the
approaches of saturation pressure, we would like to
study briefly the consequences of the relation (24). Let
us rewrite (2) in the following form:

— (3V/6P)T= krV
= (9V/0T)»/ (0p/3T).. (26)

We have just proved that over the major part of pA(T),

20 M. H. Edwards, Can. J. Phys. 36, 884 (1958), was the first to
call attention to the likely extension of the thermal anomalies into
the He# I region.

2t Indirect determinations of (dV_/dT), at the approach of
T (psat), through dielectric constant measurements seemed to
have yielded finite though large negative values of this derivative,
see E. Maxwell, C. E. Chase, and W. E. Millett, Proceedings of
the Fifth International Conference on Low-Temperature Physics and
Chemistry, edited by J. R. Dillinger (University of Wisconsin
Press, Madison, Wisconsin, 1958), page 53.
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(8p/9T), is finite. In order for the isothermal com-
pressibility to stay finite, it is necessary that

lim (8V/0T) = Vaap(pr,Tn)

T—-T)\

—> finite, (27)
that is, the expansion coefficient must remain finite at
Tr(p). At the present time, there are no empirical indi-
cations of k7(p,T") becoming very large at the approach
of the transition line. It should be remembered, however,
that direct experimental studies on the isothermal
compressibility «r are lacking at the present time and
above all in the critical regions of vicinity of the transi-
tion line T'\(p). Direct experimental investigations on
this property appear to be desirable.

The loci of the minimas of the isochores p(7T), and the
isobars V(T), correspond, of course, to the same tem-
peratures. At these loci, the compressibility 7 is finite.
Its value is to be evaluated with L’Hospital’s rule, or

hm KT(P,Ta)

T-Ta(p)1

= lim (V(T))(*V/0T*)p/(6°p/ 0T,

T-Ta(p)1

(28)

where the minimas of V(T), and p(T), insure the posi-
tive signs of the two second partial temperature
derivatives.

The finite character of kr along the transition line,
together with the finite values of a,(pr,T)), Eq. (27),
has another major consequence. Consider indeed the
relation (17) of essentially statistical thermodynamic
character involving the phenomenological parametric
function €,(V,T). The latter is only a slowly varying
function of the temperature. Equation (17) requires
that with a,(p,T) and kr(p,T) being finite along the
major part of the transition line, the heat capacity
C,(V,T) must remain finite also at or in the vicinity of
T (p).

The limitations of the preceding results to only a part
of the transition line originates with the situation that
because of the decrease of (dpr/dT) toward large nega-
tive values, the possibility still exists for this derivative
to become very large in the limit of the saturating vapor
pressure.?? This would allow, by (24), very large values
for (8p/dT), and (8V/dT),, under saturation condi-
tion, at Th(ps.t) and, in turn, this would justify C,
becoming very large also. A clarification of the actual
situation under saturation condition would be very
helpful indeed.

The location of the locus T.(p)1 appears to be fairly
well established whereby

Ta(p)r> T (p),
psats PS Pm-

2W. E. Keller and E. F. Hammel, Jr., Ann. Phys. 10, 202
(1960).

(29)
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According to the volume measurements'é
Ta (Psat) 1= T)\ (Psat) + (5 - 8) X 10—30K;

while at higher pressures, the vanishing of the deriva-
tives (3p4/9T), occurs!® at increasingly larger values of
the difference [T«(p)1— Tx(p)]. The latter may reach
values as high as'® 0.07-0.075°K at the melting line.

The region of the state surface of the liquid where its
thermal properties are anomalous as described by the
relations (1a) and (1b) hasnow been fully specified with
its boundaries formed by the four lines discussed above,
the boundaries themselves belonging to the anomalous
region. Geometrically, the anomalous region of the state
surface or its projection on a representative plane of the
variables of state is thus a closed set of states, the
limiting set of states belonging to the set. The region of
the anomalous thermal properties is thus divided by the
locus T'x(p), whose subscript is already a misnomer, into
two regions belonging, respectively, to the He* IT and
He! I modifications.

II.2. Solidification of the Anomalous Liquid He*

The object of this section is a brief discussion of the
liquid-solid transformation over that temperature range
where the liquid is anomalous. As shown above, this
interval extends from To(pm)it to Ta(pm)i, but the
present discussion will be limited to a somewhat shorter
interval, extending only from To(pm)11r to Txa(pm), or to
temperatures somewhat less than T\ (pm). Inasmuch as
our approach is strictly phenomenological, the use of
experimental data in the vicinity of T\(pm) becomes
more difficult to justify as a consequence of the un-
certainties involved in those data. In the range
(Tr(pm)— T a(pm)11), the liquid may be described, to
some degree of approximation, in terms of the two-fluid
model' used generally for the liquid along the saturation
line. According to this model, the normal fluid fraction
of the liquid carries the thermal excitations and, hence,
the entropy of the liquid. Its complement is formed by
the group of atoms which are still in the ground state of
the liquid as a whole. This model imposes certain condi-
tions on the solidification process. In the range of tem-
peratures of interest for us, it is observed that the
solidification is accompanied by an entropy decrease of
the liquid or,

S1m(T)>Sem(T),

Toa(pm)u< TS Tr(pm),

that is, the entropy of the liquid, in equilibrium with the
solid along the phase separation line, is larger than that
of the solid. Inasmuch as only the normal fluid fraction
of the liquid has entropy, only this fluid fraction can
lose entropy in the solidification. As a consequence, the
phase transformation is determined by the normal fluid
fraction, and the details of the melting line $,,(7) must
originate essentially with the entropy .S;.(7) of this
normal fluid fraction.

(30)
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In a first approximation, the entropy in the He! II
range is proportional to the number of normal fluid
atoms! or, along the melting line p,.(7),

Sl(Pm)/Sl(Tk(?m) )QN(PM)/N
=Pn (Pm)/P(Pm), (31)

S1(T\(pm)) being the entropy at the intersection of the
transformation line 7\ (p) and the melting line p,(T), N
is the total number of atoms, p, and p the densities of the
normal fluid and of the liquid, respectively. Over the
indicated temperature range, AS,(T) or [Sin(T)
—S,,»(T)] is positive, by (30), and the volume change
on melting,

AV (D) =V 1,m(T) =V 5,u(T) >0, (30a)

is also positive, with AV ,,(T") being only a slowly vary-
ing function of the temperature. Hence, with (31), the
Clapeyron-Clausius relation yields

Apm/dT=ASn/AV .
={S1U(Tx(pm) ) o (pn)/p(pm)]
—Ss(pm)}/AVu(T).

It is remarkable that the empirically derived tempera-
ture derivative function!$ of the melting line resembles
closely the temperature variation of the (p./p) ratio in
the saturated liquid. This ratio in the compressed liquid
along the melting line would be expected to differ only
slightly from its value under saturation. The observed
shape of (dp»/dT) indicates that S;(pm) or Ss,m(T), the
entropy of the solid, remains generally small in com-
parison with that of the liquid, on the right-hand side
of (32). At any rate, the determinations of dp,/dT
confirm the prominent role played by the normal fluid
fraction in the solidification process.

Using in (32) the empirical values of dp,/dT,
AV u(T),'" and the entropy of the liquid? S;(p.), one
can evaluate, to the approximation of these quantities,
the entropy of the solid S;(pm) along the melting line.
We give in Fig. 1 these approximate solid entropy values
as a function of the temperature. It will be seen that
Ss,m(T) is a rapidly increasing function of the tempera-
ture. It displays the characteristic behavior of the liquid
entropy at the approaches of the transition temperature
Tx(pm). The qualitative temperature dependence of
Ss(pm,T) indicates that solid He* along the melting line,
in equilibrium there with the thermally anomalous liquid
He* IT, may be expected to be quite different in its over-
all thermal properties from the conventional or normal
solids.

(32)

I1.3. Thermal Properties of Solid He* in Equilibrium
with the Anomalous Liquid

The object of the present section is to predict quali-
tatively within the broad formalism of thermodynamics
the thermal properties of solid He* in equilibrium along
the melting line with the liquid in terms of the thermal
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Fi1G. 1. Approximate molar entropy Ss »/R of solid He? along the
phase separation line, as a function of the temperature (°K).

properties of the latter. Before entering this main topic,
it appears instructive to compare some of the thermal
properties of the liquid and solid phases of normal
substances, these phases being in equilibrium along the
phase separation line. In these normal substances, the
set of relations (la) and (1b) are modified so as to
insure the semi-definite positive character of a,, or

apu(pm)=[Vu(pm) I(3V,/0T)>0, p=ls. (33)
In these substances and along the melting line,
Vi(pm)>Vi(pm), (34)
at all points of $,.(7), while the inequality
ap,1(pm) 2 ap,s(Pm), (35)

appears to be a rule of empirical foundation. Since in
these substances, the liquid phase does not exist down
to the absolute zero, the equal sign in (35) could be
safely omitted, since the equality could only refer to
vanishing normal expansion coefficients, realized by the
Nernst theorem, at the absolute zero only. The em-
pirical rule of thermodynamic character (35) arises from
the generally reduced thermal stability of the volume of
liquids as compared with the thermal stability of the
volume of solids. The isobaric volume expansion coeffi-
cient or the relative differential volume change caused
by a differential temperature increase under constant
pressure is a measure of the thermal volume stability.
The rule (35) may perhaps be justified on the basis of
a proposition put forward by Debye,® according to

28 P, Debye, Gottinger Vortrige (B. G. Teubner, Leipzig, 1914),
p. 17.
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which the thermal expansion of a solid must originate
with the anharmonic terms appearing in the expression
of the energy of a solid considered to be an elastic
medium. These terms are representative of the devia-
tions from what would result from Hooke’s law alone in
the expression of the elastic energy. In liquids, con-
sidered qualitatively from the point of view of elastic
media, the importance of anharmonicity may be ex-
pected to be far greater, in general, reducing the thermal
stability of their volumes below that of the volumes of
solids.

It should be noted that rule (35) is actually a strong
relation, and the inequality,

LV (pm)/0T 1> [0V o(pw)/ 9T 1,

may be a better representation of the relative thermal
stability of liquid and solid volumes along the phase
separation line.

More generally, let ap,0(p:at) be the isobaric expansion
coefficient of the vapor in equilibrium with the liquid
along the saturation line ps.¢(7) ; one has here in general,
omitting the vicinity of the critical point,

(36)

ap.o(psat)zap,l(psat)- (37)
In addition, one has, @ fortiori,
“p.O(Pa,)Zap,a(ﬁa’); (38)

where p,/(T) refers to the sublimation line.

Consider now the case that in the inequalities (35),
(37), or (38), the more dilute phase has normal thermal
properties, and the denser phase is anomalous in the
sense of the relations (1). It is easy to see that in this
case, the preceding empirical rules remain valid and
unchanged. Indeed, the anomalies refer, among others,
to the existence of negative isobaric expansion coeffi-
cients in the denser phases, so that the expansion
coefficients of the latter are necessarily smaller than
those of the normal low-density phase in equilibrium
with them along pe.+(7) or p,’(T).

It is of interest to note here that the above rules con-
necting the isobaric expansion coefficients of two phases
in equilibrium along the phase separation line remain
valid in the singular case of the water-ice I equilibrium.
This because here the liquid phase is the denser phase, so
that the inequalities (34) and (35) have to be modified
simultaneously, yielding the larger expansion coefficient
of the low-density solid as compared with that of the
thermally anomalous high-density liquid.

The rules (36) and (37) lose their validity in the case
where the low-density phase is anomalous in the sense
of the relations (1a) and (1b). It is assumed now that
the low-density phase is the liquid phase so that the
inequality (34) between the liquid and solid volumes
remains unchanged throughout the length of the phase
separation line p,,(7"). According to the observations, the
volume change AV, (T) is positive as stated above,
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(30a). Since along the phase separation line

LVim(T)I @V i,m/dT)
=ap, l(Pm)—KT. t(?m) (dPM/dT),

the volume change in the phase transformation at some
temperature 7'y or melting pressure p.,s is, obtained
from the volume change at 7;<T'y, AV .(T;), as

Vl.m(Tf) - Vs,m(Tf) = AVm(Tf) = AVm(T'b)

Ts

+ [Vl,m(T)aﬂ.l(T)_ Vs,m(T)ap,s(T)]dT

T;

(39)

- . D‘T,Z(Pm)Vl,M(PM)
" - KT,s(Pm) Vs,m(?m)]dpm-

By (30a), AV.,.(Ts) must be positive throughout the
whole length of the phase separation line. This requires
that

AVa(T)+ f

T;

(40)

Ty
[Vl,m(T)ap. U(T)=Vem(Tay,(T)1dT

> f Lera(om) Vilp) —kra(pa)V (o) Jipm. (41)

Now, whether the two phases in equilibrium along the
phase separation line are thermally normal or anoma-
lous, there does not seem to be any exception to the rule

KT,l(Prn)>KT.8(Pm), (42)

which requires that the isothermal compressibility of
the liquid in equilibrium with the solid along the phase
separation line be larger than that of the solid. As long
as ap,; and a,,; are both positive and obey rule (35), it
seems justified to expect that, whatever the range of
integration in (40), the inequality (41) will be satisfied.
However, if o, is negative, over even a finite length of
the phase separation line, (41) cannot be expected to be
satisfied over arbitrary intervals (7';—T',), although it
could still remain satisfied over shorter temperature
intervals or finite arcs of the phase separation line. If
a,,s were also negative, that is, if the solid were ther-
mally anomalous along the phase separation line, then,
in general, the integral on the left-hand side of (41)
could allow it to be satisfied over a longer interval
(Ty—T;) than if a,,, were positive. Excluding the case
of the extreme anomaly whereby a,,, would be more
negative over the phase separation line than a,,;, one
is led to expect, in general, the anomalous regions of the
liquid and the solid to be limited to finite segments of
the phase separation line.

The problem which arises now concerns the generali-
zation of the normal rule (35) to include the anomalous
situations, subject always to the normal volume condi-
tion (34). Clearly, (35) cannot be valid in these cases of
thermal anomaly, since it would require the liquid to be
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less anomalous than the solid, both a,,; and a,,, being
negative. Numerically, (35) would require the expansion
coefficient of the solid to be larger than that of the liquid
in equilibrium with it. Such a situation appears to be
one of extreme anomaly as briefly alluded to above in
connection with (41), although (35), subject to (34), is
compatible with it. However, the less anomalous situa-
tions considered above are not compatible with the rule
(35). If we exclude the rather unlikely occurrence of the
case of extreme anomaly, it will be seen that (35),
subject to (34), may be generalized so as to correlate the
isobaric expansion coefficient of the anomalous liquid
with that of the almost normal or anomalous solid. One
is thus led to rewrite (35) as

Io‘p,l(?m)lz |0‘zz,s(Pm) | ’

which, of course, reduces to (35) when the liquid and the
solid are normal. This rule is fully compatible with the
case of the anomalous liquid He?, whose anomaly ex-
tends over the temperature range defined by (7). The
correlation of the anomalous thermal properties of liquid
He* with the thermal properties of solid He* in equi-
librium with it along the melting line has to be discussed
in terms of (43) under the restriction of omitting the
case of extreme anomaly.

In the present case of He*, the extreme anomaly could
occur over a limited temperature range. This is because
the lambda transition leads to large negative values of
ap,1, and unless there is some similar transition in the
solid phase, rule (35) could not be valid throughout the
whole range of the anomaly. Since a,,, would be lower
than a,,; over some range, the two negative expansion
coefficients would cross at some T, <Tx(pn) with rule
(35) being contradicted at 7>7T,. Such a situation
would be difficult to contemplate.

The relation (43) allows only two possible behaviors
of solid He* over the interval [To(pn)1— Toa(pm)1rl. In
both cases, (43) imposes anomalous thermal properties
on solid He* over this temperature interval. These two
possibilities correspond, respectively, to what may be
called the case of least anomaly, case (A), and to that of
the completely anomalous solid, case (B). The study of
these two possible anomalous solids follows.

(43)

Case (A4)

In this case of least anomaly, a,, :(p») may be such
that

ap,s(Pm)ZOs (44)

or the solid is normal with the exception of isolated
points at the melting line, such as To(pm)11 and To(pm)1,
where @, must vanish by (43), in addition to its
vanishing at the absolute zero, by the Nernst theorem.
Since ay,s(pm) is a continuous and differentiable function
of the macroscopic variables of state, together with its
derivative, a,,, must have at least one maximum be-
tween the absolute zero and 7o (pm)11, and it must have
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at least one other maximum between T.(p.)r1 and
Ta(Pm)l.

The rule (43) requires that the coefficients a,,; and
ap,s intersect at their common zeros but at no other
points. Hence, in case (A), the solid is necessarily
anomalous at T'o(pm)11 and T« (pm)1. Since

ap,s(pm)=—[Vs(pm) 17 (8S:/0p)r
=0, T= Ta(?m)lly T= Ta(ﬁm)h

Ss(p,T), being a decreasing function of the pressure, has
maximas at the melting line at two temperatures, while
it has no such maximas at any other points along the
melting line, reached along isothermal curves in the
solid phase. That is, S,(p,T) increases with decreasing
pressure, at constant 7" values, but reaches its upper
limit at p.(7) with a finite slope, (9.S,/3p)r being finite
though negative, in general.

In this case of least anomaly, the vanishing of a,,,
at theisolated finite temperatures, T o (pm) 1 and 7o (pm)1,
where a,,; vanishes also, may be reasonably attributed
to the competition between at least two groups of
thermal excitations, as is the case with the liquid. As
briefly discussed in the preceding sections, the thermal
anomalies of the liquid may be ascribed approximately
to the competition between the normal phonon excita-
tions and the anomalous higher energy excitations of the
normal fluid fraction. Or, if we denote by the subscripts
e and # the quantities associated with the anomalous
and normal excitations of the solid, one is led to repre-
sent the total entropy of the system as

(45)

Ss(P,T)=Ss,a(P,T)+Ss,n(P,T); (46)
which yields at once
Olp,s(P,T):-‘Olp,a(P,T)““le,n(P,T), (47)
where
ap.ﬂ(j’)T)Z()) ap-a(p;T)SO' (48)
In the case of least anomaly, one has
ap,n($, 1) 2 —ap,qa(p,T), (492)
and
ap,n(Pm,Ta,II)z "'ap,a(?m,TaII), (49b)

Ap, n(Pm, Ta,I) = '—ap,a(pm,TaI)'

The vanishing of the isobaric expansion coefficient of the
solid at Ta(pm)1r and To(pm)1 may be ascribed to the
mutual cancellation of the partial expansion coefficients
arising from the groups of normal and anomalous thermal
excitations. The group of normal excitations would
dominate the anomalous group over the whole tempera-
ture range with the exception of the isolated temper-
atures To(pm)ux and To(pm)1. Actually, the possibility
still exists here that a,,s(p») vanishes at isolated points
between these temperatures along the melting line. Such
an oscillatory behavior of a,,, is(still compatible with
the rule or conditions used above.
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Case (B)

In this case, solid He?, in equilibrium with liquid He*
along the phase separation line, is completely anomalous
over at least a limited temperature range between
To(pm)1r and To(pm)1. Clearly, rule (43) still allows
ap,s(pm) to be positive over certain regions of the inter-
val [To(pm)i— Te(pm)ir] and negative over other re-
gions of this interval. The oscillatory behavior of the
thermal properties of the solid, oscillating between
normal and anomalous behaviors would, however, be
strange, since it would suggest that the partial thermal
properties of the groups of normal and anomalous
thermal excitations would be themselves oscillatory. In
this case (B) of the completely anomalous solid He?, the
simplest situation seems to be the one in which the
anomalies exist over the whole temperature range
[T a(pm)1— To(pm)11], as is the case with the liquid in
equilibrium with it.

I1.4. Negative Isobaric Volume Expansion
Coeflicient of Solid He*

The prediction, in the previous sections, of the anoma-
lous character of solid He* in equilibrium along the
phase separation line with the anomalous liquid He?
will now be verified in terms of somewhat incomplete
data on these two phases along the melting line. We will
thus evaluate approximately the expansion coefficients
ap,1 and a,,; along the melting line p,,(7). The data to
be used!?417 extend from about 1.1-1.2°K upward.
There are no data available on solid He* above the
melting line at pressures p,,(7) < p<50 atm, so that an
evaluation of the thermally anomalous properties (1a)
or (1b) of the solid in this pressure range is excluded at
the present time.

In the numerical evaluation of the expansion coeffi-
cients, the rigorous thermodynamic formula, used
already above, Eq. (39),

ap(pm) =LV (pm) I [OV (p)/ T Jom
=[V(pw) IV (p)/dT]
+xr(pn) ([dpn/dT), (39a)

will be applied. Here V (p.) refers to Vi(pm) or Vs(pm),
the volume of the liquid and solid along the melting line
pu(T), kr(pnm) stands for the isothermal compressibility
k7,1(pm) OF kr,s(pm), and the straight temperature de-
rivative is to be taken along the phase separation line.
It should be clearly kept in mind that the direct
evaluation of ap,i(pm) or of a, s(pn) with the exact
formula (39a) and the available data is, to within the
approximations of the latter, strictly rigorous in that it
represents a truly empirical check on the existence or
nonexistence of the thermally anomalous solid over the
temperature range to be explored. This verification of
the predicted anomalies is thus strictly independent of
the various arguments of either thermodynamic or of
the two-fluid theoretical background which have been
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Taste I. Approximate isobaric expansion coefficients of liquid and
solid He? along the phase separation line.

II I II

T p, 1 Qp, 1 Qp, s Qp, s

(°K) 10-%/(°K)

1.15 —15.9 —6.03

1.20 —19.1 —19.3 —6.31 —6.47
1.25 —22.5 —6.34

1.30 —25.8 —26.1 —6.00 —6.25
1.35 —29.1 —5.21

1.40 —32.4 —33.5 —4.05 —5.12
1.45 —35.6 —2.35

1.50 —38.6 —41.1 +0.044 —2.50
1.55 —41.1 —44.3 3.40 +0.23
1.60 —43.5 —46.1 7.40 4.80

advanced above in connection with the probable be-
havior of a,,s(pm) or the associated thermal properties
of the solid.

In (39a), with the exception of kr,s(p.), the quanti-
ties Vi(pm), Vs(pw), and pn(T) are available over
a finite temperature range through direct measure-
ments!>1416 while the various derivatives and kr,;(pm)
could be obtained from the measured quantities and the
derived diagrams' of liquid He*. The derived isothermal
compressibilities? of liquid He? at p=>20 atm appear to
be somewhat out of line at temperatures 7>1.55-
1.60°K. These derived liquid compressibilities, through
the partial derivatives (dpi/dp)r of the liquid densities
p1, seem to imply the increase of the isothermal com-
pressibilities at constant temperature with increasing
pressure. Asa consequence, the compressibilities kr, (pm),
obtained by extrapolation to the melting line, may
already be larger than their correct values at 72 1.4~
1.5°K. Hence, by (39a), the calculated isobaric expan-
sion coefficients a,,:(p») are upper limits of these
quantities.

In order to evaluate the expansion coefficients @, s (pm)
of the solid, we had to use the approximate com-
pressibilities of the liquid along the melting line, there
being no data whatsoever available on k7 s(pmn). Now
rule (42) requires that the isothermal compressibility of
the solid be smaller than that of the liquid in equilibrium
with it at the phase separation line. Since an exception
to this rule is rather unlikely, it seems reasonable to
state that the calculated ay,,s(pn) values are necessarily
upper limits of this property. Actually, at T21.4-
1.5°K, the calculated ay,;(pn) values would be upper
limits already, independently of the requirement of rule
(42) because of the upper limit character of the k7, ;(pm)
values themselves, as mentioned above.

We give in Table I the calculated approximate coeffi-
cients a@y,i1(pm) and ap s(pm), the latter being upper
limits as just noted. There are two series of values for
both liquid and solid expansion coefficients. They origi-
nate with two series of values of the derivatives
(dpn/dT). These were obtained through analytical fits?

2 Thanks are due to Dr. R. K. Zeigler for the various analytical

fits, to Mrs. J. E. Powers for the numerical calculations, and to
Mrs. B. M. Hindman for the preparation of the graphs.
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F16. 2. Approximate isobaric volume expansion coefficients a, s
and ap, ;1T of solid He* (1073/°K) along the phase separation line,
as a function of the temperature (°K).

by the method of least squares of the liquid and solid
volumes, V;,(T) and V,,,,(T) and of the melting pres-
sure p,(T). These analytical fits gave rise to a,,;! and
ap,s'. Using values of (dp,./dT) given by Swenson!” and
obtained through a different analytical fit of his meas-
ured p,(T) values, one obtains the second set of ex-
pansion coefficients ap, ;! and a,, L.

It is seen that both a,, ;! and a,,;!* are negative and
decrease rapidly with increasing temperatures as ex-
pected. The major results exhibited by Table I concern
the values of the isobaric expansion coefficients «,, ' and
ap,s of the solid. These are both negative at low tem-
peratures. One of them, a,, ;! exhibits a minimum, while
ap, st seems to have such a minimum. They increase
with increasing temperatures toward zero and positive
values. The zero of these calculated a, ! functions is
close to 1.5°K, that of a, ;! is close to 1.55°K. The two
sets of coefficients a,,,' and a, T are close to each
other, and their differences are of no particular sig-
nificance.

According to Table I, solid He* has anomalous thermal
properties over a finite temperature range along the
melting line. Hence, case (B) of the completely anoma-
lous solid, discussed in the preceding section, is at hand
here. Inasmuch as the existence of the negative a,,;
values also means that, (1a),

L0S:(pm)/0p12>0, (1c)

it is seen that the anomalous solid must extend over a
finite pressure range at pressures p> p,(T) over the
relevant temperature range of the anomaly. This con-
clusion results directly from the continuity and differ-
entiability of S,(p,T) and of its first derivatives. Indeed,
the finite positive partial pressure derivative at the
melting line has to decrease first continuously toward
zero at constant temperature at increasing pressures to
become normal or negative at higher pressures in the
solid phase.

We give in Fig. 2 the graphs of the two solid expansion
coefficients a,, ;! and a,, %, A further discussion of these
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coefficients would not be fully justified at the present
time, because the a,,.(T) curves refer strictly to upper
limits, so that the final correct form of the e, (7))
function is not available. The correct curves must be
depressed below those given in the graph. It should also
be remembered that the temperature values of the zeros
of the a,,s curves are essentially lower limits, the true
zero of @, s must be higher than about 1.50-1.55°K.

As emphasized above, the numerical values of the a,
coefficients are strictly rigorous and their limitations
result essentially from the approximate character of the
experimental data used to derive them. It thus appears
justified to conclude that they conform to the predic-
tions based on the thermodynamic correlation of the
thermal anomalies of a liquid and solid in equilibrium
along the phase separation line, developed in the present
work. The results obtained, with the data available at
the present time, yield thus an affirmative answer to the
question, stated in the Introduction, of whether the
thermal anomalies of liquid He* persist or not in solid
He* of higher density than the liquid at or near the
phase separation line and over a finite temperature
range.

At temperatures 72 2.0°K, the liquid is normal, and
the solid should also be normal. This higher temperature
region is of a somewhat reduced interest from the
standpoint adopted in this work, namely, the investiga-
tion of the nature of the solid in equilibrium with the
anomalous liquid. Still, the trend of variation of the
entropy of the solid beyond T (p») would be of great
interest in connection with a determination of the ways
the anomalous solid becomes normal at these higher
temperatures.

III. SOLIDIFICATION OF LIQUID He* AT
LOW TEMPERATURES

We should like to study in this section the liquid-solid
transformation at low enough temperatures where the
dominant thermal excitations of liquid He* IT are
phonons. As mentioned earlier, the empirical basis for
the existence of such a phonon region at low tempera-
tures consists of the heat capacity measurements'® which
yielded a T3-type heat capacity in accord with the
hypothesis originally put forward by Tisza' on the
probable Debye-liquid character of liquid He* at suffi-
ciently low temperatures. Inasmuch as only longitudinal
phonons are expected to be propagated essentially, the
longitudinal characteristic temperature evaluated® with
the observed liquid density and small amplitude, fairly
low frequency compressional wave velocity,”? is very
close to the observed one.’® These heat capacity meas-
urements refer only to the saturated liquid. No heat
capacity measurements are available in compressed
liquid He* at low temperatures. However, in this low-
temperature region, the liquid may reasonably be ex-
pected to be normal. This limited region of the phase
diagram of the liquid is outside its anomalous region,
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discussed above in detail, or

[aSZ(P,T)/aP]T<O;
< Ta(Pm)n.

This normal behavior is imposed by the dominance of
phonons in the thermal excitations of the compressed
liquid whose characteristic longitudinal temperature
increases in compression. Since

lim S;(p,T)/R= (4x*/15)(T/©,)3,
T«O;

(1d)

(50)

the entropy of the liquid must decrease on compression,
omitting in .S;(p,T) small contributions arising with
thermal excitations other than phonons.

We saw above that both liquid and solid He?, in
equilibrium along the phase separation line, at 72 1.1-
1.2°K, have entropies whose temperature variations are
very rapid. This suggests that at these higher tempera-
tures where the thermal properties of both phases are
anomalous, the thermal excitations are also anomalous.
However, it seems reasonable to assume that solid He*
may itself become a Debye-type solid at the low temper-
atures where its static thermal properties become normal
as is the case with the saturated liquid and probably
also with the compressed liquid.

It is an experimentally established fact that solid He*
is a hexagonal close-packed crystal'??5 so that for a
description of its elastic properties, it would require five
elastic constants.?® Strictly speaking, there are no data
available on the elastic constants of solid He?, above all
near the phase separation line and at the low tempera-
tures of interest to us here. However, the axial ratio of
the hexagonal crystal (¢/a) is practically the ideal one or
2(2/3)%. As a consequence, it would appear justified, at
the present time, to assume that this close-packed
structure is of high elastic isotropy to some fair degree of
approximation.?” The five independent elastic constants
reduce then to approximately two, namely, A and p, the
two Lamé coefficients, as in the limit of complete elastic
isotropy.?¢ In terms of the Poisson ratio o of the solid,
that is, the ratio of lateral contraction to longitudinal
extension under terminal pull,

o=N2(\+u), (1)

the characteristic temperature of the solid @, is given
by28
30,3=0,"420,3
= (k/B)*(4xV o/ 3N) (psks) o (),
o(0)=L(1+0)/3(1—0) ]}
+2[2(140)/3(1—20) 1,

25 A. F. Schuch, Proceedings of the Fifth International Conference
on Low-Temperature Physics and Chemistry, Madison, Wisconsin,
August 30, 1957, edited by J. R. Dillinger (University of Wisconsin
Press, Madlson, Wisconsin, 1958), p. 45.

2 A. E. H. Love, Elastmty (Dover Publications, New York,
1944), p. 160.

27 For recent work in connection with this problem, see L. J.
Slutsky and C. W. Garland, Phys. Rev. 107, 9?2 (1957).
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THEORY OF SOLID He!*

®. and O, being the longitudinal and transverse
characteristic temperatures, V, the molar volume of the
solid, IV is Avogadro’s number, p, the density, and «, the
adiabatic compressibility of the solid, along the phase

separation line. Since in the liquid,
O ;7= (k/h)*(4xV1/3N) (pik1)?, (53)

and
lim S;(p,T)/R= (4x*/15) T O 3420 ],

T«O,

(54)

one obtains at once for the entropy change in the liquid-
solid transformation, on the assumption of the thermal
excitations of both phases being essentially phonons,

ASy(pm T)/R=L[S1(pm,T)— Ss(pmT) /R
=[S:(pmT)/R]
X[A=Vy/Vake/x)le(0)].  (55)

At the low temperatures under consideration, the normal
behavior of the liquid requires that

Sl(?M:T) <Sl(psat’T)

or the liquid entropy at the melting line must be lower
than the entropy under saturation pressure pe,s at the
same temperature. Using the experimental volumes or
densities at saturation'? and along the melting line, as
well as the liquid compressibilities®® &;(peat,7) and
k1(pm,T), all available only at 72>1.0°K, making the
reasonable assumption that neither the volumes nor the
compressibilities will change significantly toward lower
temperatures, one finds that the liquid entropy along
the melting line may be only some 25%, of the entropy at
saturation.

The quantity inside the brackets on the right-hand
side of (55) depends essentially on (o). Here V;~1.1V,,
and «, could be as small as 0.75«;. In isotropic solids 2 ¢
varies between 0.25 and 0.43, approximately. The
function ¢(c) varies, for this range of o, between 4.72
and 36.3. In general then, AS,, is negative, or the
solidification over the low-temperature region is ac-
companied by an increase in entropy, the entropy of the
solid being larger than that of the liquid.

The temperature slope of the melting pressure line
pn(T) is, by (32), with AS,, given by (55), at low
temperatures

lim (dpn/dT)

T small
= (4=*/15)(T/ O )*
X[A=(Vi/ Vi (ke/k) 0(0) )/ AV .

It is seen that if (dpn/dT) turned out to be negative at
low temperatures, this slope would increase rather
rapidly toward zero at very low temperatures. Since at
TZ1.2°K, (dpm/dT) is observed to be positive, it is
likely that if (56) gave effectively a negative melting
pressure slope, the zero of this slope will occur at a
temperature higher than the temperatures associated

(56)

137

with the complete dominance of the phonon type of
thermal excitations. Accordingly, an experimental search
for the anomaly of the melting pressure p,(7") should
start at 7221.0°K and should be extended downward.
Also, because of the rapid numerical decrease of
(dpm/dT) with decreasing temperatures, the observa-
tion of the probable anomaly of p,(T) might be more
advantageous at medium temperatures.

A remark is of interest here concerning the precise
meaning of the coefficients A and p in (51) or (52),
appearing in the latter through the ratio o. Inasmuch as
the solid phase is obtained through compression, the
lowest pressure solid at a precise temperature at the
phase separation line corresponds, in a limiting sense,
to a normal solid under essentially vanishing external
pressure. All internal pressure effects due to thermal
excitations are included in the above elastic coeffi-
cients.?® The pressure effects on these coefficients in the
compressed solid may then depend, to a certain ap-
proximation, on the excess pressures (p— p.) above the
melting pressure.

The physical basis of the preceding formal discussion
of the predicted entropy increase on solidification in the
temperature range where the thermal excitations are
overwhelmingly phonons is associated with the develop-
ment of the finite rigidity coefficient u of the solid. This
elastic coefficient vanishes essentially in the liquid
phase. As a consequence, the degrees of freedom of the
solid other than the compressional ones become avail-
able for thermal excitations, yielding necessarily an in-
creased thermal disorder or increased entropy, compared
with that of the liquid at the same temperature. If the
anomaly of the He* melting line became observable, this
anomaly would be similar in its origin to the observed
anomaly*® of the melting line of He?. In the latter
case, the solidification is accompanied by the release of
spin degrees of freedom. This results through the de-
crease in the solid of the strength of the apparent
internal field. existing already in the liquid, tending to
align the spins antiparalle], yielding thus an increased
spin disorder in the solid as compared with that of the
liquid, the two phases being in equilibrium along the
phase separation line. The increase of spin entropy on
solidification is large enough to compensate, at the low
temperatures, 7S 0.3°K, for the entropy decrease of the
normal degrees of freedom, assuring thus the develop-
ment of the minimum of the melting line. Experimental
indications at the present time® seem to be compatible
with a monotonic increase of dp,,/dT toward zero in the
limit of the absolute zero with the melting line de-
veloping an inflection point between the temperature of
its minimum and the absolute zero. This would be in

# J. L. Baum, D. F. Brewer, J. G. Daunt, and D. O. Edwards,
Phys. Rev. Letters 3, 127 (1959).

#D. O. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and
A. S. McWilliams, Proceedings of the Second Symposium on Liquid
and Solid He?, edited by J. G. Daunt (Ohio State University Press,
Columbus, 1960), p. 126.
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agreement with our previous work! on the melting pres-
sure line p,(7") of He®.

IV. CONCLUDING REMARKS

According to the studies described in the present
work, solid He?, in equilibrium with liquid He?% has
anomalous thermal properties over a finite temperature
interval, over which the liquid is also anomalous. Vari-
ous arguments of macroscopic thermodynamic character
lead one to predict thermal anomalies in the solid in
equilibrium with the liquid along the phase separation
line or near this line. Experimental information, how-
ever scarce, available in these two phases allow one to
actually prove, with the help of a rigorous thermody-
namic formula, that the solid is anomalous over a finite
temperature range. This proof is entirely independent of
the rules of thermodynamic background which helped to
predict the existence of the anomalous solid. The sharp-
ness of the proof is only reduced by the unavailability of
certain data needed for it, as well as by the ever-present
limitation in the precision of the available data entering
into its numerical evaluation. As a consequence, the
temperature range of the anomalies could only be
deduced approximately through its lower limit.

These results suggest that extensive experimental in-
vestigations of the anomalous solid He* near the melting
line and over a pressure range above the melting line
would be of interest. Independently of the intrinsic
properties of this solid, some of which appear to become
anomalous at the approach of the temperature associated
with the characteristic liquid He* II—He* I transfor-
mation at the melting line, the investigation of the
anomalies of the solid could also shed additional light on
the above transformation as well as on the anomalous
properties of the liquid itself.

The existence of the anomalous solid raises, of course,
the problem of the origin of this behavior. In the liquid
phase, the thermal anomalies have not been explained
satisfactorily either. Actually, the suggested explanation
of these anomalies was shown to be associable with the
one used in accounting for the anomalies of similar
macroscopic character of liquid He? in a different though
finite temperature range. Namely, in liquid He?, these
anomalies may be assigned to the dominance of high-
energy excitations as compared with the excitations of
low-energy states associated with the longitudinal or
compressional modes of elastic vibrations, that is, longi-
tudinal phonons. At low enough temperatures, the
thermal excitations of the latter modes dominate and
insure the normal behavior of the liquid.® The thermal
anomalies of the liquid appearing at higher tempera-
tures have to originate with a group of thermal excita-
tions of anomalous character. The thermal anomalies of
the solid could also originate with the competition be-
tween at least two groups of thermal excitations, one
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normal, the other anomalous. In view of the low-
temperature normal liquid being a Debye-type system
whose shear modes of elastic motions are inhibited
through the essentially vanishing rigidity modulus, it
seems reasonable to expect the low-temperature solid to
become also a conventional solid in full possession of all
its elastic modes of motion. The probable occurrence of
the low- or medium-temperature anomaly of the melting
line has been discussed in some detail in Sec. III.

The fundamental problem raised by the thermody-
namic proof obtained here of the anomalous solid He!
concerns the similarities and differences between the
anomalous groups of higher energy excitations in the
liquid and the solid. Suppose that the anomalous thermal
properties of the solid actually extended over about the
same temperature interval as those of the liquid along
the melting line. This would suggest that the liquid-
solid phase change, leading at the temperatures under
consideration to close packing of the atoms, has not
completely modified the anomalous character of the
high-energy thermal excitations of the liquid, and these
persist in possibly milder form in the solid phase also, at
least at pressures just necessary to produce solidification
and at somewhat higher pressures. At the present time,
we saw above, the available data tend to reduce the
temperature range of the solid anomaly below the one
exhibited by the liquid. Nevertheless, with the deduced
temperature region of the solid anomaly being a lower
limit, it seems necessary to recognize the possibility
that, ultimately, the anomalies of the solid and the
liquid at equilibrium have the same or similar roots.
Assume, indeed, that a successful proof could be ad-
vanced for the role played by quantum statistical sym-
metry in the determination of the anomalous thermal
properties of liquid He*. It would then appear justified
to attempt at a generalization of the statistical sym-
metry through its explicit intervention, with the neces-
sary modifications, in the description of the collection of
close-packed atoms occupying some ten percent smaller
volume than that of the liquid phase compressed to the
phase separation line and forming the solid of enormous
compressibility. It should be remembered, in this con-
nection, that a similar situation appears to be realized in
solid He? in equilibrium with liquid He?® along the phase
separation line. Here, antisymmetric statistics seem es-
sentially to be involved in the explanation of the
anomalous thermal properties of the liquid phase,*~°
extending over a fairly wide temperature interval,
through its nuclear spin system. The idea that this same
cause should be responsible for the thermal anomalies of
the solid, along the phase separation line and at least
over a finite pressure range above it, led one to effectively
predict! the existence of these anomalies in solid He?
over a finite temperature interval in agreement with the
observations.!



