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a Binding in Hypernuclei by Nonlocal Interaction
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The characteristics of the A-S interaction at low energy have been obtained assuming that the A-E poten-
tial is nonlocal but separable and similar to that suggested by Yamaguchi in the case of Ã-E' potential. The
unknown parameters entering in the proposed potential are determined on the basis of the global symmetry
hypothesis of the strongly interacting particles. Our model predicts, in agreement with Dalitz and Downs
phenornenological findings of the nature of the A.-X potential based on hyperfragment data, that there is no
bound A-nucleon system and that the singlet A.-E potential is stronger than the triplet potential, both being
attractive. Binding energies of the A particle in light hypernuclei based on the present model are, however,
much too high compared with the experimental data. It is further pointed out that although the global
symmetry hypothesis (g&, =gz =g&„) supplemented by the Yamaguchi type nonlocal A Epoten-tial is
incompatible with the presently existing data, the restricted symmetry (gg =gz &gs ) model is certainly
admissible.

1. INTRODUCTION

HE study of the A binding in light hypernuclei
affords us a good insight into the hyperon-nucleon

problem at low energy. From the knowledge of the
lightest hyperfragment AH', we conclude that it has a
very loose structure as the total binding energy of the
system is of the order of 2.3 Mev. This implies that
when any pair of particles are very close together the
third particle is relatively far away from them so that
it has no important effect on the mutual interaction;
which shows that the effect of three-body forces may
be neglected. For the same reason A-nucleon interaction
in hypernuclei such as +H', say, may very well be repre-
sented by an interaction potential required to describe
free A-nucleon collisions at low energy of the relative
motion. As to the strong interaction from which the
hyperon-nucleon force may originate, one can speculate
that the force may be due to one E-meson exchange or
two pion exchanges or both E and m exchanges. The
range of the interaction thus introduced is &5/2m c
which is small compared to the nuclear force range.
Further the E-meson exchange leads to an exchange
type of force while the 2x exchange is of ordinary type.
As the binding energy of the system is small it implies
that the system consists predominantly of the S state;
hence the difference in the two types of forces will not
be exhibited, as the parity of the state is even. It is
well known that the effect of an ordinary force is in-
dependent of the sign of the parity of the state while that
of the exchange force is dependent on this sign.

It may be reasonably expected that the properties of
light hypernuclei could be derived from the over-all
features of the A-lV potential such as the scattering
length and effective range irrespective of the shape of
this potential function. Dalitz and Downs' have ana-
lyzed the hypernuclear binding energies looking for a
phenomenological potential and restricting themselves
only to two-body forces. Kith a spin-dependent

' R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 958 (1958);
111,967 (1958); 114, 593 (1959).

Gaussian-shaped. central potential they were able to
fit the observed binding energies of light hypernuclei. .

The important conclusions are that the singlet A-E
potential must be much more attractive than the triplet
one and that there does not exist any hyperdeuteron.
Instead of choosing a phenomenological potential,
Lichtenberg and Ross' calculated the hyperon-nucleon
potential due to pion exchanges only, assuming that
the coupling constants gA„, and g~„, are equal but not
necessarily equal to the g~ coupling constant, and
using a static model similar to that of Brueckner and
Watson. ' The hard-core radius is assumed to be the
same as in the case of the E-E potential of Brueckner
and Watson. These authors have calculated the S-wave
hyperon-nucleon scattering parameters for small values
of the energy, by noting that in treating the A-N scat-
tering one must take into account the transition
AÃ+-+2Ã, and hence in addition to the AX~AÃ
and ZÃ+-+RE potentials one should have to define a
AE ~ZS potential and the whole scattering problem
will be described by a coupled set of Schrodinger equa-
tions. They find that their scattering parameters are in
agreement with those of Dalitz and Downs. Further,
on introducing E-meson interactions, they find4 that a
large coupling constant for E-meson interactions is in-
compatible with hypernuclear data. Ferrari and Fonda, '
using a Tamm-Dancoff approximation, have derived
the A-X potential and compared the implications of
their results with those of Dalitz and Downs, and they
have noticed that E-meson interaction is not capable
of giving agreement with experiment.

In the present paper we have introduced the view-
point that the A-X interaction could be nonlocal and
may have a separable form as suggested and used by

'D. B. Lichtenberg and Mare Ross, Phys. Rev. 107, 1714
(1957).

3K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953).

4D. B. Lichtenberg and Mare Ross, Phys. Rev. 109, 2163
(1958).

5 F. Ferrari and L. Fonda, Nuovo cimento 9, 842 (1958).
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Yamaguchi' for the X-E case. The necessity of intro-
ducing a nonlocal potential has already been felt in
analyzing the high-energy iiucleon-nucleon data; how-
ever, there is no compelling reason to take it into con-
sideration for low-energy data; nevertheless, Yamaguchi
has found that the two-nucleon low-energy data could
be well-fitted by means of a special type of nonlocal
potential. Furthefmore, the use of separable potential is
very attractive as it affords a completely soluble model.

On account of the absence of any experimental in-
formation on the scattering of A particles by nucleons
at low energy, we will make use of Gell-Mann's' global
symmetry model of strong interactions. ' With the help
of this assumption it would be easy to determine the
unknown parameters occurring in the proposed A-S
potential by making use of low-energy nucleon-nucleon
data, since the A-E potential would be explicitly ex-
pressible in terms of various spin-dependent E-X po-
tentials. (We must take into consideration that no
Pauli principle is applicable for a A-X system. ) Such an
approach will be free from the approximations involved
in the field-theoretic determinations of the A-S poten-
tial by the above authors. With these assumptions, the
coupled Schrodinger equations describing the hyperon-
nucleon scattering in the T=2 state have been solved
exactly and the well-depth parameter, scattering length,
and eGective range have been determined. Following
Dalitz, ' the binding energies of the A. particle in some of
the light hypernuclei have been calculated by means of
a central local potential having the same characteristics
for low-energy scattering. The main conclusion is that
the global symmetry hypothesis supplemented by a
nonlocal separable potential is in qualitative agreement
with the empirical results of Dalitz and Downs but it
fails to reproduce the observed binding energies of the
light hypernuclei considered in this paper.

Finally, we have abandoned the global symmetry
hypothesis (the failure of such hypothesis has been
pointed out by many authors in analyzing other strange-
particle data) and instead we have assumed in our
approach the restricted symmetry' of pion-hyperon
interactions (i.e., the Z, A couplings with pions are
equal but not the same as the pion-nucleon coupling).
We And that a nonlocal potential of the form used here
for the hyperon-nucleon interaction, satisfying the re-
stricted symroetry of the pion-baryon strong inter-
action, is quite tenable and the parameters of the inter-
action potential can be so chosen as to reproduce the
observed binding energies of the A hyperfragment.

6 Y. Yamaguchi and Y, Yamaguchi, Phys. Rev. 95, 1628, 1635
(1954).

r M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
"Note added crt proof The global symmetry .hypothesis is not

necessarily restricted to Yukawa type of couplings. One can cer-
tainly generalize it for more complicated couplings between the
baryons and the mesons and in this paper it is used in this general-
ized sense.

' J. Prentki and B. d'Espagnat, Nuovo cimento 15, 130 (1960).

Vs —1(3V' rr+ V' N)

Vz 1 (3V' tr+ V' rr)

VAE VXA lv3(V N V N)

(1)

(2)

(3)

where Vs~ (with T=1 and 0) is the nucleon-nucleon
potential in the isotopic spin state T.

Since we are primarily interested in the A-nucleon
scattering in the nucleus allowing the transition
AS ~ZE, it would be necessary to solve the following
system of coupled Schrodinger equations which de-
scribe completely the T=—,

' state hyperon-nucleon
scattering:

)1
~'+E~ I4~(r) = V'(r)lt ~(r)+V"(r)4~(r), (5)

&2t s

where if' and if' denote the h. nucleon and Z nucleon
(in T= —',) system and Es, pit, Er, and ttz denote the
respective energies and reduced masses of the system.
(We have chosen A=a= 1.) V~, etc., are defined in (1),
(2), and (3) above. The energies Et, and E~ are related
by

where 63f is the mass difference M~ —M~.
With quite arbitrary types of potentials (e.g., field-

theoretic, etc.) Eqs. (4) and (5) can only be solved by
means of numerical methods which are no doubt in-
volved. A way out of this difFiculty would be to assume
suitable type of potential forms for the V's so that one
may obtain exact analytical solutions whose advantages
can easily be realized. To this end, one may assume the
well-known Yamaguchi potential which is nonlocal but
separable. The implications of these assumptions in the
theory will be completely discussed in the following
section.

3. CONSEQUENCES OF THE CHOICE OF
YAMAGUCHI POTENTIAL

The Yamaguchi potential has an important char-
acteristic which should be noted. Ignoring noncentral

' D. Ainati and B. Vitale, Fortschr. Physik 7, 375 (1959).

2. FORM OF THE POTENTIAL BASED ON
GLOBAL SYMMETRY HYPOTHESIS

We define the potential for describing the hyperon-
nucleon (V-1V) scattering in T= sr state in the following
way: Vs describes the transition A+X+-&A+X, and
Vs the transition Z+1V+-+Z+E only in T=rsstate.
In addition to these, we should have two more poten-
tials V~~ and V~~ in order to describe the transition
A+X~Z+X. Assuming global symmetry of strong
interactions, we can easily connect these potentials by
means of the nucleon-nucleon potential. We have then'



G. RAJASEKARAN AN D S. N. 8 I SWAS

forces for a moment, consider the Yamaguchi potential
of the form:

(pl v le')

Evidently, such a choice is unrealistic, as P states of
Y-E system may probably be present even in light
hypernuclei; this is certainly the case when we go to
heavier hypernuclei.

= 2 V"*(&.,v.)V "(&., 2. )g(ll l)a(lp'I) (6)
fn=l

where the symbols are self-explanatory. If this potential
V~ acts on a wave function P, we have

4. DETERMINATION OF THE PARAMETERS
OF THE POTENTIAL

The well-known nonlocal separable E-3l potential
can be written in the momentum space as'

(I I vol p')4(p') d'P' (7) (pl V
I
u') =— g(1)g(12'),

AN

From (6) and (7), it is clear that because of the or-
thogonal properties of the spherical harmonics the
potential V& acts as a projection operator on f; it picks
out from P only that particular state having an orbital
angular momentum l. One can show in an analogous
manner that a Yamaguchi potential which includes
noncentral forces will act as a projection operator for a
state having a particular to/al angular momentum and
parity.

The above property leads to a significant simplifica-
tion in the hyperon-nucleon potentials as used in this
paper. Consider, for example, the spin singlet A-S po-
tential, which according to Eq. (1) is

where XN is the interaction strength and pN denotes the
reduced mass of the nucleon-nucleon system. For the
singlet spin state, where the potential has to be central,
we assume

We fix the values of XP and P„ the parameters for the
singlet potential from the low-energy 22-p singlet scatter-
ing. We require X+=0.1467 f ' and p, =1.158 f to fit
the scattering length and effective range: a, = —23.69 f
and r2, ——2.7 f. In the triplet state (where tensor forces
can occur) we assume the following form for the func-
tion g(p):

V A 1(3V %+V N) (8) a (1 )=~(P)+ ~(p) 2'(P),
8

Since the nucleons obey the Pauli principle, V&,N is an
even-parity potential while Uo, is an odd-parity po-
tential. Equation (8) therefore implies that in general,
information on both the parity states of the E-E
system is necessary for a discussion of the I'-E system
in any one parity state. However, if we choose the
Yamaguchi potential, then either U~, N or VO, N alone
will contribute according as the V-E system is in an
even- or odd-parity state, because of the projection
property mentioned above.

In the present discussion we will assume that in the
ground states of light hypernuclei, the relative motion
between the hyperon and nucleon will be predominantly
in the S state and so we are interested only in the even-

parity hyperon-nucleon potentials. Thus, because of the
assumptions of the Yamaguchi potential and the pre-
dominance of the S states in light hypernuclei, the
following simplified potentials will alone contribute
to our calculations (we have dropped the superfluous
isospin index):

where

C(P) = 1l(P'+Pi') T(P) = ~P'l(P'+7')—'

The parameters X&, P&, 1, and p could easily be deter-
mined to fit the following triplet-state properties of
the two-nucleon system, namely nzL= (2p»(B.E.)&j
=0.2316 f ', triplet scattering length a~=5.378 f, deu-
teron quadrupole moment Q= 0.274 f2, and D-state
probability in deuteron Pz 4/o. These req——uire

X N=0.249 f 3,

pt ——1.334 f ',

y=1.568 f ',

t= 1.784.

We now write the various hyperon-nucleon po-
tentials as

U,~= —'V,N,

U,~= -', V,~,

(V Az)2 —V kV z

U A —&V N

Vz —3UA

(V Az)2 V AV z

(9)

(10)

(11)

(12)

(13)

(14)

g(1)g(V'),
2IJ,g

(14a)

a(P)g(P')
2py,

(14b)

yAZ yah.

g(~)g(p'). (14 )
2pg 2p, g
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gAzltzAI(nz)

l4(P) =
(,6) I1—~'I(«))I1—7 I( z)]

li, ~= 4s(pg/p~)X, N=0.1193f ',

X,~=~(pt, /p~)X, N=0.0676 f '.

We note that pzk~z=pq) z~. The g(p)'s have the same Substituting (23) in (22) we get the homogeneous

form as written above. Using Eqs. (9) and (12), we integral equation for Pz.
get

and finally

~.'= s (t z/W)~. '
ltP=3(t z/tt~)&~',

(ltkz~zA) = (~~/~z)

From (10), (11), and (13), (14) we determine

(17)

g(P)
&& a(P')4~(P')d'p' .(24)

2 Qg2

(18) The bound-state solution fz for A-S system with real
«will exist only if the Fredholm determinant of (24)

(19) vanishes. Hence nt, must satisfy

7 '9,"I(«)I(nz)

&~a(P) g(P)A(P)=, A(P)=&z
p2+~ 2 p2+~z2

(p'+«')4~(p) =~'a(p) ~a(p')l4(p')&'p'
where Sg and Eg are obtained from

S. BOUND-STATE SOLUTIONS OF COUPLED
SCHRODINGER EQUATIONS AND THE II-~'I( )jLI-l'I( )jNONEXISTENCE OF HYPER- 1—) ~I np 1—X~I ny

DEUTERON
and the corresponding normalized solutions are

We write the coupled Schrodinger Eqs. (4j and 5
in momentum space as follows:

(25)

(26)

+&"g(P) g(P')A(P')d'p', (2o)

(P'+~z')kz(p) =l~'g(p) g(p')4z(p')d'P' and

XzsI(«)

1—XzI(nz)

Eg'I (ng)+Xz'J(nz) = 1,

+l~"g(P) ~g(P')4~(P')d'p', (»)
t a'(P')

I(n) = d'p'.
2 QI2 2

where Eq= o.q'/2—pq and Ez= —az'/2pq. From Eq.
(4a), using no= (2yzbM)' and p, =pz/&~=1. 03, we can The compatibility Eq. (25) reduces to
write

ctz'= no'+ pn~s. (20a) XsI(«)+XzI(nz) = 1,

yAz g(p)
l4(P) = g(p')4z(p')d'P', (22)

L1—&'I( )l (p'+ ')" X,~[l,(«)+spI, (nz) J=1-,

X,'LI, («)+3pI, (nz) (= 1,

(28)

(29)
and similarly lt z can be obtained as

Equation (20) canbeeasilysolvedintermsofgz, giving in view of the fact that gzAPAz QApz Eq~atio~ (27)
further reduces to the following by using (17) and (18):

g(P)
fz(P) =

i
g(P')l4(P')~'p', (23)

L1—&'I(~z)3 (p'+~")J
where

t a'(p') d'p'
I(u) =

(p~s+ns)

corresponding to singlet and trip]et states.
Vsing the parameters of the potential it is found

that neither (28) nor (29) is compatible for any real
value of e&. This shows that there does not exist any
bound system of A and nucleon. "We can check this
result by calculating the well-depth parameter of the
A.-E interaction defined by"

for singlet state
e.( +e.)'

1 t' (Sct'+4ny+y')
=7r2

~(+~)' 8 (+~)'
for triplet state.

(22a)

s=X~/lim X~(«),
a~~0

(30)

'0 It may be noted that the above implies also that there does
not exist any Z-lV bound system in T= 2 state. However, even if
it exists it can never be observed because of its quick transition
to the Jt -E channel and such a system is not bound. In our present
case we have not discussed the hyperon-nucleon interaction in
T=$ state at all."J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
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where X~(aA) is the value of X~ calculated from Eqs.
(28) and (29). If there is no bound state, s should be
less than unity. The calculated values are

s,=0.81, s&——0.69,

where the suKxes s and t denote singlet and triplet
nature. The above values confirm that with the present
choice of the potential supplemented by the global
symmetry point of view there is no hyperdeuteron and
they also show that the singlet state is more attractive
than the triplet one. Thus our hypothesis leads to re-
sults which agree qualitatively with those of Dalitz and
Downs. '

In the next section we calculate the binding energies
of the light hypernuclei by means of a suitab/e local
central potential supposed to be capable of producing
the parameters as predicted by our model.

6. BINDING ENERGIES OF LIGHT HYPERNUCLEI

Since the problem of the calculation of the binding
energies of hypernuclei directly using our nonlocal,
noncentral, and nondiagonal (because of the transition
AX~XX) is very involved, we proceed as follows.
First we solve the Schrodinger equations for AÃ scatter-
ing below the threshold for 5 production, and from this
we determine the scattering length a and eftective range
ro for A-E scattering. In light hypernuclei, one expects
that the A-X scattering will occur with low relative
momenta and hence the scattering length a and ef-
fective range ro wouJd be the only important char-
acteristics of the interaction. Therefore, for the purpose
of calculating the binding energy, we choose a local
central A-X potential having the same a and ro (Fol'.
comments on this procedure, see Sec. 8.) For heavy
hypernuclei, the A-E scattering can occur with large
relative momenta in which case the effective range
formalism will not do. Further, if relative momenta
larger than the threshold are involved, Z will be pro-
duced in the A.-X scattering process and then this Z can
again be scattered by some other nucleon. Thus, the
problem becomes complicated and it will be necessary
to treat the problem by means of Brueckner's G-matrix
formalism. However, we shall restrict ourselves to light
hypernuclei in which case these complications do not
arise.

%e therefore replace the coupled Schrodinger equa-
tions by the following pair:

l 'g(p)
(p) =&(p—k)+

p2 —k2 —jgJ

~"g(p)
+ . g(p')4~-(p')d'P', (31)

p' —k' —ie&

where a'=ao' —pk' factually the 8 function in (31)
should be multiplied by a constant; but we conveniently
choose it to be unity). The solutions of (31) and (32)
are immediately obtained as

A~(p) =&(p—k)
g(p)g(k)

and

where

g(p)g(k)
4r-(p) =

l 1—VIC(k) —X'I(a)) a'+p'

.g'(p')d'P'
E(k)=

p —k fe—

(34)

and I(a) is defined in Eq. (22a). In writing (33) and
(34) we have made use of (19).

The T-matrix element for A-Ã scattering is

(Ak'l &lAk) = c» *(p) (pl Vl p')+»(p')d'pd'P', (3&)

where k and k' are the incident and final momentum of
the A particle in the c.m. system. We denote by (p l

V
l
p')

a 2)&2 matrix and 0, C are column matrices. %e have

((pl v'I p') (pl v"
I
p') i

(pl~lp')=l
&(pl v" Ip') (pl v'Ip') &

]+»(p) & ]~(k'—p) &

0 )
Obviously C and + are the eigenfunctions of the free
and total Hamiltonians, respectively.

Using (33), (34), and (35), we have

(Ak'l rlAk) = g(k')K(k). (36)
21Jg L1—X~X(k)—X~I(a))

The wave functions (33) and (34) can now be written,
by using (36), in the following way:

(Apl rlAk)
A~(p) =&(p-k)+2u~

p' —k' —fe

(Apl rlAl)
4r-(p) =

X~ P'+a'

(3&)

We express the 2'-matrix element (36) in terms of the

and
l'g(p) t

4~-(p) = —
~ a(p')A-(p')d'p'

p2+a2 J

&"g(p) ~
g(p')4»(p')&'P' (32)

P2+a2 J
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phase-shift 8 and then from the effective-range ex-
pansion of k cotb we can easily determine the scattering
length and effective range. The results are Exponential potential

Singlet Triplet
Gaussian potential
Singlet Triplet

TABLE II. Parameters of equivalent potentials.

p P4 yzps

u, 2 2mB,.» 2X, »( npip, )'
(39)

Vo (in Mev)
c (in fermis)

90.46
0.60

90.23
0.52

25.87
1.76

25.20
1.37

2X,xP.

P4f2 )I Zpc pc'
+ +

a( 2 2n-o)I, » 16'' 2XP (ap+P g)'

t' XP P~4(5np'+4npeiy')

t6X,~ v(no+7)'

2P 2 ~2P 2(PP+2+2)
ro~=—+

pg pr9. g» Sy'

)I zp p

&p(noip~)'

) Zf2P 4(2
x1 —+ .( .+p,)»),'7( +v)'

1 2P' 4*I»p'
ro, ———+

p, m'X. » X, »( np+p, )' X, »np(ap ip, )'
Adopting the same method as used by Dalitz and

Downs and Lichtenberg and Ross we calculate the
binding energies and the results are given in Table III.
The potential shapes used in respective nuclei have
been mentioned by the side of the calculated column.
Our results (see the last column) clearly indicate a large
binding energy compared to the experimental values.

(41) We thus see that a nonlocal potential in conjunction
with global symmetry is not a valid model for hyper-
nuclei. In the next section we abandon the global sym-
metry hypothesis but retain the nonlocal Yamaguchi
potential as the effective A-X potential.

V. COMPATIBILITY OF THE RESTRICTED
SYMMETRY MODEL WITH HYPER-

NUCLEAR DATA

/2 2y
!&& (3np'+4npy+yo)1 —+

E pp np(no+a) )
2' )—

1
5~+ I, (42)

ao&

where a and ro are the scattering length and effective
range and the sufBxes denote singlet and triplet,
respectively.

Using the numerical values of the various parameters
from Sec. 4 in the right-hand side of (39)—(42), we get
the va/ues of a and ro given in Table I. We are now in a
position to calculate the binding energies of the light
hypernuclei. Equivalent local and central potentials
which would regenerate the above a and ro parameters
are here assumed to be of exponential or Gaussian types:

V(r)= —Vpe "' (exponential)

V(r) = —Vp exp( —r'/c'), (Gaussian).

The parameters Vo and c should be such as to predict
the values of a and ro given in Table I. The numerical
results for these are given in Table II. We note here the
longer range of the singlet potential compared to that
of the triplet.

Under the restricted symmetry hypothesis of the
strong interactions it is easy to see that the various
potentials V~, V~, and V~~ defined in Sec. 2 for
AX~AN, ZX~ZE (in T= rpstate only), and A.X~

transitions, respectively, satisfy the following
relations:

Vz 1V» Vz 3V» V»z —~3Vz
V»z ~3V» (43)

The nonlocal shape of the potentials are still the same
as has been assumed in Eq. (14a)—(14c). However, the
tensor part is now dropped from the triplet potentials,
since it introduces too many unknown parameters. In
this model the parameters X and P occurring in the
potential function can no longer be determined from
nucleon-nucleon data. Hence, to decide whether the
present model is compatible with the hypernucJear
data, it is necessary to see whether the scattering length
and eGective range as required by Dalitz and Downs to
Gt the binding energies of light hypernuclei with a
suitable over-all centra) potential, could be obtained
with admissible values of the interaction strength X and
a range parameter 1/P of the nonlocal potentia].

Using the potential stated in (43), we easily obtain
in the same way as before, the following algebraic equa-

TABLE III. Binding energies of A in light hypernuclei.

TABLE I. Calculated values of scattering length
and effective range.

Hypernucleus
Experimental B.E.

(in Mev)
Calculated value

{in Mev)

8
fp

Singlet

—6.9 f
3.0 f

Triplet

—1.4 f
3.4 f

AH3
AH4
AHe4
AHe'

0.12&0.26
2.20~0.14
2.36~0.12
3.08&0.09

1.06 {exponential)
4.46 {Gaussian)
4.46 {Gaussian)
8.17 {Gaussian)
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TAsr, E IV. Semiempirical parameters of Dalitz and Downs,

8
fo

Singlet

—2.72 f
1.92 f

Triplet

—0.53 f
3.67 f

tions for p and X

p p4 )tzps

a 2 2w9ts 2)~s(np+P)'

2p' 2Xsp Xzp'1z
re= +-

p 7r9," Xs(np+p)' X'np(np+p)'.

(44)

TABLE V. Potential parameters fitted to give the a and ro
of Dalitz and Downs.

Singlet

1.92 f '
0.478 f '

Triplet

1.80 f '
0.145 f '

'2 In fact, Dalitz has assumed the ranges of the potentials from
semitheoretical considerations and determined only the strengths
of the potential from hypernuclear data. Hence, the values of ) ~

and 8 which we have determined should be regarded as only one
of the possible sets which reproduce the observed binding energies.

"M. L. Gupta, Nuovo cimento 16, 737 (1960).

where Xz/X~ is izj3 and 3p, for singlet and triplet states,
respectively. The values of a and ro corresponding to
the Gaussian central potential determined" by Dalitz
and Downs from hypernuclear data are given in
Table IV.

Using the numerical values of u and ro from Table IV,
we can solve (44) for P and Xs. Obviously there again
exists a number of possible solutions. A set of acceptable
solutions are given in Table V.

We thus conclude that restricted symmetry hy-
pothesis is consistent with the present hypernuclear
data. It may be remarked here that a similar conclusion
was also reached by Lichtenberg and Ross'4 for the
present problem; however, their discussion is based on
a potential obtained from the field-theoretic treatment.
We may further point out that recently in analyzing the
E -nucleon interaction data, Prentki and d'Espagnat'
and also Gupta" have shown that the restricted sym-

metry model is quite successful in explaining the data
where one knows in advance that global symmetry
falls. i4

8. FINAL REMARKS

It should be remarked that the conclusions drawn in
this paper are not completely free from objections be-
cause of the number of assumptions made in the
calculations. First, the low-energy A-N scattering pa
rameters deduced on the basis of global symmetry will

depend also on the high-energy behavior of the N-N
scattering because of the possibility of the transitions
AS+-+ ZN which involve the rather high-energy change
=75 Mev; therefore, before giving a final judgment,
one has to see whether the separable nonlocal N-N
potentials fitted to low-energy N-N data can also satisfy
high-energy N-N data. Secondly, it is necessary to
establish that the shape-independent parameters such
as scattering length and effective range alone are
significant for the calculation of the binding energies of
light hypernuclei. It has long been known that in the
case of the normal triton, the results for the ground-
state energy are highly well-shape dependent. Most of
the present-day calculations on hyperfragments suGer
from this uncertainty. Next, the e6ects of three- and
many-body forces between A. and nucleons have been
neglected. The calculations of Weitzner" and Spitzer"
suggest that there could be an appreciable e6ect of
three-body forces. However, it has recently been shown

by Liul'ka and Filimonov" that such effects are quite
small and negligible. Finally, for a rigorous demon-
stration of the validity of the restricted symmetry
hypothesis we must calculate the stimulated decay of
A in the hyperfragment, realizing that the decay can
go partially through Z-decay channel. This evidently
requires the knowledge of the relative probabilities of
A. and Z in the hypernucleus, which can be calculated
from the solution of the system of Schrodinger equa-
tions using the potentials (43).

'4 A. Salam: Ninth Annual International Conference in High-
Energy Physics, Kiev, 1959 (unpublished); also his lecture at
47th Indian Science Congress, Bombay, 1960 (unpublished); M.
Ross and G. Shaw, Phys. Rev. 115, 1773 (1959);T. Sakuma and
S. Furui, Progr. Theoret. Phys. (Kyoto) 23, 522 (1960); and
S. S. Saxena and S. N. Biswas, Nuovo cimento, 17, 749 (1960).

"H. Weitzner, Phys. Rev. 110, 593 (1958)."R.Spitzer, Phys. Rev. 110, 1190 (1958).
"V. A. Liul'ka and V. A. Filimonov, Soviet Phys. —JETP 37

(10), 1015 (1960) (translation).


