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Magnetic Moments of the x and x Hyyerons*

KATSUMr TANAKA$

Argonne National I.cboratory, Argonne, Illinois

(Received April 25, 1960; revised manuscript received September 20, 1960)

A relation among the magnetic moments of Z+, Zo, Z, and A. is obtained as a consequence of the proposed
symmetries of strong interactions, a minimal electromagnetic coupling for the electromagnetic interactions
being assumed. The magnetic moments of the A and Z hyperons are calculated with the aid of mass spectral
representations in which only the contributions of the bound states are taken into account. The present
calculation of these magnetic moments are compared with various other calculations. Remarks are made
on the possible experimental values.

1. INTRODUCTION

HE measurement of the A magnetic moment p~
and the Z magnetic moments p+, p, , and p, o will

offer insight into the symmetries of the strong inter-
actions within the framework of current 6eld theory.
We shall first discuss pq. So far all estimates on the
values of p& based on perturbation theory point to a
small value. "In particular, it has been shown rigor-
ously under very general assumptions that p&=0 in
the limit in which the mass differences among the
baryons are neglected. '

The analysis of the nucleon magnetic moment by use
of spectral representations has revealed that pertur-
bation theoretical results are unreliable. 4 ' This treat-
ment suggests that the necessary modifications of the
perturbation treatment (which are also valid for the ps)
are that the baryon-current contribution to pq should
be neglected, and that the structure of the emitted
boson and the rescattering terms (contributions other
than that from the one-baryon poles) of the E current
be taken into account. The E-current contribution is
formulated in terms of AE scattering. Further, when
the E-current contribution from the baryon poles is
expressed as an integral over the square of some mass
variable over the range from (2p)' to ~, p being the
mass of the E meson, the integration should be carried
from (2p)' to the physical threshold (2M)', where M
is the mass of the A hyperon. These suggestions based
on arguments of unitarity have been discussed in detail
by Federbush et al.5

When the mass variable exceeds (2M)' one can
formulate the E-current contribution in terms of the h.
pair annihilation into two E mesons. The h. pair of the
matrix element for the pair annihilation are in '5~ and
'D& states, in analogy to the case of the magnetic
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moment of the nucleon. The magnitude of the contri-
butions from these states is limited by unitarity, so
that one can set an upper limit to the E-current contri-
bution for the range from (2M)' to ~. If one considers
the contribution from the baryon poles, the unitarity
condition is violated. The violation for the contribution
from the ~-meson and pseudoscalar E-meson currents
to the n1agnetic moments of h. and Z is smaller than for
that to the magnetic moment of the nucleon, and the
violation for the scalar E meson is approximately the
same as for the latter.

The A. and Z hyperons involved in a strong interaction
may be considered as a bound state of two particles.
In the loosely bound case, there is an anomalous
threshold that gives rise to an additional contribution
to the magnetic moment. There is no anomalous
threshold for the cases h. —+Z+E, Z —+ "+E, and
Z ~Z+a, but there is one for the cases A —+ E+E,
Z ~E+E, and Z —+A+7r. Rough estimates of these
additional contributions to the magnetic moments are
111ade.

Let us examine how we may make maximum use of
the information gained above in the calculation of the
nucleon magnetic moment and eRect an evaluation of

p+, p, po, and pq on the basis of spectral representations.
The largeness of the rescattering terms for the nucleon
magnetic nioment is due to a resonance in the pion-
nucleon scattering. In the present case, one needs the
dispersion relations for (A,E) scattering. Since no
reliable method of evaluating the rescattering terms
has been found, and no possible resonance of (A,E)
scattering is known, we shall henceforth ignore this
contribution. Further, no information is available on
the structure of the E meson, although such structure
may increase or decrease the value of pq obtained for
a point E meson, so that any detailed analysis with
some arbitrarily assumed structure for the E meson
does not appear to be meaningful.

This leaves only the possible modification of the
E-current contribution or the contribution from the

~
2E) state. This contribution arising from the poles of

the cascade particle and the nucleon E is integrated
over (mass)' from (2p)' to (2M)'. The analysis will

necessarily be exploratory because of lack of detailed
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experimental data. The essential features that emerge
from the analysis, however, are expected to survive.

In Sec. 2, a relation among the magnetic moments of
A and Z hyperons is obtained from symmetry argu-
ments. In Sec. 3, the method is outlined and an expres-
sion is obtained for pp, which is evaluated in Sec. 4.
In Sec. 5, the magnetic moments of Z hyperons are
evaluated and finally some remarks are made in Sec. 6.

2. MAGNETIC MOMENTS OF A. AND
X HYPERONS

On the basis of charge independence, Marshak et al. ' '
have shown rigorously that the sum of the magnetic
moments of Z+ and Z is equal to twice that of Z', i.e.,
Aa++ p = 2ps. Using the method of Feinberg and
Sehrends' and the doublet representation of Gell-
Mann and Pais in which I=

~ is assigned to all baryons
and I=O to E+ and E', we shall show rigorously that

Here, E is a component isotopic spinor for the E
meson' and + is an isotopic vector for the x meson. The
reason for writing H, in three parts is that the three
parts transform differently under the transformations
considered below. The quantity

r„(A)= T&A(x)A(y)A„(s)&s 6)

is related to the electromagnetic vertex operator for A,
where T is the time-ordering operator and ( )p desig-
nates the expectation value in the physical vacuum. '
Since I"„(A) depends linearly on A„, one can consider
the transformation of the three parts of H, separately
so long as H, remains invariant under the transfor-
mation.

In order to obtain relations among the F„, let us erst
consider the conventional isospin rotation. The trans-
formation is not the isospin rotation for the doublet
representation.

9++9 =2po = 2—ps.

The interaction Hamiltonian adopted for x and E
mesons is

H.=s[G,N, ~y,N, +G(Ns~ysNs+Ns~yP s)
+G4N4~ysN4]~, (1)

g~ —& ei-'~~2gq

i s+T'2

ei ~7rT2g
2

g4 ~ ei:~»g4

or p~e, e~ —p,

or Z+~ —Z I"—& Z',

or Zo~ Vo Z~ Z+

or ~+o —+ ~& ~ —+ —~o (7)
and

Hlr FgV2[(N, r——)rNs)E'+ (NimNs)K+]
+Frr&2[(Np]rrNs)K+ (N4gnNs)K—']+H c, (2)

7l e 7F or m-+ —& —m,

or E+—+ E',

vr —+ —5+)

zo —+ —xo

E' —+ —E+.
where A=c= 1,

H, =H +Hs+H„
where

)p) (Z+y ]Z'y (
I

N4=I
(~) '

& Fs) EZ-) '
E=--& (3)

Z'= (A+Z')/v2, F'= (A —Z')/v2,

the symbol of a particle denotes the field operator that
destroys it, and H.c. stands for Hermitian conjugate.
The assumptions underlying Eqs. (1) and (2) are that
all strong interactions are charge independent, the
present baryon spectrum and its isotopic spin assign-
ments are correct, the baryon spins are ~ and the E
spin is zero, the (Z,A) parity and (Ke,K+) parity are
even, and the (Z,A) mass difference can be neglected.
The factors gz and qadi stand for 1 or iy5.

The minimal electromagnetic interactions H, of the
baryons and mesons to order e are

(4)

The strong interactions given by Eqs. (1) and (2) are
invariant under transformation (7) since they are
charge independent. The H, part of H, is also invariant
under (7) provided A„~A„. One thus obtains relations
among the contributions of H, . The H~ and H, parts
of II, are invariant under transformation (7) provided
A„~ —A„. This yields relations among the contri-
butions of Hs and H, . The contribution of II, to F„(A),
for instance, will be denoted by T&AAA „)p= (A), . Then
we have

r„(A)=(A).+ (A),y(A), .

Let U be the unitary transformation that generates
the transformation (7) and that leaves the vacuum
invariant. Then, for instance,

(Z+).= T&Z+Z+A „)s' T(UZ+Z+A „Ui'&——s'
= T&Z-Z-A„&, = &Z-)..

In a similar manner, transformation (7) leads to

r (Z+) = &Z+).+&Z+),y&Z+)

F(Z-) =(Z').-&Z'& -(Z'&.,

1 (Z') = &Z').,

r(A) = &A)..
The Hs and II, do not contribute to F(Z') and I'(A)
because of cancellations.

It is convenient to use the shorthand notation E= « for

the singlets E+ and E in the following equations.

H = sie[N, y„N~ N4y„N4]A„—
+ ',ie[KB„K 8~K]-A„, —

Hs= ,'ie[¹y„Ns Nsy„N-s]A„—
( )+,'ie[KrsB„K B~rs-K]A„—

H, = ',i e[Ny„rsN1+Nspsr—sNs+Ns+s7 8Ns

+N4y„rsN4]A „+ierrTs8„7rA„
6R. E. Marshak, S. Okubo, and K. C. G. Sudarshan, Phys.

Rev. 106, 599 (1957).
~ M. Gell-Mann, Phys. Rev. 106, 1296 (1957).' A. Pais, Phys. Rev. 112, 624 (1958).
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The second transformation which leaves B and B~
invariant is given as

E ~ei:~~'E

g, ~ g'l~»g,

g3 & giamTQ7

g ~ ~i)m T2g

8 X'

or p~N,
or Z+ —+ I",
or Z'~ Z,

P

or ++~ —x,

go~ g+

~ —Zo,

~Q
(10)

with the aid of conservation of charge.
We obtain from Eqs. (9) and (11) the relation

I'(Z )++ P(Z
—

)=2P(Z') =2I'(A), (12)

and, in particular,

ii++0 =2IJs=-2P&. (13)

As stressed previously, this relation is rigorously true
to all orders in the strong interactions. ' ' It has been
proved under the assumptions of charge independence
of the strong x and E interactions and symmetry
between the Z and A. hyperons. The latter assumes
that the (Z,A) parity is even and that the (Z,A) mass
difference, the smallest such difference in the baryon
system, can be neglected. In the following calculation
of p&, the A. hyperon is regarded as an isospin singlet
(I=0).

3. METHOD

The linear interaction of the A hyperon with the
electromagnetic 6eld can be expressed in terms of two
real scalar functions F(q') and G(q'), where q' is the
square of the energy-momentum four vector. The
charge form factor F(q') and the magnetic form factor
G(q') are normalized such that

F(0)=0 G(0) =fi . (14)

The magnetic form factor G(q') can be represented
by an expression such as

1 f
" g(m')

G(q') =— ~ dm'
~ ~ (s„.). m'+q' —ie'

(15)

where the variable m' represents the square of the mass
of the various intermediate states through which the
photon-h. interaction is effected, and the limits of

' In the doublet representation, transformation (10} is the
isospin rotation exp/is-Ta""'g.

or E+—+ E+ Eo~ Eo.

This is essentially the product of the transformation
(7) and the Xs —& Ps symmetry discussed by Pais. '"
Moreover H, and Hs are invariant under (10),provided
A„—+A„. The H, is invariant under (10) provided
A„~ —A„. Transformation (10) leads to

integration will be explained later. The charge form
factor F(q') can also be written in a form similar to
Eq. (15), but it will not be considered further.

The weight function g(nz') in Eq. (15) is calculated
from4

I„=u(p') fig„ ImF(q')+o„„q„ ImG(q') jl(p)

d'& &(q+&)(P' I f(0) I »)(»
I j,(o) I 0)si(P), (16)

e J

where

f(~) = ( V.'~—/». +M)lf (~), ImG(q') =a(—q')

The initial and final h. hyperon momenta are designated
by p and p', respectively, and q= p —p'.

The states that enter into sum in Eq. (16) must
have nucleon number zero, zero strangeness, and zero
charge, and thus must consist of x mesons, an even
number of E mesons, and baryon pairs of zero strange-
ness, First let us examine the states with x mesons.
From G invariance one knows that the isotopic scalar
part of j„contributes to (s I j„I

0& for states having an
odd number of m mesons, whereas the isotopic vector
of j„ involves states with an even number. Since the
h. hyperon has I=O, only states with an odd number
of mesons contribute to (sI j„IO). The state with one m.

meson does not contribute because of invariance under
charge conjugation.

The less massive states that contribute to p,g are the
states with an odd number of n. mesons (up to seven),
and next comes the state with two E mesons. Under
the present assumptions the x-meson states have been
found to give a contribution of —0.06e/2M to qadi.

"
This contribution will be added to the E-meson
contribution of the pq. The contribution from these
states vanishes when M„-.=M~ with suitable equalities
among the coupling constants. ' Let us now examine
the contribution from the

I
2E& state, since this compu-

tation will offer a direct comparison with previous
calculations of pq.

Before going on to the determination of the weight
function, let us discuss the limitation due to unitarity
in the range nP&4M' of the dispersion integral (15).
This can be studied according to the FGT method,
suitably generalized to the present case.

Let Ps and PD be the S-matrix elements for produc-
tion of a p-wave E-meson pair by a hyperon pair in
the 'S~ and 'D~ states, respectively. For the region
m'&~ 4M', the unitarity condition yields

I ps
I ~ I pn I ~~1.

One can formulate the quantity g(m') of Eq. (15) in
terms of Ps and Pn, put Ps ——1, Pn ——0, double the result,
and obtain an upper limit on the contribution coming
from m'~&4M' when evaluating Eq. (15). We then find
that for pseudoscalar E mesons and g„-.~'=g~~'=10,
the calculated magnetic moments of A. and Z receive

"G. Feinberg (to be published}.
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too large a contribution for m2~&4%2. This indicates
that the limit placed on IPBI and IPiil by considerations
of unitarity is violated by a factor of 1.5 to 2. This
factor is less than that involved in the calculation of
the magnetic moment of the nucleon. " For scalar E
rnesons and g-. ~2 ——g~~2=10, the unitarity limit is
found to be violated by a factor of about 4.

If one uses a smaller E-meson coupling constant,
the violation will appear to be still less significant but
the maximum contribution from the region m2&~4M2

is probably overestimated so that the violation of
unitarity will persist. In any event, because of the
possible smallness of the E coupling constant compared
to the x coupling constant, the violation of unitarity is
less significant for the present case than in that of the

magnetic moment of the nucleon.
The weight function gs~(m') of the

I
2K) state,

adapted to the present case, is given as"

1 p do' ImJ(o')
g.~(~')= IF~(~') I'- ~

z- J (gs+ms se)Fir(0.s)'

where a=4li'[1 —(y'/4M')7 and Frc is the E-meson
form factor. Here J(o') is an appropriate projection of
the amplitude for the process &AAIKE). We shall
make the assumption of a point E meson, in which
case g&rc(es') ~ J(rn') may be obtained from Eq. (16).

The evaluation of the I2E) state is very similar to
that of the I2z.) state for the nucleon magnetic mo-
ment. One finds from Eq. (16) for the

I
2K) state,

E„(2K)= ——,'z.g(2z)—' ~d'qid'q, 5(qi+q, +q)J
x&p'lf(o) lqij, qs~)&qi j,qs~l j.(o) l»N(p) (»)

An isospin treatment similar to that for charged m

mesons is used for the E mesons. Substitution of

where &p'I f(0) I qij, qsk)n(p) =(p'I f(0) I qiK, ,qsKs)n(p)
has been used. The first and second amplitudes on the
right-hand side of Eq. (19) are related to the (K,A)
and (K+,A) scattering amplitudes, respectively. By
writing

(p', q,K—+I Tl p, q,K+)
= (—~++/V Q B+)/(4wiws)'*, (2o)

and
q= q—i+qr~ Q= s (qi —qs)i P= z (p+p )~

one gets

I„(2K)= —(e/4rr') d'qi d'q s5(qr+qr+q) (4wiws) '

XQ„{(A A+) —r'y„Q—„(B=B+)). (21)

The dispersion relations for (K,A) and (K+,A)
scattering can be constructed in a similar way to
(K,1V) scattering. The (K,A) scattering has a bound-
state contribution at the mass of the negatively charged
cascade hyperon M-. and (K+,A) scattering has a
bound-state contribution at the mass of the proton
M~. %e shall neglect the contributions that come from
the additional states and confine ourselves to the
bound-state contributions.

The dispersion relations obtained in a standard
manner for pseudoscalar interaction [meaning that the
(A K) and (AEE) couplings are pseudoscalar7 are

A —A+=A-. —Ay, B B+=B-. BN—, (22)—
where

A rr ',Frrs (M Mrr)————
(P+Q)'+Mrr'

(23)
(P—Q)'+Mrr'

qs. (22) and

(23) into Eq. (21) and obtain gsrc(rn') which in turn is

put into Eq. (15) to find pq. Since the relevant contri-
bution is from (2p)' to (2M)', the integration is carried
out to a finite upper limit 1.2. Since the algebra is similar
to that of Chew et al. ,

4 it will not be repeated here.
The result is

I„(2K)= ,'e ~d'qrd'qs 5(q, +q&—+q)(q, q,)„—
x[&p', —

q K-l&lp, q K-)
—&p', —qsK+I Tl p, qrK+)7/(4wiws)'*, (19)

&qij, qs&I j.(0)I» 1 1
1 2

ie(qi —qs) „(6;—iles 5;s5gi)—/(4wiws) l, (18) &= s H'

( ),
in which a E-meson form factor has been replaced by

The remaining steps are to substitute Euni y, in o q, , yie s

gez'
Ized(H, /) = {(1 3n+3« —4d) (l —e/l) l+ (—1+« e) (/' le)'/(/ 1—)+2[(—«—n) («——n —«') —n7[ln(n/2)

2M Sx
—ln((l' —le)'+l —(e/2))7+[( ,'« n —3—«n—+—zs«'+—,'n'+28(1 -«+n))((l ——1)/l)&+(i+« 3e 5«n—+s«'—

+zn' —2d (1+«—n))(l/(/ —1))~+ (—-,'—«+e+«e —-,'«' —-', n') (/s —/) l/(/s —1)7 ln[(l —-'(1—«+e)

+((l—1)(l n)) l)/(l« —e+4 (1 —«+n)')&7—+4[«(1 «) («& «)—+n( 1—+«'* «+—2«& 3«')— —
+n'(2 «l+3«) n'7(4n —(1—«+n—)') '* cos —'[l(e—1+«)'/n(4/«+e' —2n(1+«)+(1—«)')7r). (24)

' The author would like to thank Dr. P. Federbush for a communication on the FGT method.
's W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 565 (1959).
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The processes that have an anomalous threshold are not treated differently but Eq. (24) is correct for all processes.
The correct branch is chosen as in reference 1. Where we have put

gH z'= F~'/4', l =L'/4M', n = IJ,'/M', and a =MII'/M'.

The notation pz(H, /) represents the H-baryon contribution to pz, with the upper limit 1. From Eqs. (14), (15),
(16), (21), and (22), pq(l) is expressible as

p~(f) =p&(,f) p~(—&,l). (25)

Equation (24) may be applied even when the intermediate baryon has a different mass from the initial one
and when the upper limit has any arbitrary value /. We have obtained p& for the pseudoscalar coupling, but pz
for the scalar coupling can be obtained by the replacement z' ~ —8 in Eq. (24). Equation (24) can also be used
to find the rescattering terms in an effective-range approach, although these terms are neglected here.

4. EVALUATION

In order to compare our results with those of perturbation theory, we take the limit l ~ co in Eq. (24) and get"

gHZ
pq(H, ro) = {1+2(lr—n —Ir') —[(Ir—n) (a—n —d) —n] ln(s/n)+2[it(1 —g) (x&—~)

2M 47r

+n( —1+It' It+—2~'* 3ir'—)+n'(2 d+—3x) ns]—[4n (1——Ir+n)'] & cos '[(n 1+—a)'/4nir]&) (2.6)

It has been shown by a rigorous argument based on unitarity that when the coupling constant is su%.ciently
large the perturbation theory is wrong for L' larger than 4M' or for l ~) 1.The integration of ljq(H l) should therefore
be cut off at1=1 so that

pq(H, 1)= (e/2M) (gHrr'/47r) {4(1 n)*'[s—+It zl n—sa—(1+—g —n) ']+[(It—n) (It—n —It**)—n]
X [inn —in[2 (1—n) '*+2—n]]+2[a (1—«) (~i—~)+n (—1+a* ~+2al 3~')+—n'(2 a'*+3—~) n']—

X [4n —(n+1—~)'] '* cos '[(n—1+a)/(1+~ —n)n'*]). (27)

The numerical results are obtained by neglecting the
mass differences within the baryon multiplets and using
the observed mass values M~=939, M=1115, Mg
=1315, and @=496 in units of Mev. The numerical
values of p~ for the case l= ~ which corresponds to
that of standard perturbation theory and the case /= 1,
together with that of static cutoff perturbation theory, '
are shown in Table I. Although there is no compelling
reason, the rather large value g-.~'= g~~'=10 is used.

When we add the m-meson contribution of —0.06e/
2MN to the third and fourth rows of Table I, we obtain
for pp p and pq, the values —0.083 and 0.54 nuclear
magneton, respectively. The following discussion on p&

is based on the values given in Table I.
The value of p~ is due to the differences in the M~

and Mg masses, since we assumed that gg~=g~~. It
is therefore expected that the magnetic moment would
be small compared to that of the nucleon. The values
of ps(™,ao) and pq(X, ~) are in agreement with stand-
ard perturbation theory. '

For the pseudoscalar coupling, the pq(g, 1) and
Ijz(E,1) contributions are only about a third or a
quarter of pz(, ~) and pz(N, ~), respectively, but
p~(1) is larger than Ias(oo) and both are negligible
even for gg~'= g~~'= 10.

'4This expression is in agreement with the value of pp(H, ~)
obtained in reference 1. It can also be obtained by the method
which is the relativistic generalization of the cutoff meson theory
discussed by S. Okubo, Nuovo cimento 4, 452 (1957); and K.
Tanaka, Phys. Rev. 109, 578 (1958).

TABLE I. Summary of values of p~ in units of e/2MN for pseudo-
scalar (ps) and scalar (s) coupling with g.rr'=g~x'=10.

E coupling ps(, l) Iis (N, l)

4p,2~ ~ Pert.
theory

4p2 —& 4M2

Static cutoff
theory

pseudoscalar
scalar
pseudo scalar
scalar
pseud oscalar

0.272—0.834
0.057—0.303
0.13

0.279 —0.007—1.522
0.080 —0.023—0.901
0.30 —0.20

0.69

0.60

"As the range of interaction is reduced, the critical radius
which de6nes the region of ignorance is likewise reduced. This
critical radius corresponds to the momentum cutoff in momentum
space.

There is a remarkable discrepancy in the values of
p~ obtained by the present theory and by the static
cutoff theory. This can be understood in the following
way. In the static cutoff method, the same cutoff value
(essentially the mass of the A particle) was used for
both contributions. The pq is the difference between the
E-current contributions in the virtual processes h. —+
E++ and h. —+E +p. In the process A —+E++
the reduced mass of (E, ) is larger than that of (E,A).
The latter reduced mass corresponds to the case in
which the intermediate baryon had the same mass as
the A. hyperon. Thus the range of interaction is reduced
so that a higher momentum cutoff" is required in the
contribution ijq(, l). By a similar argument, a smaller
momentum cutoff should be taken for the process
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TABLE II. Contribution to the anomalous magnetic moments
of Z hyperons in units of e/2M& from s- and Z mesons for g

2

=g-z =gxx =10.

px(Zs-, l) px(hs, f) pr(, l)
Coupling ps ps ps s

4' ~ ~ Pert. 0.467 0.531 0.266
theory

4p.' —+ 43xIv~ 0.259 0.326 0.067
—0.915

—0.396

pr(&, f)
ps s

0.275

0.092
—1.876

—1.280
Static cutoff 0.56

theory
0.56 0.13 0.42

A ~ E +p since the reduced mass of (E,1V) is smaller
than that of (E,A). This adjustment (in the cutoff)
that is perhaps necessary for a static cutoff theory
would increase the value for pq(",1) and decrease the
value of ps(cV, /) in Table I. As shown in reference 2,
the respective values depend very sensitively on the
cutoff value so that a dramatic cancellation is expected
to bring about an agreement.

For the scalar coupling, one has values of p~ that are
measurable if the E-coupling constants are as large as
the m-coupling constants. "

The most reliable expression for p& is given by
Eqs. (25) and (27). The magnetic moments p~, p, and
ps are expressed as a sum over such terms as Eq. (27),
and their numerical values are obtained in Sec. 5.

where
p+=A+8, p =A 8, pp=A, — (2g)

A (l) =px(. ,l) —px(X, l). (29)

In order to obtain 8(l), the third component of a
vector in isotopic-spin space, one must carry out an
expansion of the type in Eq. (16) for the ~Z) state.
The ~27r) state is the configuration with lowest mass
that gives a contribution to B(l). Then the

~

2E) state
is reached if the states with many m mesons are neg-
lected. The contributions from the ~27r) and the ~2E)
states are related to (7r,Z) and (E,Z) scattering,
respectively. Again, considering the bound-state contri-
butions, one can find that

5. MAGNETIC MOMENT OF THE X HYPERONS

The magnetic moments p+, p, and po can be found
in the same spirit as for pz(l). One finds from Eqs. (9)
and (11) that

that m mesons are pseudoscalar and the relative (Z,A)
parity is even, so that there is no scalar z-meson
contribution. The numerical values are obtained using
the observed values M~=1192 and p„=139.6 in units
of Mev and are tabulated in Table II. For the m-meson
contributions in Table II, p denotes the mass of the ~
meson. The 7r-coupling constant g '=G'j4s. where G
appears in Eq. (1). The respective contributions for

are in agreement with standard perturbation
theory. '

The magnetic moments obtained for the Z hyperons
by use of Table II, from Eqs. (28), (29), and (30), and
from the static cutoff theory' are given in Table III.
The values of the magnetic moments in Table III do
not include the fourth-order meson contributions that
were included in reference 2.

6. REMARKS

We have made an estimate of pg on the basis of the
~2E) state. The possible contributions from the m-

rneson states have been found to be of the same order
of magnitude as pq„, given in Table I."The value of
pq when this contribution is included is also given after
Table I. In the analysis of the

~
2E) state, the structure

of the E meson and rescattering terms were not
considered. It is argued that any analysis of p& with
these two items should be postponed until some
experimental data on the E-meson structure and (E,A)
scattering become available and a reliable method of
computation with such data is found. Moreover, the
main features of the present analysis of p~ based on
the bound-state contributions are not likely to be
altered by the proper treatment of these items. ' A
reason is that p,~ is the difference of two terms so that
such modifications would perhaps tend to cancel out.

The magnetic moments of the A and Z hyperons have
their normal contribution from absorptive processes
that correspond to the threshold for the creation of
real particles. When the A hyperon, for instance, is
considered as a composite particle consisting of E and
E, a certain mass inequality (indicating that the h.

hyperon is loosely bound) gives rise to a structure
contribution. '~ The threshold of this contribution is

TABLE III. Magnetic moments of the Z hyperons in units of
g/23I~ for g 2= g-~'=g~~'=10

where pz(Zm, l) and pr(Am, l) express the contributions
from the intermediate ~Z) state and ~A.) state in (s.,Z)
scattering, respectively.

The four terms on the right-hand side of Eq. (30)
can be computed from Eqs. (26) and (27). It is assumed

Static cuto6
theory

1.37

E coupling ps

4p~ —& 00 Pert. 1.53
theory

4p,' —+ 4M'
—0.83

—0.21

ps

—0.01

—0.025

0.29

0.96

0.88

ps

—1.55
2.75—0.77
1.97—1.91

"The A magnetic moment will be measured in the near future
by an Argonne group (W. Kernan, T. Novey, S. Warshaw, and
A. Wattenberg) and a Brookhaven group (D. O. Caldwell, R. L.
Cool, D. Hill, R. O. Jenkins, T. F. Kycia, L. Marshall, and R. A.
Schluter).

'r R. Oehme, Nuovo cimento 13, 778 (1959);R. Blanimnbecler
and Y. Nambu (to be published). These articles have references
to previous articles. The author is indebted to Professor Nambu
for a discussion.
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F(O,M) =
I'o' t-' ' a(M, y)

27I . ~4Mir

where

+ dy, (31)
~ s(ia') y(4M'y —y')'*

2 L(4M' —y) (y —4M')]*
a(M,y) = tan '

(4M2y y2)i y 2(M2 MN2+M&2)
and

S(M') = —LM' —(M&+Miv)'j
X t

M' —(Mz M~)'j/—MiP

The first term on the right-hand side of Eq. (31) is
related to the normal contribution due to absorptive
processes and the second term is the structure contri-
bution. In order to estimate the relative size of the
structure contribution to that of the normal contri-
bution, we integrate the first and second terms on the
right-hand side of Eq. (31) to obtain

w(1 —e)' 1 t 2(1—e)'*+2—xi
!

——ln!
2 & e2m'M' e&

and

(1—I+a)
(4N —(1+v —~)') '

1—lc—n
cos-'! I, (32)

E (1+~—e)el)

I'p' a.(1+le—e)

2~'M' (4'—(1—~+e)') &

a. (1—N)l
7

e&
(33)

respectively.
By a suitable substitution, Eqs. (32) and (33) can

also be used for the cases ZEE and 2Am. The numerical
result shows that the structure contributions for the
cases AXE, ZXE, and ZA7r, are about 3%, 10%, and
32% of the corresponding normal contributions. It
thus appears that the structure contributions to the

below the onset of the absorptive process that gives
rise to an anomalous threshold.

In the anomalous case, the contribution to the A.

form factor for zero momentum transfer, resulting from
a scalar interaction A —+ X+E (abbreviated AXE), is
given from perturbation and dispersion theory as

magnetic moments of the A and Z hyperons are not
appreciable except for the case of ZAx.

It should be mentioned that the fact that pertur-
bation theory is wrong for nz') (2M)' does not prove
that cutting off the integral of Eq. (15) at (2M)' is
the correct procedure. It is, however, the most reason-
able procedure. Needless to say, it is not possible to
estimate the errors involved in leaving out the possible
contributions from an infinite number of states, but
the error should be small for pg. Keeping these points
in mind, let us examine the main features of our result
from our analysis of the magnetic moments.

Measurement of the magnetic moments of hyperons
would give insight into the symmetries of the strong
interaction which is implied by invariance under Eqs.
(7) and (10). In particular, a small observed value
(pq=0 to 0.1 nm) would support charge independence
of the interaction between A. and x and between A and
E mesons and a pseudoscalar K coupling, as indicated
in Table I. The interesting point is that although
pq(, 1) and irq(iV, 1) are considerably smaller than
standard perturbation results, pq(1) (the difference
between these two quantities) is much larger than
pq(eo) that is obtained from the E-current part of
perturbation theory.

One can obtain a pq(1) as large as a few tenths of a
nuclear magneton for pseudoscalar E coupling, if the
relative parity of (A,N) and that of (,X) are different.
On the other hand, scalar E couplings can give rise to
pq(1) of a few tenths of a nuclear magneton with
gII~'=3 to 15.

With the anticipated accuracy of about 0.2 nm" in
an experimental determination of p,~ one cannot,
however, provide information on the relative magni-
tudes of g-. ~' and g~~' for pseudoscalar E coupling.
But for scalar E coupling the pq(1) would give infor-
mation on g-. ~' and g~~' as can be seen from the value
of pq(1) in Table I.

Table III shows that p+(1) is about 2 to 3 times
p~(~). Further, there is a distinct difference between
the values for pseudoscalar and scalar E couplings, so
that information on the coupling as well as charge
independence of the x and E interactions can be
obtained from the experimental values of p+, p, , and po.

"S. Warahaw (private communication).


