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V —fl Collisions in the Lee Model~
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The methods of dispersion theory are used to obtain an exact expression for the U —8 elastic scattering
amplitude and the amplitude for the production process, U+8 —+ N+28, in the Lee model.

I. INTRODUCTION

~ 'HE Lee model' was introduced to provide a soluble
but nontrivial field theory exhibiting renormaliza-

tion. As such it has proved valuable not only for insight
into this problem' ' but also as a testing ground for new
methods of calculation. For example, recently Gold-
berger and Treiman' and DeCelles and Feldman4 have
applied the methods of dispersion theory to obtain the
classical results of the model. In this paper we show how
their methods may be used to obtain results not previ-
ously known from the usual approaches to the model.

It will be recalled that the Lee model describes the
interaction of two Fermions, V and E, with a Boson, 0.
The Fermions are taken to be fixed while the tI with
mass p is assumed to have a relativistic momentum-
energy relation. The particular characteristic of the
model is the interaction, which allows only the ele-
mentary process V +~X+8. With this choice of selec-
tion rules, the Ã and 0 fields do not need to be renor-
malized. (The theory is nonrelativistic and thus there
are no antiparticles), while the V-particle self-energy
arises only from E—0 "bubbles. " In considering this
aspect of the problem one is led naturally to study
together the state vectors for the physical V particle as
well as for E—8 scattering. It is the study of these
states which is the primary concern of the "classical"
Lee model.

The next most complicated state one can try to study
is V—8 scattering. However, the selection rules for the
model couple this state to the three-particle state
X+28. Thus, although one can write an integral equa-
tion for the state vector describing the V—0 system,
attempts to solve it have been unsuccessful. ' In this
paper we apply the techniques of dispersion theory to
the problem of V—8 scattering and the related problem
of 0 production in V—0 collisions. By following a method
suggested by recent work in the theory of nuclear direct
reactions, ' we are able to obtain directly the exact
amplitude for the scattering and the production process
without having to calculate the state vectors. In addi-
tion to providing another solved aspect of the Lee
model, these new results are, we believe, the erst ex-

* Supported in part by the U. S. Atomic Energy Commission.
' T. D. Lee, Phys. Rev. 95, 1329 (1954).
'G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab,

Mat. -fys. Medd. 30, No. 7 (1955).
3 M. 1. Goldberger and S. B. Treiman, Phys. Rev. 113, 1663

(1959).This paper will be referred to as GT.' P. Decelles and G. Feldman, Nuclear Phys. 14, 517 (1959f60).
5 R. D. Amado and R. Blankenbecler (to be published).
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amples of the exact expression for a scattering amplitude
in which production is possible and of a production
amplitude in Geld theory. As such they have a number
of analogies in real processes, some of which are dis-
cussed in Sec. V.

In Sec. II the formal structure of the Lee model is
reviewed brieQy, and the methods of dispersion theory
are applied to the problem of V—8 scattering. One is
led to an integral equation for an amplitude closely
related to the production amplitude and this equation
is solved. From this the V—8 elastic scattering ampli-
tude is constructed. In Sec. III the results of the previ-
ous section are used to obtain the amplitude for the
process V+8 —& X+28. In Sec. IV the unitarity of the
elastic scattering amplitude is established, and in Sec. V
a brief discussion of the results is presented. Calcula-
tion of some integrals is relegated to the appendix.

u(co)
A =2 cts, ~= (tt'+&') '*,

s (2(oQ)'*
(2)

[us', us'$-&s, s', (4NAtv') =&, Qv, 4v') =&lZ,
(3)

Lus', us] = (Ptt, Std) = (4v,g v) =0

We have quantized in a box of volume Q, later 0 —+ 00.

g is the renormalized coupling constant. fv is the re-
normalized V-particle field operator and Z is a re-
normalization constant. These are chosen so that
(0~/v~ V)=1. 5ntv is the V-particle mass renormaliza-
tion. biz and Z are easily solved for in terms of the
other quantities appearing in the Hamiltonian. We
have assumed that the interaction V+~ X+8 contains
a source function, N(co), such that all integrals which we
encounter exist and such that there are no ghost V-
particle states.

' Our notation follows closely that of GT, except that we make
the simplifying assumption, unrestrictive in our case, that the
U and N have the same mass.

II. V—e SCATTERING

The Lee model describes a world of three particles,
V, Ã, and 8. It has been studied extensively particularly
with regard to the E—9 scattering state and the V-
particle state and we shall not review the discussion
here. For completeness we state the Hamiltonian. '
H= rnZPvtfv+rrtPtv heart

jets

cosastus

+gatv V vA t+g4 v V tvA+5NtvZPv'fv, (&)
where
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We wish to calculate V—8 elastic scattering within
the framework of this model. The S-matrix element of
interest is

g r
FIIN

.8 8—ezn'
S=(V8„' i

I V8,.„'+'),

where the plus and minus refer to the usual "in" and
"out" states. We use the asymptotic definition of these
states to write

S=lim(VI aI, (t) I
VO„&+&)e'"',

where the Heisenberg operator as(t) is defined by

FIG. 1. Dispersion graph for V—0 scattering corresponding
to the division of the amplitude given in Kq. (1'7).

zero. Proceeding as before, we write'

(2(oQ)i
I

" ( d
T(o~)=i ei™l i—+—m I

u(a)) E dt )
x(0I f4 (t),j}I

vO. '+')8(t)dt. (14)
(5)

The equal-time anticommutator resulting from dif-
ferentiation of the theta function gives zero. Thus we
may write

as(t) =exp(iHt)ai, exp( iH—t)

We can write

(S bs, i,—i ——e'"I —i—+(v I(VI ap(t)
I
VO„&+&)dt. (6)

E dt ) (2o~Q) i
e' '8(t)(0I (f(t),j}I

VO-'+')«, (»)
u(oi) ~ „

Dehning the 8 current by' '
where

g
besvg v(t) —P~(t) A (t)—. —(16)

Z
we have

u((a)
S—b&, &

——t ' e'"'(Vl j(t) I
VO„'+') dt. (8)

(2o~Q)& If a complete set of intermediate states is inserted in
(15), we can do the time integral, and we obtain a
I.ow-type equation':

(9)

Using the time translation property,

j(t)=exp(iHt) j exp( —iHt),

(2MQ) ' (j(t)= I

——+ I ~(t)= —glt~'(t)4v(t), (7) f(,) I~; p~ Ip, (t))

the time integral can be done, and we obtain

u(o&)
5—8„ i, '=27rib(M —oi') (VI jl VO '+ ). (10)

(2&aQ)'

We define the scattering amplitude in the usual way by

(2n Q) '
T(~)= (v I jl vO-'+')

u((o)

(2o)Q)l (0lflS)(SI jl VO„i+i)
T(~) =2

u((a) S—m —ie
(17)

The second term from the anticommutator gives no
contribution. The states S in (17) must be states with
the same quantum numbers as a V particle. Since
(Ol fl V)=0, only the E Ostate will contri—bute. We
choose a "plus" state, which choice leads to considerable
simplification later on. We obtain for (17)

so that
u'(co)

S= b i, g+2m. ib ,(cv )oi—T (o~).
2coQ

(12)

(2~»' «Ifl&8- "')PO- "'Ijl vo-"')
T(~)= Z . (18)I co GO

To make further progress in obtaining T, one must
contract another particle. One's success in solving the
problem depends on which one he contracts. Following
a method developed to deal with nuclear direct re-
actions, ' we choose to contract the V particle from the
left. Ke obtain

(2o~Q)l
T(~) = lim(OI (lt'v(t), j}I

VO„'+&)e'™ (13)
u(oi)

The extra term introduced by the anticomrnutator is

~H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 1, 205 (1955).

(2oiQ) i

«I fl &8-'+'),
u(oi)

(oink') &

P(o&', (v) = (EO„&+&
I jl VO„&+&),

u(co) u (o~')

E(o~')us (cv')F(o~',(u)
T(~)=Z

k' CO

8(t}=0for t(0; 8(t}=1for t&0.' F. G. Low, Phys. Rev. 97, 1392 (1955).

(20)

(21)

This division of T corresponds to the disper'sion graph
of Fig. 1. Now we define
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The problem of calculation of T(co) is then reduced, or
better expanded, to computing E(ce) and F(ce',ce). Since
the Ã0 state is known, E is known. It is obtained for
example by GT using dispersion-theoretic methods.
Thus we need only calculate F(co',ce).

F(co',ce) is nearly a production amplitude for the
process V+8-+ %+28 but it differs from a normal one
in that both the states involved are "plus" or "in"
states. As we shall see in Sec. III, the ordinary produc-
tion amplitude can still be calculated in terms of Il,
but the presence of the two "plus" states will greatly
simplify its calculation. To obtain F, we contract the
8 from the left in (20) and obtain

8 8-8 .-
+

-8 ...8
+ „~iP, w~ „

Fro. 2. Dispersion graph for the amplitude F(cd', c0) as divided
in Eq. (26). To each of the last two graphs there corresponds
another with the roles of the outgoing 8 particles interchanged.

(cece') *'

F(ce',co) = lim (Xl Las (t),j]I
V8„&+l&e'""

u(ce)u(ce') '
The states 5 can be either the V-particle state or the
Ã—0'state and once more we choose the "plus"
state. We then get

(cece') '*+»m (1lt'lyaj, (t) I
V8„&+l&e'"'. (22)

u(ce)u(ce') ' F(~',~)= —
g 4,s
u'(ce)

The second term is introduced to cancel the extra term
from the commutator. It is not now zero, but rather

»m P'Igas (t) I
V8~'+'&e'"'=8»'P lg I v»

gazoo

where we have used the definition of the "in" state.
Using (7), we also see that

1
+ I

—
I O'I jl v&&vl jl V8-'+'&

(2Q) u(ce)

1 1y (cori 1
xl —I+I —I—

ice I ze ce ) E2QI u( c)e

xZPIjl~8- '&@8- Ijlv8. .&

Thus we may write

(~l jl v&=-g (23) 1 1
xl +

Ece +cer co Ze cer co +Ze)

The graphic contribution of these terms to F is repre-
sented in I'"ig. 2.

If we deine the X—8 scattering amplitude corre-
sponding to T of (11) as

. ('):
F(co',ce) = —i ' e' "I i +c0-'—

u(co)u(ce')3 „4 cEt )
COg

xP IL, (t),jul V8.&+ )8(—t)at-
u'(a) (2ceQ) '*

OR(ce) = (1VIjl X8„&+&&,
u(ce)

(27)(~l* 1 t"
= —il I

' 8(—t)e'"'
L2Q) u(cd) ~

xp I Lj(t),jj1 v8„&+&&dt—

F(~',~) = —g 4,s
uz (ce)

where we have used the fact that the equal-time com-
mutator, Las,jj, is zero. Inserting intermediate states
and doing the time integrals, we obtain

g+—T(ce)I—
2Q Eco ce —ce —zc)

then using (11), (20), (23), and (27) we can write for

(24)
u'(ce) Q7

(„l-. 1
F(~',~)=

I

—
! g P I jls)&sl jl V8„c+&&

(2Q) u(co) 8

1
XI +,

E S—ce' —ZZZ+ie ce'+S ZZZ ce is)— ——

1 u'(co )+ P OR(cdr)F(cer&M)
20 ~1 Q)y

xI, +, I. (28)
ccer+ce co ze cot ce +ze)

This is an integral equation for F in which the kernel
u'(ce) is known in terms of the known E—0 scattering ampli-
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tude. One might worry that the inhomogeneous term
contains T(&u), which is certainly unknown at this
stage, but if we consider the integral equation as an
equation in the variable oi', for fixed ee, then T(ee)
appears as an unknown constant in the equation. Since
the sum in (28) is over k', the appearance of this un-
known parameter in the solution for F(oi',oi) will not
a6ect our ability to do the sum and finally we will
obtain a linear algebraic equation for T(o&) which we
shall certainly be able to solve.

The analytic properties of F(oi', t0) as a function of o&'

for fixed &o may be read off from Eq. (28). Apart from
the delta-function term, F(&u', oe) has poles at o&'=0 and
at oi'=ta+ie and branch cuts along the real axis in the
interval p&~'& ~ and in the interval co—p, &~'& —~.
So long as co&2@, these branch cuts will not overlap.
This condition on ~ is, of course, just the condition that
co be below the production threshold, that is below the
threshold for the process V+8~ /+28. In construct-
ing a solution for F(oi',oi) we shall impose the condition
that co(2p, , but once the solution is obtained explicitly
it may be taken as valid for all oi. F(ee',&o) has no other
singularities in the finite part of the co' plane. The
singularities of F(oi',oi) are completely analogous to the
singularities encountered in the study of the full rela-
tivistic production amplitude, or five-point function. In
particular, the overlapping of the cuts for co&2p, is a
characteristic feature of physical production ampli-
tudes and its interpretation is clear in the simple model
presented here.

In order to solve Eq. (28) we shall need to know the
behavior of F (oi',ee) for very large oi', oi fixed. From the
unitarity of the S-matrix (it will be recalled that ghost
states are explicitly ruled out), it follows that T(&o) is
bounded and therefore that the sum in Eq. (24) must
exist. E(oi') becomes constant for very large co', ' and
hence u'(oi')F(oi', o~)/~a" must go to zero sufFiciently
rapidly in co' for the sum to exist. For very large ~&,

9R(oui) goes to C/oii (C a constant). Thus for oui very
high, the summand in Eq. (28) may be written

u'(&gi) ( 1 1
c F(~„~)

l +
ui' Eoia+o&' —oi —te oii —oi'+ze J

The contribution of this to the sum for very large co&

may be made arbitrarily small, even if co' is also very
large, since u'(oii)F (eei, &o)/eei' decreases sufficiently
rapidly. Hence F(o&',ce) goes to zero for very large &e'

and fixed finite co.

A useful crossing symmetry of F(o~', o&) also follows
from (28). We see that

ge geo
F(oi,ta)+ 8i, i'=F(oi ee, oi)+ 4, i —s' (29)

u'(oi) u'(oi)

This symmetry corresponds to an interchange of the
two outgoing 0 particles in Fig. 2.

To solve the integral equation for F(o&',o&) it is con-
venient to make the transition to ~ volume and change
the sums to integrals. We obtain for (28)

oi g (1 1
F(-',-)=-g 8., +—T(-)I —,—,

u (Ge) 2Q i oi ia —oi —ze)

1 f'
e" sins, F(~„~)

( 1
x l + ld~„(30)

KMi+oi co—ze (e] oi +1 e)
where we have expressed BR(hei) in terms of the known
phase shifts for N —0 scattering by

1—(~ei2—tt') ~u'(o&i)art(oui) =e" sinS, ,
4x

(31)

F(~ p&) = g 4,i'
u'(o))

+—T(~)l—
20 E~' ~' —~—ie)

~p ((o')—i5'

e p&"» sinb&d+&

where

1 hxl, +
E oui oi +te hei+a) M te)

g f' 1 1 i goi
x —T(~)l- Blc,kl

2Q (coi oui —(a tet u (ce)

+(P(oi')e&i"'& " (32)

E t" tr 1 1
t (~') = — d~i8il, +, I (33)

'ir J ~ Lcel oi eel+4)

"N. I. Mushhehshvili, Serigalar Integral Equations (P. Noord-
hoff, N. V. Groningen, Holland, 1953);R. Omnes, Nuovo cirnento
8, 316 (1958).'» R. Blankenbecler and S. Gartenhaus, Phys. Rev. 116, 1297
(1959).

using the notation 8(oii) = 8i, 8(&o') = 8', etc. The integral
equation (30) is of a general structure well-known in
dispersion theory. ' In particular, equations of just this
type have been studied by Blankenbecler and Garten-
haus, "so long as co(2p. In fact the equation they study
has a real inhomogeneous term and a kernel. under the
integral given in terms of the imaginary part of the
unknown function, which is assumed to have a known
phase. It is easily verified that their method of solution
is still valid in our case in which the inhomogeneous
terms are not real and in which exp(ili) sinliF(hei, oi)
&I Fm( o&ii) aThus a.pplying their method, we obtain
the solution
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h is an arbitrary function. (P(o&) is an arbitrary poly-
nomial representing the possibility of adding arbitrary
amounts of solutions of the homogeneous equation to
the solution of the inhomogeneous equation. We may
now use the fact that both p(co') and F(o&',or) go to
zero for large ~'. This can only be if (P=O. Further the
crossing symmetry (29) requires that 8= 1.

The problem now is solved. All that remains is to
do the integrals and assemble the results. The integral
containing 81, ~ is done immediately, giving

F (or', or)

g~ g (1
4,~+—

i —,—,
u'(or) 20 &or' or' —or —~e)

4rr sincrepc"'& r &"& '~'p ger&"'& "T(or)
X~ T(or)— I+

(o&'—rc') ~u'(or) i 20rr

(1 1
X ' e r &"r& sini&i~—

d'or& ori —or —1e)

1x~, .+, l~» (34)

glori

or +—ze ori+or or/

from which it follows that

L1—P (or —or')] 1mL1 —P (c0')]
e &~" ) sinb~=— , (39)

z

since for or(2&tc, P(or —o&') is real for rtc(or'(~. Thus
using (37), (38), and (39) in (34), we may write

F(or', or) =—gG7 g M

4, &,
——T(~)

u2(o&) 20 or'(or' or —i e)—

g3 1

20 o&'(or' —o&
—ie) $1—P (o&

—cd')]L1—P*(or')]
g T(or)I

(40)
20 L1—P(~—~")]D—P*(~')]

In terms of this function, we show in the Appendix that

Z2
ep~~~)+i&I (38)

I:1—P(~')]f1—P(~—~')]

or Im/1 p(o&r)]t 1 p(o& ori)] (2ori cd)cd&i

In order to calculate p(or) we define the function P (or) by' I= —— , (41)
7l p GDy GOy CO Z6 Cdy CO Z6 Cgy Gg Cg

where
or 1—P(o)

—g or r' dori(ori —
&tc ) 'u (or 1)

p(~) =
4rr ~ or i (cd i or i&)

which we show in the Appendix is

M CO M Z6
36 I

and

Imp(co) =
—g'u'(~) (~'—&")*'

) co%p.

x(L1—P( ')]L1—P( — ')]+P( ) —1}. (42)

(37)
Thus finally we obtain for F(or', or) the expression

CO g
F(o&,or) = —

g crr, r
'——

u'(o&) 20 o&'(cd' —or —ie) L1—P(or —or')]L1—P~(or' )]
T(cd) (1-P( )]

(43)
20 f1 p(or or')]51—P*(—cd' )](or' —or i e)or'— —

To get T(or), we insert (43) into (21) along with' Changing the sum to an integral and using (37), we

may write for the others

E(c0')=
1-P( ')

(44) g' t
" 1 Im/1 —p(or' )]

T2= —, dCO'

~'(~' —~—i.) ~1—p(~r) ~2

Each of the three terms of (43) will give a contribution
to T(o&) which we call Ti, 2;, and Ta in turn. The first

is trivially evaluated to give =g'A,

X, (46)
P(or or )

T]
~L1—P(~)] Ta——o&L1—p (or) ]T(c0)A, (47)
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1
Av

=8+C.

I [1-p(')]
~'(~' —m —z.) I1—P(~ ) I

( p(~ —~') i
Xi 1+

1—p(oo —or' ))

In the Appendix we show that

where the integral A is

1 ~" Im[1—P(or' )] 1
A= —, dM X

~'(~' —~—ze) l1—P(~ ) I' 1—P(~—~')

(48)

the extra factor of 1/V2 comes from the identity of
the 0 particles. The S-matrix element is thus expressed
in terms of the amplitude P(or', or) defined as

((sod') '*

&( ', )=,Pg-' 'li I
Vg-"').

u(or)u(o')
(55)

Contracting in a 0 from the left, we have

S= 2zrig (or"+or' —or)

u(or" ) 1—Pg„&-& ig Vg. &+&), (54)
(2or"0) i v2

Im[1—p(or' )]1 J."8=
~

de
or'(or' —or —ie)

~

1—P(or')
~

z

p(~)—
(49)

-L1-P(-)]'

The problem is to relate E(or', ~) to F(or', or). Inserting
a complete set of states in (55), we can write

(~m')'
I'(or', or)= P (1Vg„& r ~S)(S~ j~ Vg„&+'). (56)

u(or)u(or') e

which leaves only C:

1 r" Im[1—P(or' )] P(or —or' )
C=— dQ) X

or'(or' —or —ze)
i
1—P(or ) i' 1—P(or —or' )

1m[I—P(~ )]
dM x, (50)

or'(or' —or) i
1—P (or')

i

s 1—P (or —or' )

the second form following from the fact that P(0) =0.
Thus for co(2p, C is real. It clearly represents the eBect
of production on the scattering amplitude. Combining
(45), (46), (47), (48), an.d (49), we have

We take "plus" states for the states S. The selection
rules of the model restrict S to the V-particle state or
the E gscatter—ing state, but (Eg& &

( V)=0. Thus we
have

(~~')'
P(or' or) — P (+g„i(—)

~

+g„iI(+))
u(or)u(or') &"

X(zg„-&+r
i j ~

Vg„&+&), (57)

which expresses the result in terms of the E—0 scatter-
ing matrix. Using the energy conservation imposed by
this element, the sum may be done, and we obtain

p(or', or) =e"s'p(or', or),
g2 g'p( )

+g'C T( )P( )—-[1-P(-)] -[1-P(-)1 where 8' is the N —8 scattering phase shift for energy co'.

Thus finally Eq. (54) may be written

+~T(~)L1—P(~)]C, (51)

(g'/~)+g'C

1+p( )- [1-p( )]C

C /or

(1—orC)/(1+orC)+P (or)

Since the integral C is in principle known, this com-
pletes the solution. "

III. PRODUCTION

Having calculated the amplitude F(or', c0) of the
previous section, we are in a position to calculate the
amplitude for the production process V+8 ~X+28.
We begin with the S-matrix element,

u(or) u(or') u(or") e"'
S=2zrig(or"+or' —or) &(or', or). (59)

(2f)odor'or") ' W2

IV. FULL UNITARITY

It is instructive as well as amusing to verify that our
solution (52) satisiies unitarity. To see this we calculate
the imaginary part of T(or) from (11).We write

(2orQ) &

T(or)= lim (V~[j,ast(f)]~ V)e '"'; (60)
u(or)

the extra ordering introduced by the commutator gives
zero. Using the fact that the equal-time commutator
[j,a&t] vanishes, we have

S=yg„„g,&-&~ Vg ft&) (53) e '"'8(—&)&V I [j,j'(&)] I
V)«. (61)

'z If we neglect production (C=0) we get T(or) =g'/
(orr.t+P (or) P}.Essentially this result has been obtained previously
in this approximation by D. A. GeBen (private communication). ImT(ro) is obtained from the first term 8( t)=sx—
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+-', c(—t). Hence

00

ImT( )=- ~ .-'-«Vl[j, j'(~)]IV)u.
2

Inserting a complete set of states and noting that only
the first ordering of the commutator contributes, we get

ImT(~)=~Pl(Vlj I&)l'&(~+~—&s)

+~ 2 I(Vl jl V8-8--' 'I'~(~'+~"—~) (63)

The term containing 8i, i. in F(a&',co) gives no contribu-
tion in (67) since the delta function can never be
satisfied on the energy shell. Thus from (43) we have

ImT((v)

=- Im[1 —P(~)]I T(~) I'
g2

I g'+T(~)~[1—p(~)) I'

2g2

1 p" dku' Im[1—P((u')] Im[1—P(a)—(g')]X- I (68)~'("'—")l1—P("') I'l1 —P(~—~') I'
With the convention for Boson states implicit in the
factor 1/V2 in (54) the sum in the second term may run
over all k' and k". The first term of (63) relates ImT
to

I
T

I

' and the second term represents the contribution
from production. To express it simply, we notice that
the production S-matrix element (53) may be written

The last integral may be related to C of (50) since

1 r" d(u' Im[1—P(ar')] ( P(a) —co')
ImC= — Im

I
1—p(co') I'(o'((v' —(o) (1—p(a) —(o') )

~" d~' Im[1 —P(~')] Im[1—P(u —u')]

~'(~' —~) 1—p(~' 'll —p(~ —~') I'
5= lim (E8„8„"' 'Iup(/)I V)e '"'

(69)
)I

u((o)
=2~i&(~'+~"—) (&8-8--'-'I jl V). (64)

(2(uO) & Thus the condition for unitarity is

Thus on the energy shell, which is all that concerns us
ImT (o = —Im 1—P (u T cg) '

8 ((o'+co" (o) (E8 '8 "—& &

Ij I V)

u(a)') u((u")
=8(cv'+(a"—(u) e"'F(a)' a&) (65)

but also from (52)

lg'+~T(~)[1 —p(~)] I'
ImC, (70)

2g2

Inserting this into (63) using (11) and (65) and doing
the erst sum, we have

ImT((o)

u'(~)
(~'—u') 'I T(~) I'

( 2a) ImC
ImT(~) = —

I
Tl'I +Im[1—p(~)] !. (»))g' &

l
1+ac!'

Below the production threshold, C is purely real and
unitarity is obviously satisfied. When co&2p and ImC
is not zero, the unitarity condition reduces to

(20) 'm
d~'d~" u'((u') u'((u")

i4 ) 2~

X( "—~')'*( '"—v')'IF(~', ~) I'8(~'+~"—~), (66)

or using (37),

»'I T(~) I'/l1+~CI'=
I c'+~T(~)[1—P(~)]1'/2, (72)

or

4~'I T(~) I'= ll+~CI'I g'+»(~) L1—p(~)] I',

which is easily verified for our solution (52).

ImT(~) = —Im[1—P(co)] I T(~) I

'
g2

20'
t+

~

d~'d~" ~'~" 1m[I —p(~')1
2mg' ~

XIm[1 —p (cv")]
I
F (cv',co) I

'& (co'+co"—~). (67)

V. DISCUSSION

We have seen that using a novel form of contraction
it is possible to obtain a soluble integral equation for
the V—8 scattering amplitude and for the production
amplitude for the process V+8 —+X+28 in the Lee
model. These results are of interest both as a 6lling
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out of the solved part of the Lee model, and also, per-
haps more interestingly, as an example of an exactly
soluble Geld theory with production. Probably some
insight into the structure of scattering amplitudes with
production and of production amplitudes in relativistic
field theory can be gained from those presented here.

There are many extensions and applications of these
results that come immediately to mind. Within the
framework of the model and using the methods intro-
duced here, one should be able to calculate the ampli-
tude for N+28~ %+28. This would complete the
discussion of amplitudes in the V—0 sector of the Lee
model and hence should allow a determination of the
V—8 and X—8—0 state vectors. Further, one can
study the V—0 amplitude in more detail looking for
the cusp that should occur at the production threshold"
or studying the structure of the perturbation series.
These aspects are presently under investigation.

One can also think of interesting directions for ex-
tending the model. In a sense, V—0 scattering is the
analog of pion-nucleon scattering in the T= ~ state and
E—8 scattering in the T= ~ state. This analogy is most
apparent from the Born terms. It is seen from the
structure of (35) and (52) that no resonance occurs at
low energies for E—0 scattering, whereas a resonance is
possible at low energies in V—0 scattering, since from
(35) we see that Rep&0 for small ~. The analogy can
be made closer if the scalar coupling in the Lee model
is changed to pseudovector. We are investigating this
possibility. An even more amusing change is to intro-
duce a 0—0 interaction into the model in analogy with
the pion-pion interaction. E—0 scattering is unchanged
but V—0 scattering and the production amplitude are
altered. A more difficult extension would be to try to
relax the static assumption and finally to try these
methods on the field theories of the real world. In
particular, work is under way to apply these techniques
to nuclear direct reactions in order to include the eGect
of initial- and final-state interactions in the field-
theoretic approach to this problem. '

FIG. 3. Contour in the complex co plane.

Our methods follow those of GT. We write

1
8(M) = ——{inL1—p(M)] —lnL1 —p*((0)]}, (A.1)

2i

and since

p (M+ze) =p(M se) ) (A.2)

p(cv')+Q'= — lnt 1—P(x)]
2m'~ t.-g

1 1
X

~
+ ~dx, (A.3)

L g 0) g+M Q))

C2

where the contour C& goes from ~ to p, just below the
real axis and returns to ~ just above, as shown in Fig. 3.
Calling C2 the contour of the infinite circle, we may write
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using the fact' that 1—P(co) ~Z as
~
~

~

—+ ~ we have

p(cv')+i5'

= —{lnL1—P ((v') ]+lnL1 —P (I—&o')]—2 lnZ}

Z2

(A.4)

APPENDIX

For Eq. (33) we must evaluate
from which (38) follows.

Next we consider I defined by (41):

's E. P. Wigner, Phys. Rev. 73, 1002 (1948).

(o
t

" ImL1 —p(s)]L1—p(re —s)](2s—(v)ds

7l ~
p s(s (d ze) (s M +ze) (s+N M)

=I,+Is, (A.5)
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where

ImL1 —P (s)](2s—(u)ds
I,=— (A.6)

Zl p»(» M ZE) (» M +ZE) (»+CO M)

using

Im(1 —p (s)j= —

Imp�

(s) =—fp (s) —p(s*)],
2j

we write

(2s—co)P (s)ds
I,= — ' — . (A 7)

2~Z I, z S(S—~—Zz)(S—a'+Ze)(S+o)' —co)

In this case the integral around the infinite contour
gives nothing and we may write

cut indicated by the dashed contour in Fig. 3. Thus

2p*((o')p((u —&o')co

cv'((0' —M —z 6)

p(s)p(~ —») (2»—~)d»

2zri~ cz s(»—co —ze) (s—~'+ze) (s+~'—~)

2P*(~')P(~ ~')—~

(v'(cv' (v —iz)—

p(s) Imp(a) —s)](2»—(u)ds
(A.11)

zr~ „s(s—(o—ie) (s—(u'+is) (»+su' —co)

making the variable change z=co—y, the integral in
(A.11) is seen to be just Iz, hen—ce.

in which case (A.i) can be evaluated directly and we get
thus

I=
CO CO

—
CO
—26

p*(~')p(~ ~')—
Ib

CO CO CO 26
(A.12)

. I:p(~)—p*(~') —p(~ —~') j, (A g)
CO CO CO 26 XLP(~) —P*(~')—P(a —~')+P*(~')P(~—~')], (A.13)

where we have used the fact that p(0)=0. We now
must calculate Ib,

which gives (42).
Finally we must evaluate 8 of Eq. (49), defined by

ImL1 —P(s)lP(~ —») (2s—~)ds
(A.9)

Zl p»(» M ZE) (» M +ZE) (S+M —
Gg) uslllg

1 I' der)' ImL1 —p (Id') j 18=-
zr ~ „cu'((o'—(o—zz) 1—P(co')

1 ( 1

~, (A.14)
ImL1-P(co') j (1-P(u)'))

Proceeding as above, we write this as a contour integral:

P (s)P ((o—s) (2s—co)ds

1
Im/

(1-P( '))
1 P dCO

8——
Zl'~ y CO (M (4 ZZ)Now the integrand in addition to poles within the con-

tour has a cut due to p(cu —s) in the interval —~ (s
&co—p. Thus we can write dCO ( 1

2zrz N (GtI M —z6) (1 p(M ))

Ib —— (A. 1.0) we have
2zri s(s—(o—ie) (s—(u'+is) (»+co' —a))

where the contour Cz is the integral around the negative as stated in (49).

()
(A.15)

L1-p( )j


