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Expressions for the angular distributions and polarizations of pion photoproduction with polarized
photon beams are derived from phenomenological production matrix. The experiments necessary for the
complete determination of the multipole amplitudes are discussed in general, and in particular for the case
in which only contributions up to p waves in the final state are important. Complete determination requires
circularly polarized beams. But if only s and p waves contribute, experiments with linearly polarized beams
completely determine the production matrix. The knowledge of these amplitudes would allow the determi-
nation of the unknown p-wave scattering phase shifts (an, a~s, and nsq) up to energies of about 300 Mev.

Invariance properties of the angular distributions and polarizations are found and tables are given.

'AKING into account invariance under reAection,
gauge invariance, and the pseudoscalar nature of

the x mesons, it is seen that the most general expression
for the nonrelativistic production matrix in the reactions

TABLE I. Orbital angular momenta, total angular momentum,
and parity corresponding to the different multipole amplitudes.

is given by

y+ p -+ p+s-', y+rt -+ tt+s',
y+ p —r rt+7r+, y+n —+ p+sr

nfl+
nfl
Ii.l+

( 1)
t+I

( ]) l+1

( $) l+1

( j)l+s

M=gI+i(h e),

where g=a(kX j e)=u(tl. e) sin8 and h=be+c(e j)k
+d(e j)j.' s is the polarization vector of the incident
photon, k and j are unit vectors in the directions of
the momenta of the incident photon and the emerging
pion, 6 is the unit vector along the normal to the
production plane kX j/[kX j[, and a, b, c, d are
complex functions of the energy and the cosine of the
angle 0 between k and j. All the quantities are taken
in the center-of-mass system.

The angular dependence may be made explicit
through a multipole expansion involving Legendre
polynomials and its derivatives (x= cos8).'
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equations linking them in order to determine their
absolute values and relative phases. Our purpose now
is to discuss the experiments that are necessary for
their complete determination.

The angular distribution is given by

do/dQ=-', TrMtM= gg*+h h~

= au* sin'8
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Defining the angle y as in Fig. 1, we have for linearly
polarized photons

da/dQ= [a[' sin'8+ [b['+L[c['+[d['+2 Re(bd*)
+2 Re(cd*) cos8—[a['j sin'8 sin'p (4)

Since this equation has one part independent of p and
another dependent on y, measurements of the angular
distributions will give two independent equations for
the determination of the four complex functions. We
could measure, for example, do/dQ for q

=0' and
@=90'. Unpolarized photons will give no new infor-
mation since the angular distribution in that case is
the average of the angular distributions for @=0' and
q =90'.

Here the notation is as shown in Table I. As a, b, c, d
are complex functions, we need seven independent

*This work supported by the U. S. Atomic Energy Commission.
R. F. Peierls, thesis, Cornell University (unpublished); G. F.

Chew, Encyclopedia of Physics (to be published), Vol. 43. We
have written our formulas in a slightly different. form more
convenient for calculations.
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FIG. 1. Definition of angles.
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The polarization P is given by

Pdo/dQ= ~ Tr(MtoM)= 2 Im(gh*)+ihXh+=2 Im{sin8(@ e)l ab*(e* n)n+ab*(e* &Xk)(&Xk)
+ac*(e* j)k+ad*(e* j)(j k)k+ad*(e* j)(j RXk)(nXk))+bc*(e* j)(e nXk)n
—bc*(e* j) (e 6) (n Xk)+bd*(e* j)(e 8) (j.6X k) k+ bd*(e+ j) (p g X k) (q. $)n

—bd" (e @)(j k)(e* q)(nXk) —cd*I (e q) I'sin88). (5)

For linearly polarized photons, we get the following expressions for the components of the polarization along
k, 8, and n&(k in terms of the angles 8 and q .

P (k)da/dQ = —sin2 &p sin'8 Im (ac*+ad* cos8+ bd*),

P(n) do/dQ = 2 sin8 ImLab* cos'rp+ (bc*+bd* cos8—cd* sin'8) sin'rp], (6)
P(nXk)do/dQ= —sin2p sin8 Im(ah*+ad* sin'8 —bc*—bd* cos8).

We see that the measurements of the polarization
along the direction of the incident photon gives only
one equation (any angle p can be used but the best
one is 45'). Measurements along the normal to the
production plane give two equations (we could use

y =0' and rp =90'), and measurements along the
direction normal to these two give one more equation
(again the best angle is 45'). Thus, we get only four
equations.

In order to get one more relationship, we have to use
circularly polarized photons. Evidently measurements
of the angular distribution will not give us any new
information since the angular distribution for circularly
polarized photons is equal to that for unpolarized
photons. The same happens with the component of
the polarization along the normal to the production
plane. But we still have the other two components of
the polarization of the recoil nucleon at our disposal.
For circularly polarized photons

e, i P n,+——(8—X k)ig/V2,

where the upper sign refers to right-circularly polarized
(r) and the lower sign to left-circularly polarized. (l).
Substitution in (5) gives

LP(k)da/dQj, i
——&sin'8 Re(ac*+ad* cos8+bd*),

LP(nX k)d./dQj„, ,
=&sin8 Re(ab*+ ad* sin'8 —bc*—bd* cos8).

So, we get one more equation than we need.
Measurements of angular distributions and polar-

izations with linearly polarized photons are being
carried out at the present time at Stanford, but we
cannot expect at present experiments using circularly
polarized photons.

Nevertheless, it is possible to get the needed infor-
mation in the low-energy region where only s and p
wave contributions in the 6nal state are important.
This is due to the fact that for l(2, d=0, so we have
only three unknown parameters.

The equations for the angular distribution and
polarization using linearly polarized photons then

reduce to

do/dQ= Ial' sin'8+ lbl'
+(lcl' lal') sin'8 sin'p

P(k)do/dQ= —sin2p sin'8 Im(ac*),

P(8)do/dQ= 2 sin8 Im(ab* cos'@+bc* sin'q)

P(nX k)do/dQ= —sin2p sin8 Im(ab* —bc*).

Thus we can obtain from experiment the value of
the following combinations of the parameters as a
function of the angle 0 and the energy:

I
al2 sin28+ Ibl2,

C

Im(ac*)= Ial Icl sin(a —y),
Im(ab*)= Ial Ibl sin(n —p),
Im(bc*)= Ibl Icl sin(p —y),

Im (ab*—bc*).

(9)

We notice that the sixth expression is a linear combi-
nation of the fourth and the fifth, so the measurement
of P(nXk) is not necessary. We have five equations
for the determination of five unknowns, but there will
be a certain ambiguity in the phase-differences due to
the fact that there are only sines appearing in our
formulas. We notice that if (n y) =A, (ci —p)=B, and-
(p —y)=C satisfy the equations and the condition
(~—y) —(~—P)—(P—y) =0, then also 180—3, 180—B,
C and 180—A, 8, 180—C will satisfy them.

If we were able to make measurements using circu-
larly polarized photons, we would get

Re (ac*)=
I
a

I I
c

I
cos (n —y),

Re(ab* —bc*)= lal Ibl cos(a —p) (10)
—Ibl Icl cos(p —y),

and that ambiguity would disappear. ' Nevertheless,
we will see presently that there is another way of
getting rid of it.

Making the expansions only up to p waves in the

2 We note that the Grst equation still leaves an ambiguity, so
we need the second one specifically.
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final state, we have

a= —2M g+
—Mi,

b=EO++ (Mi+. Mi —+3Eii) cosg,

c= M—i++Mi +3Ei+.
Thus knowing a, b, and c as functions of cosa for a
certain energy, we can determine the four multipole
amplitudes Eo+, E~+, 3f~+, and M~ for that particular
energy.

The determination of these amplitudes for both
reactions y+P —+ ~++a, y+p ~ n'+p would make
it possible to find the three p-wave scattering phase-
shifts that are not well determined (ni3, n3i, and nii)
since the phase shifts and the multipole amplitudes
are related. ' On the other hand, the previous knowledge
of the two s-wave phase shifts ni, na, and the p-wave

phase shift +~a will allow us to discriminate among the
three possible sets of solutions for the multipole
amplitudes and to fix their absolute phases. '

At energies above 300 Mev, d-wave contributions
become important and we can no longer set d=0. 5

We need then to perform experiments using circularly
polarized photons for the determination of the multipole
amplitudes that contribute. The system of equations
involved becomes more complicated.

If we redefine the multipole amplitudes R =
I
R

I

e"~
in such a way that we have for the total cross section
for unpolarized photons the expression

we can express the angular distributions and polar-
izations in the following way:
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The 3f „'s are functions of coso and are given in
Tables II, III, IV, and V for dipole and quadrupole
contributions. '

We notice that certain invariance properties hold in

3 See M. Gell-Mann and K. M. Watson, Annla/ Review of
Nuclear Science (Annual Reviews, Inc. , Palo Alto, California,
1954), Vol. 4, p. 219, for formulas relating multipole amplitudes
with phase shifts.

4 There will still be an ambiguity of ~ in the absolute phases.
We can absorb the sign into the real amplitudes which have then
positive or negative values. See S. Hayakawa, M. Kawaguchi,
and S. Minami, Suppl. Progr. Theoret. Phys. (Kyoto) 1, 41 (1958).

'The retardation term gives higher l states than P at lower
energies but we know its contribution.

the parameters a, b, c, d.

a: (f+ I)M(p ~ /Mi

b and c: Mz+. ~ Mz ) E(z 1)+~ E(z+1)—
d: We can exchange any two among

~z+, —~z-, —&z+, —Ez .
'We do not give tables for the angular distributions and

polarizations using unpolarized photons since they have been
given previously by other authors. See Hayakawa et al. , reference
4, and R. F. Peierls, Phys. Rev. 118, 325 (1960). There are
several incorrect terms though in the latter, and only contributions
up to J=-', are given in the former. The reader interested in
knowing our results can easily take the average for q =0' and
q =90'.
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TABLE II. Angular distributions and polarizations along the direction normal to the production plane for q =0 (3E „}.

M'g

3E)+
E2
El+

Sf'+

1—1—2
0
0—2V3x

—343x
0

1
3x
1

VSx
V3

W3(1+Sxq
V3x

2 —3x2
4—3x'

2
2V3x

2V3 (1—3x')
v3 (—2+x')

2V3x

E2

x
1
0—2V3x—3v3x
0

v3x—VSx'
43x'
v3x
3x2

—6x'
—9x~

0

VZ(1 —2x')
v3x

v3 (Sx—68)
V3 (1—2x2)
3 (x—2x3)

3
15 (—x+2x')

6x'

3II2+

V3 (—1+2x')
V3 (4x—Sx')
&3(5x—4x')

V3 (—1+2x')
3(—x+2x3)

3 (—1+108—10x')
3(1+sx2—sx4)

9x'

V3x—V3x'
V3x'
Vjx
3x'

3(+x—2x3)
3 (—x+2x')

3x2

TABLE III. Angular distributions and polarizations along the direction normal to the production plane for y=90'(III „").

jap E2

Ep+
Hag
3fg+.

E2
E(
M2
3f2+
E,

1—1

3x—K3—v3x
v3x

v3 (—1+Sx')

1
0

—2
243x

0
0

SVSx

1
2—2v3x
0
0—sv3x

—2+3x~
A

4—3x'
2%3(1—3x')

4V3x—4+3x
V3 (2 —x')

V3x
V3 (1—2x')

v3 (—1+2x2)
%3 (—Sx+6x')

3—6x'
6x2

1S(—x+2x3)

—V3x'
43x—v3x—43x'

3(x—2~)
3x2
0—9x'

V3x'
—&3x
V3x
V3x'

3(—x+2x')—3x2
3x2
9x2

K3(—4x+ SS)
v3 (1—2x')

W3(—1+2x')
VS(sx—4x3)

3 (1—10x2+10«)
3 (x—2x')

3(—x+2x')
3(1+So—sx4}

TAax,z IV. Polarizations along the direction of the incoming photons for linearly and circularly polarized beams (M „').

Ep+
Ml
MI+.

jV~

3II.
M2+.
E3

0
0
0
3
0

vS—K3
&3x

0—1—3—6x
%3—2vSx—3v3x

vF(1—10x')

0—1
2
3x

2&3
543x

0
%3(2—5x'-)

—3
6x
3x—3—3v3x

2A( —1+6x2}
VS(2+3x')

2VSx

0—V3—2v3—3vSx
0—3x—12x

15x'

—&3—2v3x—v3x
4&3 (—1+3x2)—9x—3—15x

6 (3x—10x')

V3—3V3x
6V3x

v3 (4+3x')—6x
3(2—Sx')

3 (—1+5x')—3 (x+5x')

—SV3x
v3 (—1+10x')
VS(—2+Sx')—8VSx—15x'
12(—2x+sx )

3(3x+Sx')—15x'

TABLE V. Polarizations along the nXk direction for linearly and circularly polarized photons (3l„,„ry).

E0+
MI
MI+

EI+
M2
M2+
E3

Eo+

0
0
—3
—3x
V3
—v3x
—4&3x

VS(1 —Sx2)

—2
2x
3x

—3+3x2
—VSx

V3 (-1+2x2)
V3 (1+3x2)2' ( —3x+Sxg)

-3+3x2
4V3x

V3 (1 —Sx2)
—v3

~3(—6x+Sxg)

3x
1 —3x2

S —3x2

3x
V3 (1+3x2)

4V3 (2x -3x2)
V3(2x —3x3)
V3(1 —2x2)

—v3x
—2V3x

V3 (-1y3x2)
—3x

3(1+x2)
3(1 —6x2)

-iSx3

—w3x
V3 ( —1 +6x2)

V3 (1 —3x2)
6'�(x—2x3)
—3(1+x2)

3 ( —x+ 4x3)
15xg

3 (1 —16x2+2Ox4)

—2V3x
VS(1 —x2)

v3 (1+2x2)
V3 (4x —3xg)

3(1 —4x2)
3 (2x -3xg)
—3 (x+x3)

3 ( —1 —4x2+Sx4)

&3{—1+Sx2)
—2%3 (2x+Sxg)
VS(sx —Sx3)

V3 (-1+Sx2)
3 ( —2x+Sxg)

3 ( —1 +14x2 —20x4)
3(1+6x2—Sx4)

3 {—x+Sxg)

From this we see that the following invariance proper-
ties hold in the angular distributions and polarizations
along 8 for y=0' and q =90'. For q =0' we have an
invariance under the transformation

&(~—1)+~ &«+1)—~

&(~&)+ and &(i+1) are both electric 2/ pole amplitudes
)parity (—1)'j but the first one corresponds to a totai
angular momentum l—~ while the second corresponds
to J=l+-,z.

For q =90' the invariance that holds is under the
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transformation
s'il++-+ —M l

M~ and nfl correspond both to magnetic 2/ pole
radiation Lparity (—1)'+') but the total angular
momentum is i+is for Mti. and f—sr for Mt . These
invariance properties can be checked in the tables.

We also notice that under the transformation

~l+ ~ +(l+1)—y ~l—~ @(l 1)+)

the angular distribution for q=0' goes over into the
angular distribution for y=90' and vice versa. This
does not occur with the polarization. As a consequence,
the angular distribution, but not the polarization for

unpolarized photons, is invariant under this transfor-
mation. This is the well-known Minami invariance.
The relevance of this ambiguity to high-energy photo-
production experiments has been emphasized by
Sakurai' and Moravcsik. '
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The range of the proton-antiproton annihilation was calculated for antiproton with energy near 1 Hev. The
point is to get the range of pure annihilation interaction, separating the e6ect of pion production. It was
found that the root mean square of this range is given by (1.19~0.07) &10 "cm almost independently of
the energy.

HE range of proton-antiproton annihilation is of
special interest in connection with the problem

of nucleon structure, since it gives in some sense direct
information about the core size. Levy estimated this
to be I.43)& l0 "cm. ' His result is, however, subject to
an ambiguity, since in his calculation the eRect of pion
production is not separated. Recently, the pion produc-
tion cross section in p-p collision was found to be
(5~1) mb at 940 Mev. ' It seems possible to use this
n.ew information to eliminate to some extent the
ambiguity in Levy's calculation.

If we denote the phase shift due to pure annihilation
as ql, and the correction to ql due to pion production as
bgl, the total inelastic cross section and the scattering
amplitude are given by

Equation (1) can be written as

o.;„,i=sr)is{ Q (2l+1) (1—e4'ei)

+(e"")P (2)+1)(\e4'n&).)— (3)

where (e"&) is the average value of e""t over the range
of / in which baal is appreciably different from zero. The
first term on the right-hand side of (3) is the pure
annihilation cross section. To relate the second term to
observed quantities, we assume erst that the phase
shifts due to annihilation and pion production can be
de6ned separately and are additive, and second that the
mechanism of pion production is essentially the same
for p-p and p-tn collisions. Then gstt can be identified
with the phase shift for p-p collision with the same
energy, and (3) can be written as

and
o" =sr)~'P (2l+1)(1—e"'"+'" '),

&irrel &an+ (e )o pro (pp)r

j(e)= ii)i Q (2l+1) (1 es'&" &+s«—i)Pt(cosa), (2)

respectively, where X is the wavelength of the incident
particle in the c.m. system, and the spins of both
particles were neglected. gl and S'il are assumed to be
imaginary.

* On leave of absence from Nihon University, Tokyo, Japan.' M. Levy, Phys. Rev. Letters 5, 377 (1960).
s Q. Chamberlain, Proceedings of the Tenth Annual International

Rochester Conference on FIigh E'nergy Physics, 1960 (Int-erscience
Publishers, New York, 1960).

where o.„,(pp) is the pion production cross section for
p-p collision with the same energy. The second term in
the right-hand side of (3) is the pion production cross
section in p-p collision, and from this we see that
(e4t&) can be expressed as

&
"")= " (PP)/ .-(PP),

where op„(pp) is the pion production cross section in
p-p collision.


