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Physical arguments are used to predict qualitatively the effect on direct-interaction differential cross
sections of the distortion of the wave functions of the scattered particle. These qualitative predictions are
confirmed by calculations using a simple but fairly realistic model for the wave function distortion in (n, n )
scattering. The model used is based on examination of the properties of optical model wave functions. Good
fits to experimental data are found using the model for (n,n') scattering in the energy range 20-40 Mev for
scattering angles less than 90'. Features of direct-interaction processes involving nucleons are interpreted in
terms of a focus in the optical model wave functions for these particles, but detailed calculations are not
presented.

1. INTRODUCTION direct interactions, in particular for (cr,n') and (p,p')
processes, on the basis of distorted-wave Born ap-
proximation and a simple empirical but realistic approxi-
mation for the distorted wave functions of the entrance
and exit channels in the neighborhood of the nuclear
surface. As in the oversimplified Butler' ' theory and
also in Blair's' theory, the positions of the maxima and
minima in the angle dependence of the cross section are
controlled, for a given angular momentum transfer, by
a single parameter, which may be thought of as the
nuclear radius. Our theory for (n, tr') scattering, how-

ever, also has a parameter, related to the spread of the
distorted n-particle wave functions round the nuclear
surface, which controls the peak-to-valley ratio in the
angular distribution, and a parameter related to the
e6ective thickness of the nuclear surface, which controls
the ratio of the cross section for large angles to that for
forward scattering. We are also able to understand
physically, by using the uncertainty principle, why
various types of approximation fail in the way they are
observed to do.

For all particles, the nucleus focusses the entrance-
and exit-channel wave functions, ' but for strongly ab-
sorbed particles such as n particles the foci are suffi-

ciently attenuated to be unimportant. For protons,
however, the intensity at the foci is large, and they
cannot be ignored. The effect of these foci is particularly
important when they lie in the nuclear surface. They
then lead to a large uncertainty in the effective mo-

mentum transfer, which in turn smooths out the maxima
and minima in the angular distribution and can also
lead to a large amount of forward scattering. The theory
for (p,p') scattering, to be realistic, needs more parame-
ters than the theory for (rr, n') scattering, but once these

parameters are Gtted it should be possible to use the
same distorted wave functions in the description of
other direct-interaction processes involving protons.

' T is generally accepted that many nuclear reactions
& ~ can be understood as direct interactions in which the
incident particle excites only a few of the degrees of
freedom of the target nucleus. Considerable success in
describing these reactions has been achieved by as-
suming that the interaction proceeds via a two-body
collision between the boInbarding particle and a single
nucleon in the target, and by using distorted-wave Born
approximation. ' However, it is probable that many
direct-interaction processes involve collective rather
than single-particle excitations of the target, ' ' and
Drozdov4 and Inopin' have given a simple approxima-
tion for (a,n ) processes involving collective excitations,
which has been applied successfully by Blair. ' It is also
obviously possible to formulate a distorted-wave Born
approximation for direct interactions whether the nu-
clear excitation is collective or single-particle. Since
there is general agreement that the most important
factors controlling angular distributions are the angular
momentum transfer and the distortion of the wave
functions of the bombarding particle, these angular
distributions shouM be largely insensitive to the nature
of the nuclear excitation for direct scattering processes
(in which the wave functions for the ingoing and out-
going channels appear in the matrix element evaluated
at the same point).

In this paper, we discuss the angular distributions in
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A

OR= Q . d'r~ d'rqd'r' 4 f*(r r rq)&) ) a') )

&(C,(r&, ,r.. .r~)v(r;, r')ff (r'g, (r'), (1)

where 4, and Cf are the initial and final nuclear wave
functions, f, and Pf are the distorted wave functions for
the incoming and outgoing particles, and e is the
interaction between the bombarding particle and the
target nucleons. This form of matrix element will be
valid whether the excitation of the final nucleus is single
particle or collective, although to find the absolute
magnitude of the matrix element in the latter case one
would have to solve the problem of describing collective
degrees of freedom in terms of particle coordinates.

5R may now be rewritten

where

dar F(r)p(r)gr's(r)

A

F(r) = P d'r& d'r~ C f*(r&, ~,r~)

and
)&C,(r~, .

, rq) 5 (r;—r), (3)

p(r)e' '& = I d'r' v(r r')iaaf*(r')iP, (r').

Thus Ii, which may be complex, is related only to prop-
erties of the initial and final nuclear states whereas
p exp (iS), which for future convenience has been written
as a product of amplitude and phase factors, describes
properties of the bombarding particle and of the
interaction

In those cases where direct-interaction theory has had
a success, it has been possible to assume that the
properties of the nuclear states determine the angular
momentum transfer uniquely. A particularly important
case occurs when the ground state of the target nucleus
has zero spin —in this case the angular momentum
transfer must just be the spin of the excited state. The
examples of our theory which we display are all of this
type. If the angular momentum transfer is L, then F (r)
must have the form

F(r)=&(r)I'z (0,~) (5)

For a single-particle excitation, R will be proportional to

2. MATHEMATICAL FORMULATION AND
PHYSICAL INTERPRETATION

We shall confine ourselves in this paper to a discussion
of direct (rather than exchange) inelastic scattering,
although our approximations could be adapted to other
processes. We shall also ignore internal structure of the
bombarding particle, such as the spin of a nucleon or the
structure of an alpha particle as a bound state of four
nucleons. Our discussion is based on the Born approxi-
mation matrix element

the product of the radial functions for the single-particle
orbitals which differ in the two states. For collective
excitations, E. will have a different meaning, but never-
theless F will still have the form given by (5).

Our procedure will be to make an empirical approxi-
mation for ff*(r')P, (r') based on optical model calcula-
tions, and to assume that v(r, r') is of suKciently short
range to allow us to use our approximation for Pr*P; as
an approximation for p exp(iS). This last assumption
appears to be justified at least for calculations of the
angular distribution, since I evinson and Banerjee' and
also Glendenning" have found the results of their more
detailed calculations to be largely insensitive to the
range of the interaction. This topic is discussed in more
detail in a recent paper by Austern. "

The discussion of the actual approximations we make
will be postponed until Secs. 3 and 4. The remainder of
this section will be devoted to a description of a physical
picture based on the uncertainty principle which allows
us to understand the reasons for the various effects
which we predict.

First consider simple Born approximation, with a
zero-range interaction. In this case, p exp(iS) is pro-
portional to exp(iK r), where K= k;—ky, the difference
of the wave number vectors for the initial and final
projectile states; Kk is the momentum transfer in the
complete scattering process. The matrix element 5R is
then proportional to the probability amplitude that the
initial and final nuclear states have momenta differing

by KA.
If the simple Born approximation is valid, the whole

of the momentum transfer takes place in the inelastic
episode in the scattering, which in this case is the com-
plete scattering process. In distorted-wave Born ap-
proximation, however, part of the momentum transfer
will be caused by the elastic and absorptive processes
which distort the wave functions, and this will show up
in the deviation of p exp(iS) from exp(iK r). In more
detail, OR can be written as OR = J'd'E'ORg(K')F(K —K'),
where OR~(K ) is the simple Born approximation matrix
element for momentum transfer K'A (and zero-range
interaction), and may be interpreted as the probability
amplitude that the momentum transfer in the inelas-
tic episode in the collision is K'A, while F(K—K')
=(2~) 'J'd'r pexpLi(S —K' r)$ may be interpreted
(provided the interaction has zero range) as the proba-
bility amplitude that the momentum transfer in the
elastic and absorptive processes which distort the wave
functions is (K—K )k. (An analogous interpretation is
possible even if the direct interaction does not have zero
range. ) Quite generally, the factor p exp(iS) in the
integrand of the matrix element may be regarded as
describing the properties of a probe which measures
some of the ways in which the nuclear state changes in
the inelastic episode of the complete scattering process.
We have just seen that in simple Born approximation

' N. K. Glendenning, Phys. Rev. 114, 1297 (1959).
"N. A@stern, preprint (1960).
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the inelastic episode is the complete scattering process,
and the probe measures the momentum transfer. We
shall. now consider how this interpretation must be
modified in distorted-wave Born approximation on ac-
count of deviations of p from a constant and of 5 from
K r. The first type of deviation we term amplitude
dislortiors, and the second phase distortion

We consider amplitude distortion first. If p is non-
uniform in space, it implies that the probe is in fact
making a simultaneous position and momentum meas-
urement. Because of the uncertainty principle, the
resolution for momentum transfer will therefore be re-
duced. We give two examples. The simple Butler'
theory of direct interactions assumes that the interaction
is confined to distances greater than some effective
nuclear radius R from the center of the target. In a more
extreme approximation, it is often assumed that the
reaction is confined to the shell of radius R. In this case,
there will be no resolution at all for the radial com-
ponent of momentum transfer, " because of the un-
certainty principle and the fact that the probe has per-
fect resolution for measuring radial position. This can be
seen alternatively, since the radial target wave functions
enter the matrix element evaluated at a single radius,
and knowledge of a function at just one point gives no
information whatever about its Fourier components.
Since no angular localization is assumed over the nuclear
surface, however, resolution of the angular momentum
transfer should be a maximum. To exploit this, we must
expand exp(iS) = exp(iK r) in partial waves, when only
that one corresponding to the actual angular momentum
transfer I. contributes to the matrix element and as is
well-known the angular distribution for the scattering is
given by

~
jr, (ER)

~

'. The sharpness of the maxima, and
mininia in the differential cross section predicted by this
expression, together with the fact that the minima
actually reach zero, are associated with the maximal
resolution for angular momentum.

To check that this is indeed so, we notice that a
localization to just part of the nuclear surface will cause
contributions to the matrix element from different
partial waves in the expansion of exp(iK r), as a result
of which the matrix element will in general be complex,
and only in very exceptional circumstances will the
matrix element vanish for any real value of E. On the
other hand, an unsharpness of the effective nuclear
radius (i.e., a "thick surface") will merely re-
place j i.(ER) by gi, (E)=Js" f(r)j 1.(Er)dr, where f
L—:E(r)p(r)r'] is a real function, and only for excep-

"We use the terms "radial" and "tangential" components of
momentum transfer in a rather loose way. The momentum transfer
can be represented by the differential operator —iAV operating on
the nuclear overlap function Ii (r). Now the gradient operator may
be written V=r(r" V+r 'l+PV r(r" V'+r 'l] These t—wo . terms
we call the radial and tangential components of V', respectively.—iA(r" V'+r ') is a Hermitian operator conjugate to r, and—~AV+ikr"(r" V+r ') commutes with r, these being the justifica-
tion for the nomenclature. The two parts of V' do not commute
with each other or with V' itself, and this is the source of some
inexactness in our interpretation.

K= k;-kf

I
I
I
I
I
I
l
f

]IE
l

FIG. 1. "Bright" and "dark" regions of the nuclear surface for
entrance and exit channels, and region of maximum overlap.

X
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which reduces to (2L+1)i~j&(EE) when n=7r, thus
reproducing the Butler theory. However, when n (w, (6)
is a sum of terms jI. (EE) with varying coeKcients. I.
represents the total angular momentum change of the
nucleus, I.' that part of the angular momentum change

tional and rather implausible functions f will gr, (E)
have no zeros, so that the inclusion of a radial integra-
tion will not in general spoil the feature of the differ-
ential cross section which we associate with maximal
resolution for angular momentum.

Our second example illustrates the results on the
effect of an angular localization of the interaction. In
(n,n') scattering it is certain that the wave function of
the incident particle will be considerably reduced on the
shadow side of the nucleus compared to the side facing
the incoming beam, and a similar effect will be true for
the outgoing particle. The overlap of the wave functions
will therefore be greatest at the side of the nucleus
opposite to the direction of the momentum transfer.
This is illustrated in Fig. 1.Although the approximation
to be described in the next section is more realistic, we
shall here consider the consequences of assuming that
that part of the surface, axially symmetric about the
direction of the momentum transfer, cut o6 by a cone of
semiangle n (as illustrated in Fig. 1) contributes uni-
formly to the matrix element, and the remaining part of
the surface does not contribute at all. In this case, the
matrix element is proportional to

Q -', (2L'+1)i~'jl. (EE)(LL'00~ LL'l0)'
L', l
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associated with the inelastic episode in the complete
scattering process, and jt that part involved in the
(elastic) deformation of the initial and final n-particle
wave functions which is necessary to produce the as-
sumed localization of the direct interaction. The Clebsch-
Gordan coefficients ensure that L' and l can indeed be
added to give the true total angular momentum transfer
L. The probability that the angular momentum transfer
in the inelastic episode is L' will be proportional to

-', (2L'+1)i~' Q(LL'OO~LL'lO)' Pi(x)dx, (7)
l cos cr

which becomes negligible except for I.' =L as coso. —+ —1.
Of course since angular momentum is a discrete vari-
able, the positions of the maxima and minima are con-
trolled by the dominant term in (6), which will be that
with I.'=L provided o. is large enough: the effect of the
poor resolution for the angular momentum transfer in
the direct interaction is partially to fill the valleys be-
tween peaks.

Localization of the interaction to part of the nuclear
surface will tend also to enhance the cross section for
large angles Lsince only for large momentum transfer do
those j«(KR) with large L' contribute]. However, the
most important effect controlling the relative height of
successive peaks is the thickness of the surface region
which contributes to the matrix element. This thickness
is controlled on the one side by the penetration of the
bombarding particles into the nucleus, and for collective
excitations probably also by the smallness of the radial
nuclear overlap function R(r) in the interior of the
nucleus, and on the other by the falloff in the density of
nuclear matter. The radial overlap function R(r) of
Eq. (5) will in general be oscillatory inside the nucleus:
however, if the wavelengths characteristic of these
oscillations are large compared to the effective surface
thickness then their effect on the matrix element will

only be slight. The validity of this assumption will be
discussed in the next section. The result of the radial
integration in the matrix element should then depend
primarily on two parameters, the nuclear radius and the
surface thickness. Decreasing the surface thickness will
increase the number of high momentum components
which contribute to the matrix element, and will there-
fore cause an increase in the large-angle scattering cross
section (which requires large momentum transfer) rela-
tive to forward scattering. Similarly, increasing the
surface thickness will depress the large-angle cross
section. It should be remembered, however, that we
cannot expect such a simple two-parameter description
of the radial integration to be valid for momentum
transfers greater than A/X, where X is the surface
thickness, for then finer details in the integrand of the
matrix element will begin to be important.

We now summarize these results. We expect the
sharpness of the maxima and minima in the differential

cross section to be partially smoothed out by a localiza-
tion of the interaction to just part of the nuclear surface
(i.e., angular localization), and we expect this to be the
main effect controlling the peak-to-valley ratio for the
maxima and minima in the cross section. We expect both
the angular localization and the radial localization to
affect the ratio of the large-angle scattering cross section
to the small angle scattering. The positions of the
maxima and minima in the angular distribution will
depend on the details of the radial integration, but for
not too large momentum transfer we expect the posi-
tions and relative magnitudes of the peaks to be well
described using a radial integral with just two parame-
ters, an "interaction radius" and a "surface thickness. "
In the next section we shall see how these expectations
are borne out in practice.

So far we have discussed amplitude distortion only.
For (n,u ) scattering it is plausible that phase distortion
will not be very important (this will be discussed in
more detail in the next section), but this is not true for
processes, such as (p,p') sca.ttering, which involve
nucleons. The reason for this distinction is that the
nuclear optical potential produces a focus in the in-
coming and outgoing wave functions, which is very
intense for nucleons, but less so for more strongly ab-
sorbed particles. We 6nd it possible to ignore the foci for
(n,n') processes. It is obvious that phase distortion
cannot be ignored in the region of the foci. Because of
the complications of the foci, we do not yet have de-
tailed results to report for nucleori-nucleon processes,
but in Sec. 4 we outline the type of approximation we
intend to make and describe why we believe it will lead
to correct qualitative predictions.

Since phase distortion will be largely ignored in what
follows, it is important to know in which direction our
predictions are likely to be wrong. To understand this,
we use the result proved in Appendix 1, namely that if
a probe is described by p exp(iS) (see the earlier discus-
sion) where p is a brown function of position, and if the
probe is interpreted as measuring momentum transfer,
then the probe will have maximum resolution for de-
tecting a momentum transfer Kh, consistent with the
uncertainty principle and the known localization p of
the probe, if S=K r. Thus the effect of phase distortion
should be to reduce still further the resolution for mo-
mentum transfer, and for angular momentum transfer.
It follows that angular distributions predicted ignoring
phase distortion, in those cases when it is important,
should have more pronounced structure than if phase
distortion were correctly treated.

3. (0.,0.'} SCATTERING

In this section we shall describe a realistic approxima-
tion for the distortion of the ingoing and outgoing o,-
particle wave functions in the vicinity of the nuclear
surface.

First of all, we notice that if the interaction is localized
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on the surface, only the angle dependence of the wave
functions matters. Now the divergence of the Aux of
particles incident on a nucleus is proportioned to ~f ~'

multiplied by the absorptive part of the optical model
potential, so that we can use the calculations of
McCarthy et al.' as a guide in making an approximation
for ~P~. Reference to the diagrams in those papers
shows (i) the dependence of

~ P ~

on angle is similar at. all
raclii in the neighborhood of the nuclear surface, (ii) the
intensity is greatest on the front side of the nucleus (i.e.,
the side facing the incident hearn) and falls off towards
the back, except for the focus, (iii) there is a focus at the
back of the nucleus, where the intensity may be large
compared to that at the front for particles such as
nucleons which are not too strongly absorbed, and com-
parable to the front intensity for more strongly absorbed
particles such as n particles, (iv) the focal region does
not deviate very seriously from spherical symmetry.

Our basic approximation for f,, which is a compromise
between complete realism and a form leading to simple
analytical results for the matrix element, is

P,=A(r) exp(ik; r yk, r)— "
+8 exp Li5;(r) —(r—ak, )'/2os], (g)

where the 6rst term represents the over-all surface
intensity and the second term represents the focus. k, is
the incident wave vector, and k;, r" are unit vectors in
the directions of k, and r. For the outgoing particles, a
similar form of wave function is chosen, but with k,
replaced by kf in the phase and by —kt in the amplitude
factors. For convenience we shall call the two terms in

(8) the surface term and the focus term

Let us erst discuss the surface term. We shall postpone
consideration of the radial dependence A(r) of the
amplitude. To determine whether the assumed angle
dependence of the amplitude is reasonable, we plot
log, ~it ~' against —k r: this should give a straight line

r
Ar

Fro. 2. Plot of log,
~ p ~

against —k. r" for 18-Mev a-particles inci-
dent on argon, corresponding to the optical model parameters el
of reference 9. Curve A corresponds to the radius with nuclear
density 90% of rnaxirnutn, curve B to 10'% nuclear density. The
dashed line corresponds to anisotropy parameter y=0.9.

A

of slope 2y, except near k r"=1, where the focus con-
tributes. Figure 2 shows such a plot, for 18-Mev n
particles on an argon target, using results from McCarthy
et u/. ' The plots are reasonably straight, and correspond
to values of p in the region of 0.8; furthermore the mean
slope is indeed independent of radius, thus con6rming
the assumption that the angle dependence of the surface
term is similar at all radii. The Butler approximation
would be represented on Fig. 2 by a line of zero slope.
We shall refer to y as the anisotropy parameter, since it
is a measure of the lack of uniformity of the wavefunc-
tion over the nuclear surface. The anisotropy parameter
does not appear to be very sensitive to the energy or to
the nature of the incident particles.

Melkanoff and Dyer" have also recently made calcu-
lations of optical model wave functions, and their pre-
liminary results are similar to those displayed in Fig. 2.
Figure 3 shows a plot of log, ~lt ~' against —k r for 40-

I

-0.8 -0.6
I

-0.4 '-02 0 0.2 0,4 0.6 0.8 I.O
A-k r

FIG. 3. Plot of log, ~g~' against kr" for 40-M—ev o-particles
incident on Al", using optical model parameters from Igo and
Thaler. "The nuclear radius is approximately 5.5 f.

Mev. n-particles incident on an aluminum target, using
optical model parameters from Igo and Thaler. "The
calculations of MelkanoR and Dyer also give the phase
of the wave function, which is shown plotted against k r"

in Fig. 4. To a remarkably good approximation, the
phase at all radii is seen to be a linear function of k r".

Of course, this does not mean that there is no phase
distortion; rather, Fig. 4 shows only that the phase of
the surface term in the wave function in and near the
nucleus has the form cr(r)k r+P(r). P(r), which is the
value of this phase when k r =0 and should be constant
if there were no phase distortion, varies quite rapidly in
the vicinity of the nuclear surface, Also, although rr(r)
does appear to be a linear function of r except for small
radii, it is not just kr but rather has the form rs(r) =ar
+b, where a is considerably smaller than k. (These
remarks are based on a study by Mr. T. Menne of the
wave functions computed by Melkanoff and Dyer. )

'3 M. Melkanoff and J. Dyer (private communication}."0, Igo and R. M. Thaler, Phys. Rev. 106, 126 (1957).
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Despite these facts, however, it is reasonable to in-
vestigate the consequences of using an undistorted
phase as in (8) before trying to study anything more
complicated. Indeed, for the special case in which the
incoming and outgoing particles are the same and for
which the intensity of the focus is small enough for the
focus to be ignored, as for example in (n,a') scattering,
we can see that despite phase distortion we can use (8)
with very little error provided only that we change our
interpretation of the meaning of r. This is because the
P(r) terms in the phase cancel between the incoming and
outgoing wave functions and the angle-dependent terms
can be brought to the form k r' by the change of radial
variable r'=k 'n(r); thus the r in (8) should really be
interpreted as the r' just defined rather than as the true
radial coordinate of the particle. Of course the cancella-
tion of the P(r) terms, and the simultaneous transfor-
mation of the angle-dependent parts of the phases to
undistorted form for both incoming and outgoing par-
ticles, is exact only if kj =k;, but since the distortions
are produced by a potential of strength much greater
than any probable energy loss in a direct-interaction
scattering, the error involved in using the undistorted
phase in (8) should be small.

For the focus term, we assume a spherically sym-
metric dependence for the amplitude, centered about a
point distant a from the center of the nucleus. The
spherical symmetry appears from McCarthy's work to
be a reasonable first approximation, and the Gaussian
shape reproduces the angle dependence of the intensity
at the focus extremely well. For the focus, it is certainly
invalid to ignore phase distortion, and in (8) we have
for the moment left the phase factor unspecified as
exp[i S(r)].

For nucleons, the focus is intense, and is therefore
very important, but for o. particles the intensity at the
focus is not significantly greater than at the brightest
part of the front surface, and since the focus covers a
comparatively small part of the nuclear surface we as-
sume that as a first approximation it may be ignored.
This approximation is probably invalid for small-angle
scattering, when the overlap of the surface terms of f,
and fr is small. Nevertheless the effect of the focus will
be ignored in the rest of this section, but will be dis-
cussed qualitatively in the next section.

For (a,n') scattering, therefore, our approxima, tion is

P;= A (r) exp (ik,"r —yk; r),

Pr ——A(r) exp(ikr r+yks r)

The matrix element (2) then becomes

l600

|200

~~ 800

0 I

-I.O -.8 -.6 -8 -.2 0 .2
k r

.8 |.0

FIG. 4. Plot of phase of wave function against k r" for 40-Mev
O.-particles incident on Al. '3

angle integration can be done exactly, and yields

OR= r'dr R(r)[A(r)]')&4~i jz($r) Tz~(ot. , &~), (10)

where

and gr, pr are the polar angles of the complex vector g.
To obtain the differential cross section, we must sum

~3R ~
' over values of M from L to L. Thi—s will lead us

to

2L+1
EI.(cos0), (12)

where (' =K+ (i p/r') (k;—ks), r' is the radial integration
variable in 5R* (whereas r is the corresponding variable
in 517), and

cosO~= $' ( /$$

If k, =kr (which we call the quasi elastic approxirna-tiort)
then it is obvious that cosO'=1. Even if the quasi-
elastic approximation is not valid, however, it can be
shown as in appendix 2 that cosO~ =1.Hence Er, (cosO~)
in

~
OR

~

' can be put equal to 1, and the radial dependence
of VzM(er, pr) in (10) ignored. The differential cross
section is then proportional to

OR= d'r R(r) Fz~(8, y) [A (r)]''
&(exp[iK r—&(k,—kr) r], (9)

da 2

R(r) [A (r)]'j z(kr)r'«
dQ ~p

(13)

where K=k;—kr, and we have made use of (5). The
We must now make some sort of approximation for

the radial integral in (13). First of all, we realize that



because of the absorption of the o. particles by the
nucleus, $A (r)]-'will fall off for small r. Also, because of
the falloff of the nuclear wave functions outside the
nucleus, there will be an upper cutoff to the integral.
Hence the integral will be confined to a region fairly
close to the nuclear surface. We now ask whether the
oscillat:ions of R(r) within the nucleus are likely to be of
significance. For a single-particle excitation, the shortest
wavelength which one might expect to find associated
with these oscillations is of order 2R/(n;+rsr+1), where
~; and e~ are the numbers of radial nodes in the initial
and final nuclear wave functions and R is the nuclear
radius. For most direct interactions, this mill not be less
than about 2 f, while we shall find that the thickness of
the surface region needed to give a reasonable 6t to
experiment is around 1 f. We therefore believe that as a
first approximation the radial integration will depend
essentially only on the nuclear radius and the thickness
of the surface region, as discussed in the previous sec-
tion. The simplest empirical choice we can make for
R(r)LA(r)]' in (13) which involves only these two
parameters is

R(r) LA (r)]' expL —(r—R)'/X'].

(An alternative way of regarding this approximation is
to consider that for small momentum transfer the
radial integral depends on the radial weight function
R(r)LA(r)]' only through its first two moments. ) We
believe there is no sense in attempting to represent the
falloff of R(r) outside the nucleus or of [A(r)]' inside
more accurately than by (14) unless at the same time
we make a, realistic approximation for R(r) inside the
nucleus.

Our Anal form for the differential cross section for
(u,n') scattering is therefore

00 2

exp[ —(r R)'/X—']ji, (tr)r'dr, (15)
d~ ~o

where $ has been defined in Eqs. (12). In the quasi-
elastic approximation (i.e., kr=k;), this can be written
in the simpler form

do.
exp L

—(r—R)'/~I ']
dQ

Xjg.L2(k; r+iy) sin28]r'dr . (15')

lO
For comparison we quote the analogous results for the
Butler theory using a fixed radius, and for our theory
also using a fixed radius:

d{T

(Butler) —~
~
jI,(2k;R sin-,'8) ',

dQ
(16)
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der

(Fixed radius) —~
~
jr,L2(k,R+iy) sin-,'8]~'. (17)

dQ

We have discussed qualitatively in the preceding
section how the various parameters in (15) or (15')
should affect the cross section. As with the simple
Butler theory, the positions of the maxima and minima
are controlled by the radius parameter R and the
angular momentum transfer I.. We find that essentially
the same radius parameter shouM be used to fit the
positions of the peaks whichever of (15'), (16), or (17)
is used, and therefore it is convenient to obtain E using
the simplest formula, namely (16). The anisotropy
parameter p should control the peak-to-valley ratio in
the cross section, and also enhance the large-angle cross
section somewhat. Lastly, the relative magnitudes of
successive peaks is controlled by the thickness parame-
ter X. Predictions of (16) and (17) are compared in
Fig. 5 and typical fits for (n,n') scattering from sulfur
and magnesium targets using (15') are shown in Figs. 6
and 7. For both these calculations the values of the
parameters were y=0.9, X=0.88f. Similar fits have
been obtained with magnesium data at energies down to
28 Mev.

There is one feature of Eqs. (17) and (15') which we
would like to clarify. In Sec. 2 we showed that localiza-
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FIG. 6. Typical fit obtained for 41.7-Mev e particles on a sulfur
target. The experimental points are taken from P. Robison and
G. W. Farwell (private communication).

exp(ibs). The right-hand side of (18) is very similar in
structure to (6): in particular, the occurrence of the
Clebsch-Gordan coe6icient should be noted. The explicit
dependence in (18) of the coeKcient of jl, (EE) on the
scattering angle 8 is not an essentially new feature, and
its analogy in the simpler model which led to (6) would
be a dependence of n on 8. Equation (18) displays
clearly the poor resolution for angular momentum
transfer, but also spoils the great simplicity of our re-
sult. In the form (17) or (15') the lack of resolution for
angular momentum transfer, shows up through the
nonzero minima of do./dQ.

Ke shall now discuss the values of the parameters
which we have to use to get 6ts such as those of Figs. 6
a,nd 7. It is notable that the anisotropy parameter p
which is required is close to that which we expect from
examination of optical model wave functions. The argu-
ments given earlier show that the maxima and minima
should, if anything, be more smoothed out .than one
would expect solely on the basis of surface anisotropy,
and it is satisfactory therefore that the y value required
to fit experimental data is, if anything, larger rather
than smaller than the value obtained from optical model
wave functions.

As is usual with simple direct-interaction calculations,
the radius parameter E is very large, close to 2.2 A' f for
incident o, particles of 40-Mev energy. Also the width
parameter X which gives the best fit is considerable less

tion of the interaction to a part only of the surface
should partly spoil the resolution for measurement of
the angular momentum change of the target nucleus,
and we illustrated this by a simple example which made
this clear. In that example the simple ji,(ER) of the
Butler formula was replaced by a sum of terms j~.(ER)
with coeKcients whose squared moduli were interpreted
as the probability that the angular momentum transfer
in the inelastic episode is L' rather than L. On the other
hand, Eq. (17) does not seem to have this type of
structure, and only one Bessel function appears to be
present. However, the argument of the Bessel function
in (17) is not simply ER, and the perfect resolution of
angular momentum is associated with Bessel functions
of this argument, and in particular with the fact that for
particular momentum transfers

~
jI.(ER) ~' is strictly

zero. The Bessel function in (17) could, however, be
written as a sum of Bessel functions of KE. with different
L values and with coefficients depending on p. Explicitly,

jr[2(k;R+iy) sin-', 8]
= P (2L'+1) (—1)-:«+'-»(II.'00
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a.s may be seen by comparing the expansion of
exp[i(a+b)s] in a series of Legendre polynomials of s
wit, h the product of the expansions of exp(its) and
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FIG. 7. Typical fit obtained for 41-Mev o.'particles on a mag-
nesium target. The experimental points are from Blair, Farwell,
and McDaniels, '
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than one would expect from the amount of penetration
of the n-particle wave functions into the nucleus pre-
dicted by the optical model. However, the extremely
rough nature of the approximation for the radial overlap
functions in (13) should warn us against too literal an
interpretation of the parameters E and X. A more
realistic approximation must take account of the radial
dependence of the phase and amplitude of the distorted
wave functions as well as the angle dependence, and
must also make a more realistic approximation for the
radial dependence of the nuclear overlap function. Work
in these directions is in progress.

As has already been indicated, we expect the inade-

quacy of our approximations for the radial integration
in the matrix element to lead to failure of our predictions
for large-angle scattering. There is evidence of this in
Figs. 6 and 7, and attempts to fit data with magnesium"
and argon targets" fail seriously at angles greater than
about 100'. We hope to obtain an improvement with a
more realistic radial integration. There is also an indica-
tion that our predictions fail for forward scattering,
with scattering angles less than 10'—15'. From the
different directions of the failure for sulfur and mag-
nesium targets, one might suspect interference effects.
There are at least two contributions to the forward
scattering which we have omitted from our present
calculations, and which might cause interferences. These
are Coulomb excitation, and the contribution from the
overlap of the focus for one channel with the surface
term for the other. It is easily seen that this last effect
should have a maximum for forward scattering, and also
the surface-surface overlap term should then be a
minimum.

4. FOCUS EFFECTS

In this section we shall discuss the focus term in our
approximation (8) for the distorted wave functions in

the neighborhood of the nuclear surface. We have
already shown that our approximation for the amplitude
of this term is reasonable. Reference to the work of
McCarthy shows that reasonable values for the size
parameter are in the region of 1 to 2 f. For nucleons of
medium energies, the 8 parameter giving the intensity
at the focus should be chosen so that ~P ~

' at the most
intense point is about 20—30 times ~f ~

at the brightest
part of the front surface. This parameter, however, is
sensitive to optical potential parameters, and should
therefore be fitted empirically. For strongly absorbed
particles such as n particles,

~ P ~

' at the focus should be
around 1—2 times

~ P ~

' on the front surface. The re-
maining parameter in the amplitude distortion is a, the
distance of the center of the focus from the center of the
nucleus. At zero energy, a is zero (since only the s wave
contributes to the scattering), i.e., the focus is at the
center of the nucleus. However by the time a nucleon

's G. B. Shook, Phys. Rev. 114, 310 (1959).
's L. Seidlitz, K. Blenier, and D. J. Tendam, Phys. Rev. 110, 682

(1958).

energy of order of 10 Mev is reached the focus has
moved out considerably towards the surface, and from
20 Mev onwards u appears to be a reasonably linear
function of energy.

So far we have not discussed the phase distortion in
the focus term, which certainly is not negligible. How-
ever, since the focus is a relatively small region of the
nucleus, we expect the gradient of the phase to be
reasonably constant throughout the focal region. From
the axial symmetry of the problem, the direction of this
gradient must be the direction of k;. Hence we expect
the phase at the focus to be represented fairly well by

5=ck,"r+8, (19)

where c(1.Reference to Aux calculations does indeed
support the belief that the direction of VS within the
focus is just the direction of k;. The approximation (19)
can be shown to be exact if the wave function at the
focus is a superposition of functions each with a wave
vector of the same magnitude as k, but twisted through
a fixed angle o~ (see Appendix 3). In this case c=cosro.
Since the amplitude of the wave function falls off in the
interior of the nucleus because of absorption, most of the
particles which reach the focus must have come through
the lower density surface region, and this suggests that
the "fixed twist" approximation for the phase distortion
might be good enough to help us to estimate c. Reference
to Aux pictures shows that the particles do indeed enter
the focus at quite a large angle to the direction of the
incident beam, and values of co as large as 60 or more
are not unreasonable. This would imply c& 2.

In order to determine the additional constant 5 in

(19), it is necessary to know the relative phase of the
wave function at the focus and at the front surface. We
do not see any convincing way of relating this to the
other parameters of our theory, and therefore 8 must be
retained as a free parameter.

It is unfortunate that the treatment of the focus re-
quires the introduction of five new parameters (at a
fixed energy), namely 8, o., a, c, and 8. Obviously it will

not be possible to determine all of these from scattering
data, and some at least will have to be obtained from
optical model calculations. We do not have available at
present calculations which would justify any more pre-
cise statements about the values of the parameters than
we have already given.

Nevertheless, it is possible to discuss qualitatively the
effect the focus will have on differential cross sections.
The overlap function (4) will have contributions from
the overlap of the two surface terms, from the overlap of
the two focus terms, and from the overlap of one surface
and one focus term. I.et us call these SS, FF, and SF
terms, respectively. The SS terms have been discussed
in the preceding section. Before going further, let us ask
for which angles each type of term will dominate. Obvi-
ously the SS and FF overlaps will be greatest for large-
angle scattering, and the reason for the usual falloff of
the differential cross set:tipns a,t large angles is the
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FIG. 8. Comparison of predicted
cross section using a single SF term
and no radial integration with ex-
perimental cross section for (p, p')
scattering on a C'~ target. The
experimental points are taken from
R. W. Peele [Phys. Rev. 105, 1311
(1957)g. 0 is the parameter con-
trolling the size of the focus.
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absence of large momentum-transfer components in the
nucleus. The SF terms in the overlap, however, will be
largest for forward scattering, least for back scattering.
Consequently, provided the intensity at the focus is
great enough to compensate for its comparatively small
size, we might expect the forward scattering to be
dominated by the SF terms.

In order to get a feel for the effect of a large SF term,
we may study the cross section predicted using only this
part of the matrix element. The angular integrals can
again be performed explicitly, and the differential cross
section is proportional to the squared modulus of a
complex Bessel function and a Legendre polynomial.
The latter does not vary with angle as rapidly as the

former, so that the structure of the cross section is
dominated by the Bessel function. Furthermore, the
qualitative behavior of the Bessel function is not altered

significantly if we put c=1 in (19), although of course
the detailed behavior is changed.

Figures 8 and 9 show the differential cross section
obtained using a single SF term (instead of two inter-
fering SF terms), and using an interaction con6ned to
the nuclear surface, for 19.4-Mev protons on C" and
40-Mev protons on Fe. The rise in the cross section at
large angles is due to the omission of the radial inte-
gration. The SF terms lead to large scattering cross
sections for forward scattering, in qualitative agreement
with experimental results. Of course, one should not

Fxo. 9. Comparison of predicted
cross section using a single SF term
for (p,p') scattering on an iron tar-
get at 40 Mev. The experimental
points are taken from M. K.
Brnssel and J. H. Williams [Uni-
versity of Minnesota Linear Accel-
erator Laboratory Annual Progress
Report, March, 1958 (unpub-
lished), p. 41; see also M. K. Brus-
sel and I. H. Williams, Phys. Rev.
'114, 525 (1959)g.
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expect more than rough qualitative agreement with ex-
periment with the very crude approximations used in
Figs. 8 and 9.

The large forward scattering cross section can be
understood in terms of the uncertainty principle argu-
ments of Sec. 2. The SF terms are localized to such a
small region of the nuclear surface that very little
resolution for angular momentum transfer is retained.
Consequently there can be a very large contribution to
the cross section from j o(ER) even though in fact the
angular momentum transfer L is 2. Butler, Austern, and
Pearson" have given what appears to be an alternative
explanation of the anomalous forward scattering typical
of (p,p') experiments, namely that the bending of the
incoming beam introduces an extra transverse compo-
nent of momentum which permits a scattering to take
place which one might naively expect to be forbidden by
angular momentum conservation. This is really not a
different interpretation, however. In Appendix 3 it is
shown that the transverse momentum components in-
troduced in this way contribute to the amplitude
distortion rather than the phase distortion. , so that the
existence of the focus is possible only because of the
eRect considered by Butler, Austern, and Pearson. When
the process is considered from a wave-mechanical rather
than a quasi-classical viewpoint, however, the required
transverse momentum components arise because of the
localization in the focus and the uncertainty principle.

We do not expect the SF terms to dominate the cross
section at all angles. Rather, we expect SF terms to
dominate the forward scattering, but SS terms to be
important at medium angles, and FF terms at angles
greater than about 150' (provided the foci are suffi-

ciently intense). This agrees with the observed fact that
most (p,p') scattering results show a nonzero forward
cross section, even though L/0, and show a definite
structure at medium angles with peaks whose position
can be fitted fairly well with the Butler theory. It is also
notable that large back-scattering peaks have been ob-
served in (n,p) and (d,p) cross sections. "We also expect
the effect of the SF terms to be dominant primarily
when the focus falls in the region of the nuclear surface.
If the focus is further in, then the SF overlap will be
considerably reduced, and if it is further out, then the
nuclear density will be too low for there to be an ap-
preciable contribution to the matrix element. With the
parameters we have suggested, the proton focus should
be approaching the surface for energies near 40 Mev, but
should still be largely inside at 20 5~lev. This agrees
qualitatively with the experimental data for Fe, which
show structure corresponding to the Butler theory with
1.=2 (although with some "anomalous" forward scat, -

tering) at 20 Mev, but show only the forward peak at

S T SUtleI
p

N Allstel np and C Peal sonp Phys Rev 112p
1227 (1958).' D. H. Nilkinson, Proceedings of the International Conference on
Nuclear Structure, Eingston, edited by D. A. Brornley and E. W.
Pogt (University of Toronto Press, Toronto, Canada, 1960).

40 Mev. We expect that at greater energies the structure
will reappear in the cross section.

The arguments of this section are necessarily lacking
in detail, but we feel that our wave functions lead us to
expect results qualitatively sufficiently close to the
observed cross sections for it to be worth attempting
more detailed calculations. Such calculations are in
progress.

5. CONCLUSIONS

The results of this paper fall into four categories. In
the first place we have given a method of predicting
qualitatively the effect on direct-interaction differential
cross sections of distortion of the wave functions of the
scattered particle. Secondly, we have given an empirical
approximation for this distortion in the region of the
nuclear surface, and have discussed the justification of
the approximation on the basis of the optical model.
Thirdly, we have shown that our approximation works
extremely well for (n,n') scattering in the energy range
20—40 Mev and for angles up to 90', and have demon-
strated that our method of physical interpretation cor-
rectly describes the effect of modifying our parameters.
Lastly, we have used our method of interpretation to
understand qualitatively some of the more complicated
features of direct interactions, especially interactions
involving nucleons. We have not so far included spin
effects in our calculations, nor have we yet detailed
calculations of the effect of the focus, but such calcula-
tions are in progress.

Perhaps the most important of our detailed results is
to learn how to approximate the angle dependence of the
amplitude of distorted wave functions, and the simple
expression for the differential cross section for inelastic
scattering which follows in a natural way, The close
agreement of the y parameter chosen to fit the scat-
tering data and its value predicted from optical model
wave functions convinces us that our interpretation of
this parameter is substantially correct. On the other
hand, the two parameters E and X, which relate to the
radial dependence of the integrand in the matrix ele-
ment, do not have any very direct physical inter-
pretation.

The use of general arguments to predict qualitatively
the effects of localization of the direct interaction is
helpful whenever it is useful to treat the distorted wave
functions as a whole rather than as a sum of partial
waves. These arguments were of great help to us in
developing and understanding physically the results of
the more detailed calculations presented in Secs. 3 and 4.
However, they are also relevant to other direct inter-
action processes, wherever there is reason to believe the
interaction is largely confined to just a small region of
the nucleus.

The use of simple approximations to the distorted
wave functions in the theory of direct interactions is
limited by the diQiculty of finding a simple approxima-
tion involving only a few parameters which yet reason-
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ably accurately reproduces the results of direct optical
model calculations. The value lies in the fact that the
complete wave function has certain simple features
which may easily be parametrized, but which are hard
to discover from an examination of the partial waves
separately. Approximations such as we use therefore
give a more direct insight into the physical reasons
behind those aspects of direct-interaction processes
which are due to simple properties of the complete wave
function than could be obtained using an analysis in
terms of partial waves. Of course, a partial wave analysis
should, if correctly performed, lead to the same results
as the use of an exact expression for the complete wave
functions, and for some purposes this may frequently be
the best procedure. We believe that the most important
further development of our use of approximations to the
complete optical model wave function near the nucleus
will be the investigation of effects due to the focus.

Simplification, and introduction of Lag&ange multipliers,
lead to the equivalent condition

and also
e= —2= constant, (A1.S)

p'fe i%—' lnp —kid'r =0, (A1.6)

or if p —+ 0 su%ciently rapidly for large r, then

p'( —p 'V"p —2i(V' Inp) e i—V' e+o'+k'

+2 I-e—it lnp —k])d'r =minimum, (A'l .3)

where c= V'S.. We now treat this as a variational prob-
lem, varying e, and obtain

—2ip'(V' lnp)+i%'p'+ Xp'+ 2p'e= 0, (A1.4)
or
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APPEND IX 1

In this Appendix, we demonstrate that if a probe
described by p exp(iS), where p is a known function of
position, is interpreted as measuring momentum, then
the probe will have maximum resolution for detecting a
momentum kh, consistent with the uncertainty prin-
ciple and the known localization p of the probe, if
S=k r. By this interpretation of the probe, we mean
that J'f(r)p exp(iS)d'r is to be regarded as an approxi-
mation to the Fourier transform ff(r) exp(ik. r)d'r of

f corresponding to wave number vector k. Clearly the
resolution of the probe is better, the better p exp(iS)
approximates exp(ik r). The criterion we adopt that
p exp (iS) approximates exp (ik r) in some (perhaps
poor) sense is that, in the Fourier decomposition of

p exp(iS), the mean wave number vector is k, and the
criterion for maximum resolution for 'k is that the mean
square deviation of wave number vectors about k is a
minimum

For convenience, we suppose p normalized so that
J'p'd'r= 1. Then the conditions for the interpretation
we wish for p exp(iS) are

p'(~ —k)d'»= — p'(~+k)d'r= —(&+k). (A1.7)
J 4

Hence 2= —k, and

Hence
V'S= s= k.

S=k r+ constant,

which is what we wished to prove.

APPENDIX 2

g'*= (k,—ki)'+ (1—cos8)l-2k;ki+2y'/rr'
+i r (k~+kr) (1/r —1/r')], (A2.2)

where cos8 =k; kf, i.e., 0 is the scattering angle.
Since ((X('*)'=P$'*'—(g g'*)', it is clear that

I
»no

I

'—=
I (&x ('*)'/A'*'

I «1,
provided

I (&x 6*)/(( 6*)l«1
Now

(k ' kf)'+ 2 (1—cos8) (k,ki+r'/rr'), (A2.3)

and therefore

In this Appendix we justify the assertion made in the
body of the paper that cosO'= 1, or equivalently

I
sinO

I

«1, where 0 was defined following Eq. (12). The ap-
proximation is obviously exact for 0' and 180' scat-
tering or if ky =k;. We now consider the more general
case.

It is easy to show that

(X('*=i&(1/r+1/r')(k, —k~)k, Xki', (A2.1)

pe i e ( i 7' —
k)pe—i ed a»—0 (A1.1)

I
(&xg'*)/(g &'*)

I

pe ' (—R' —k)'pe' d'r =minimum. (A1.2)
r(k;—k J) (1/r+1/r')

I
sin8I

(A2.4)
(k —kg) +2 (1—cos8) (k;k f+ r /rr')
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We maximize this expression with respect to the scat-
tering angle 8, and obtain

From this we see that the approximation cos0=1 will
be good if k;+kf))y(1/r+1/r'), and still will not be
too bad for most scattering angles even if k;+kf
=y(1/r+1/'r') Ho. wever, even for 10-Mev incident
nucleons, this limit will not be approached until r or r'
or both are smaller than or of the order of 1 f, and the
contribution to the radial integrals from such values of
r should be unimportant. Hence we conclude that even
in this rather extreme case, cos0=1 should be an
adequate approximation. Of course the approximation
becomes still better at higher energies, or for heavier
projectiles such as n particles at the same energy.

APPENDIX 3

In this Appendix we consider the nature of the phase
distortion in the neighborhood of the focus if in this
region the Q.-particle wave function is a superposition of
waves with wave number vectors each of magnitude k
but twisted out of the direction of k through a definite
angle co. Thus we write

which is fixed. (A3.1) can then be rewritten

p(r) exp{ikr[cos~ cos8
0

+sin~ sin8 cos(p„—y)])dp„
=p(r) exp(ik r costs)

p
2 7P

X exp[ikr sin&a sin8 cos(p„—y)]d p„. (A3.2)
0

Now since the integral in (A3.2) is over a complete
cycle of q „,it does not matter at which point in the
cycle the integration is begun. Hence

27r

exp[ikr since sin8 cos(p„—p)]dy„
0

p 37I

exp[ikr sin~ sin8 cos(p„—y)]d p„,

+27l

exp[ —ikr since sin8 cos(y„—p)]d p„,J,

exp[ikr since sin8 cos(y„—y)]d p„j. (A3.3)

P-p(r)) f(g) exp(ikg r)dQ„., Hence (A3.2) is of the form

where g'=1, q k=k cos~, and we assume that f(g)
p'(r) exp(ik r cos~),

depends only on the angle between p and k, i.e., on co, which is what was to be proved.

(A3.4)


