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actions. Notice that they include the mutual electro-
static potarisation within a pair in addztzon to the usual
dispersion forces. The last three terms are the 3-body
"cross-polarization" terms mentioned in the text Lsee
Eq. (50)$. If the atoms A, 8, and C are neutral and
spherical and if V~~ is expanded in a multipole series

keeping only the dipole-dipole term, the pair polari-
zation and the cross terms vanish. Then E2 reduces
simply to the sum of the usual London dispersion
energies "'4

"F.London, Z. Physik Chem. 811, 222 (1930).
'z H. Margenau, Revs. Modern Phys. 11, 1 (1939).
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The impact parameter treatment of the scattering of protons by hydrogen is derived and is shown to be
vaM for energies greater than a few electron volts. A novel treatment of the resultant equations is given
which significantly modifies previously obtained results for inelastic scattering and charge-exchange
scattering.

I. INTRODUCTION

''T has long been realized that the system of two
~ ~ protons and an electron is one of the simpler three-
body problems in quantum mechanics because of the
large disparity in the electron and proton masses. Born
and Oppenheimer' used this fact to treat the bound
states of H2+. They made the approximation that the
protons moved very slowly compared with the elec-
trons. The resultant problem, the motion of the electron
in the field of two fixed protons, could then be solved
exactly. ' Similar approximations were made for the
scattering problem, ' resulting in good agreement with
experiment for low energies. The high-energy problem
has been treated by Born approximation, ' but the
discussion of capture collisions has been somewhat
clouded by the lack of orthogonality of the initial and
final states and the consequent ambiguity in the contri-
bution of the proton-proton potential to these re-
arrangement processes. 5 The high-energy scattering has
also been treated by an "impact parameter method, "
where it has been shown that a "Born approximation"
in this method is equivalent to the usual Born approxi-
mation in the limit of the electron-to-proton mass ratio
vanishing. '

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).' E. Teller, Z. Physik 61, 458 (1930).
'N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553 (1931);

D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy. Soc.
(London) A216, 437 (1953);D. R. Bates and R. McCarroll, Proc.
Roy. Soc. (London) A245, 175 (1958); A. Dalgarno and H. N.
Vadav, Proc. Phys. Soc. (London) A66, 173 (1953).

4 H. C. Brinkmann and H. A. Kramers, Proc. Acad. Sci.
AmsterdaIn BB, 973 (1930); referred to hereafter as B-K.

' J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953);
D. R. Bates and G. Griping, Proc. Phys. Soc. (London) A66, 961
(1953).' J. W. Frame, Proc. Cambridge Phil. Soc. 27, 511 (1931).

It is the object of this paper to present a systematic
derivation of the "impact parameter method" (Sec. II).
It will develop that it is suitable for the description of
collisions for proton energies of the order of a few
hundred electron volts and greater. In Sec. III an ex-
pansion is made which is suitable for direct (not re-
arrangement) collisions. This is used to develop an
"improved Born approximation" which is used to cal-
culate the cross section for the transition

p+H(1s) ~ p+H(2s)

as an example. In Sec. IV an expansion is made which
is suitable for the description of rearrangement colli-
sions. A similar "improved Born approximation" is
developed here with the result that the initial and final
states are automatically orthogonalized, thus eliminat-
ing the difhculties mentioned above in connection with
this calculation. The method is applied to the calcula-
tion of the cross section for the process

p+H(1s) ~ H(1s)+p

as an example.
In Sec. V the problem of handling the low-energy and

intermediate-energy ranges is briefly discussed.

II. THE IMPACT PARAMETER METHOD

A Born approximation calculation for the total scat-
tering of a proton by atomic hydrogen yields the fact
that the mean angle of scattering is of the order
(zn~ W's~/ME)*, where

~
Ws~ =13.6 ev is the binding

energy of hydrogen and E is the incident proton energy. '
For incident proton energies above an electron volt or
so this is an extremely small angle, indicating that the
proton travels in essentially a straight line. This means
that the protons are distinguishable and that the Pauli
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where
(iAa/Bt —H)e(x, R,t) =0, (2)

8 8 g2

11=——qRp — p p+— — . (2a)
M 2m R lx ——',Rl Ix+-', Rl

Here M is the proton mass, m the electron mass, R the
interproton coordinate, and x the electron coordinate
relative to the center of mass of the protons. In (2a) we
have neglected the difference between the electron mass
and the electron reduced mass. This difference is of
order m/M. It presents some nontrivial difliculties,
which have been discussed elsewhere. " We shall con-
sistently neglect effects of this order, so they will not be
discussed here.

The full wave function, 4', may be obtained from the
variational expression

f 8
'd'xd'Edt %*i 4 %*-H%+c—.c—

2~ 83
(3)

where c.c. represents the complex conjugate of the pre-
ceding expression in the bracket. This may easily be
shown to be stationary with respect to small variations
of N and 4'* about the exact solution to (2). The con-
siderations above lead us to choose a trial function for 0',

principle may therefore be neglected. The mean energy .

loss of the proton may also be estimated, with the not
unexpected result that the fractional energy loss is
hE/E O(m/M)+0 '(I Wp

I /E), so that for proton
energies of a few hundred electron volts or more the
velocity of the proton is almost unchanged. Finally, we
may compare the de Broglie wavelength 3 with the
relevant distance in the atomic system, the Bohr radius
a. The result is (ml Wpl/ME)'. Thus the proton may
be localized relative to the atom. We therefore expect
that the proton motion may be treated classically and
that the electron will move in the Geld of the two
protons. The Schrodinger equation for the electron
motion will then be

(iAr)/r)t H)P—(x,t) =0,
where

A2 g2

H = — V'„'—
2m lx —-', Rl lx+-', Rl

Here R(t) is the classical interproton coordinate, which
must be determined.

Our starting point is the Schrodinger equation for the
full three-body problem in the center-of-mass system:

Substitution of 4'p for 4' in (3) and variation with
respect to p* leads to the equation for p:

where
(iAB/cjt —H R)XR ——0,

Q2 g2

IIR ~R+ e~R (Rt)
3E R

(5)

(Sa)

with

AR (R,t) = d xlpR (x,t) I'

X — + — . (6)
lx—2RI lx —pR'I lx+2RI lx+pR'I

We may look for a solution to (5) in the form of a wave
packet. The distance over which 6 changes is of the
order of a Bohr radius, so that the collision time will be
of the order of r a/V, where V is the interproton
velocity. If we take the original size of the wave packet
to be hxp((c, then after a time v the wave packet will

have an extent'

Replacing the inequality by equality, we get

E= —,'M p'= (m/M) I
Wp

I

=0.007 ev. (8a)

Thus the inequality is easily satisfied and the
Schrodinger equation, (5), may be replaced by a classi-
cal equation of motion for R:

d'R Jr e'
—,'M —VRI —e'ZR (R,t) I.

dP ER

The function R'(t) is still arbitrary at this point. In
order to determine it we must consider the correction
to Np in%'.

If we set N=%p+N, then

LiAB/Bt —H]5%= —e'I DR (x,R,t) —ZR'(R, t) jap, (10)

7-2

(~x)p= (~xp)p+
4M' (~x,)P

This is minimized by (Dxp)' =Aa/2M', with (Dx)'
=2(hxp)'. Now the uncertainty of momentum in the
wave packet is given by Ap=A/2hxp. We require that
this uncertainty in momentum be small compared with
the momentum, i.e., hp«3A. These may be combined
to yield

(M pa/A)-'))1.

4'p =QR'(x, t)x R '(R, t), (4) where Z has been defined in (6), and

where P satisfies (1) and x is to be determined. The de-
pendence on the as-yet-arbitrary function R(t) has been
made explicit.

S. Cohen, D. Judd, and R. Riddell, University of California
Radiation Laboratory Report UCRL-8390 (1958); Phys. Rev.
119, 397 (1960).

hR (x,R,t)=
lx——,'Rl lx——,'R'I

I
x+-', R

I I
x+-,'R'

I

(11)
' L. I. Schiff, Qguetgm Mechceics (McGraw-Hill Book Com-

pany, Inc. , New York, 1955), p. 58,
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It is now evident that R' should be chosen to be the
classical interproton coordinate as determined from (9)
in order to minimize the right-hand side of (10) and
therefore to minimize 5N. We therefore drop the dis-
tinction between R and R'.

In order to completely specify the solution to the set
of Kqs. (1) and (9) weneedinitialconditions, Theseare

lim P(x, t) =ps(x+~~R(t)) expL i—mVx/4h e—s(t))
gm —te (12)

R= b+Vt,

where b is the impact parameter in the collision and
es(t) is some phase which still remains to be chosen.
Here @, is the hydrogen ground-state wave function.

Let us now case these equations into atomic units.
We shall measure all distances in units of the Bohr
radius a; t in units of the Bohr period 0/ f

Ws f; energies
in units of the Rydberg, e'/2u; the proton velocity in
units of cn= e'/2A. Then s= 2 represents a proton labo-
ratory energy of about 25 kev. Then we have

.8 2 2
i +Vs+ — + f (x,t) =0, (13)
88 fx——,'Rf fx+-', Rf

the expansion'

p(x,1)=p„a (t)y„(x+-,'R(t)) expf ——,'iR x—ie„(1)j,
(16)

where g„ is the hydrogenic state with energy W . The
phase in the exponent has been chosen to make each
term a solution of the noninteracting problem. Substi-
tution of (16) into (13), with some obviousmanipulation,
yields

8' R d'R/dP
sa„+,a„e„W—„

16 8

( 2 y d' R/dP )+ d'S f4-(y) f'f +
Ify —Rf 4

+ 2 a- d'y 4-*(y)
~n

2 y d'R/dP-
X + 4-(y)s"" '"'=o, (1&)

. fy —Rf 4

with the initial condition at t= —~:
d'R 8tts ( 1

VRf &R (R t)
3I (R )

with the initial conditions

(14)
a„=5 p. (18)

We shall now choose t.„to eliminate the diagonal transi-
tions in (18):

P=p&(x+-,'R) expf —iV x/4 —iep(g) j
R'= b+V1. (15)

III. DIRECT COLLISIONS

By direct collisions we mean collisions in which the
electron is bound to the same proton in the final state
as it was in the initial state. For such a collision we make

We remark here that the combination of the equation
of motion for the electron f (1) and (1a)jwith the equa-
tion of motion of the proton f (5) and (Sa)j and the
definition of R' conserves energy. Then a literal inter-
pretation of these equations could be applied down to
the energy region where the proton energy is comparable
with excitation energies (13 electron volts). Such a
program is difficult to carry out, so that in practice we
shall not use the equation of motion of the proton
f (5) or (14)j but instead we shall take the proton co-
ordinate, R(t), to be an unaccelerated motion. As is
evident from (14), the deviation from such motion
occurs for impact parameters b (m/M)1. This region
will contribute negligibly to the cross section, of order
m/M. In addition, our neglect of the proton accelera-
tions requires that the incident energy be large com-
pared with the excitation energies, say of the order of a
hundred electron volts or greater.

(gs R.dsR/dP )e„=W„t+
f

—+ ft
(16 . 8 )

«' d'y14-(y) f' (19)
2

J a
"

fy Rf

Here we have used the fact that p„ is a"parity eigen-
function, to eliminate the d'R/dP term. The choice of
e appears to be arbitrary. However, if we wish to
consider the interaction as a perturbation, this choice
would be dictated by the normalization condition,

&- I a-(&) I'=1.

This choice of e„has the effect of summing repeated
elastic transitions, and so has a similarity to an optical
potential. "With this choice we obtain

a„=iP a d'yy„*(y)
n&m aJ

2 y d'R/dP.
X 0-(y) "" '"' ( )

fy —Rf 4

' D. R. Bates /Proc. Phys. Soc. (London) 73, 227 (1959)g has
obtained a result identical with our Eq. (25) from his "distortion
approximation. "Our numerical results, of course, agree with his.

"M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959).
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r

0.35-

0.3—

0.25

directly evaluate the correction to a, in the limit t —+ ~.
This yields the same result. Thus (22) may be used for
ionization also.

The simplest approximation for evaluating a„ is to
replace a (t) on the right-hand side of (21) by
a ( ~)=8 p. We obtain

0.2

OJ5

0.1

2 y d'R/dt'
a.=

iJ
"d'y 4„*(y)

fy —Rf 4
Qs (y) ei (~e—~0)

(25)

0.5

1

0.5 I 1.5 2 2.5 3 3.5 4
b

As an example, we shall consider the transition to the
2s state. The term in d'R/dt' vanishes. If we neglect the
integral terms in the phases, (19), then the integrations
may be performed, yielding

FrG. 1. The amplitude for direct transition to the 2s state
for L'=2 (upper curves) and 8=12 (lower curves).

The u's are transition amplitudes to the various
states, so that the cross section for transition to any
particular state is given by

i' 2 1 b' 3 ( 1a.( )= &s -b/ 1+
9 QE 1+(1/16E) 2 4 16E)

and
128

t 2q "ir 1

5 E3) E 11+(1/16E)j'

(26)

(27)

o„=a'J. d'b~a (~)~'=27rasJ bdb[a„(eo) ~'. (22)
0

Here a word about the transition to the free state is
in order. We have, so far, not mentioned the possibility
of a rearrangement collision in which the final state is
given by

P„(x——',R) e p[x+ i(d~R/dt) x—ie„(t)]. (23)

This state is not orthogonal to the states used in (16)
for the direct scattering, which has the eBect that the
superposition of free states in (16) can be used to form
a bound state of (23). Thus (22) cannot be used directly
to obtain the cross section for the transition to a free
state g (ionization). Instead of a, we should use only
that portion of a, which does not go into the super-
position mentioned above. Thus we use

f
ov=as P a~e "&P dsyy

This is precisely what one would get from the quantum-
mechanical Born approximation' in the limit m/M=0
if the proton-proton interaction is dropped. When the
integrals in e are included, it is no longer possible to
perform the integration analytically. However, the
modification is expected to reduce the Born approxima-
tion. This is borne out by numerical integration. In
I'ig. 1 the resultant amplitude ~as, (~)

~

is shown
graphically in comparison with (26). It is seen that the
modification is more important at lower energies and
small impact parameters. Thus the higher energies and
higher partial waves are left unmodified.

In Fig. 2 the total cross section is plotted in units of
the Born-approximation cross section, (27).

IV. CAPTURE COLLISIONS

In this section we turn our attention to collisions in
which the electron is captured by the incident proton.
We are interested in final states of the form (23), so we

&& (y+R)4-(y)4-'(z)4. (*+R)d's, (24)

where the sum over e is restricted to all the bound
states, and that over k to all the free states. All these
considerations could be trivial if it were not for the fact
that there is an infinite number of bound states in a
Coulomb field and that the highly excited ones extend
out very far. If this were not the case, the cone of
"direct" free states that would be needed to construct
the "exchange" bound states would shrink down to
zero aperture as the protons become infinitely separated.

We may take one of two approaches now. First, we
may consider the Coulomb field as being screened, thus
obtaining a finite number of bound states and then
anally going to the limit of zero screening. In that case
the second term in (24) vanishes. Or second, we could

I.O

0.8

0.6

OA

0.2

10 l2

Fn. 2. The ratio of o.2, from present theory to the
Born approximation,
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O.I 0

lO

ANN- KRAMERS

T THEORY

I.O Orp I

FIG. 3. The amplitude for exchange
scattering, (a) for E=2; (b) for 8= 10.

O.l 0.001

—PRESEN

0.0 I
I

p I,p p,p ~.p 4.0
b—

0.000 I I I I

I,O 2.0 3.0 4 0
b

„=2 ' I bdblb. (+ )l'.
Jo

(30)

Substitution of (28) into (13),with manipulation similar

to that for the case of direct scattering, (21), leads to

b„=i+ b d'yy *(y)
my-'n

y d'R/dts
(y)ei(ea —em) (31)X

. ly+Rl

where e„ is given by (19). Thus, diagonal transitions
are eliminated in the representation of the Prtrtl states.

We again make the approximation of replacing b (t)
in the right-hand side of (31) by b ( ~). This results
in

&ei(,en ~o)), dsy y *(y)

dsR
Xexp( ——,'iR dR/dt)

-ly+Rl 4

X its(y+R) exp( —-', iy dR/dt) —it„(y)

X d'x P„*(x)exp( ——,'ix dR/dt)Ps(x+R) . (32)

make the expansion

b (t)it (x—sR) exPL —is„(t)+rsix dR/dt's, (28)

with the initial condition

f
b~( —ao)=e'&'" ") d'xit„*(x—-', R)ps(x —-', R)

Xexp( —-', ix dR/dt). (29)

The capture cross section to the nth state is then given

by

We see that the result of our choice of e to eliminate
diagonal transitions modifies the initial state, it s(y+R)
Xexp( ——,'iy dR/dt), in such a way as to make it
orthogonal to the final state, it „(y).Thus the difficulty
associated with the lack of orthogonality between initial
and final states is eliminated. "As an example, we shall
evaluate the cross section for capture to the ground
state, dropping the d'R/dt' term. If we neglect the
second term in the bracket of (32), the orthogonality
correction, the result for the transition amplitude,
bs(~), is

4i b'
E.Lb (1+t)'/16) lj,

t) L1+t)'/16]
(33)

and the cross section is

256 1 1
7r Q'

5 E [1+8/4]'
(34)

where E is the proton laboratory energy in units of
Mc'n'=24. 6 kev. This is precisely the Brinkmann-
Kramers4 result, which was obtained from a quantum
Horn approximation by neglecting the proton-proton
interaction and taking the limit m/M=o.

The contribution of the second term in (32) to the
amplitude bs(~) has been evaluated numerically with
the aid of the IBM 650. The results are shown in
Figs. 3(a) and 3(b), where the Brinkmann-Kramers

"A result equivalent to our Kq. (32) has been obtained pre-
viously by K. Takayanagi, Sci. Repts. Saitama Univ. 2, 33 (1955),
and D. R. Bates, Proc. Roy. Soc. 247, 294 (1959).The method of
derivation of these two authors is similar. It essentially assumes
that the wave function is a superposition of the initial and Anal
states. These derivations have conceptual difhculties and lack the
unity with the direct excitation collisions which is emphasized
here. Neither of these authors presents numerical results for this
process.
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TABLE I. Ratio of the Brinkmann-Kramers cross section
to that obtained in this report.

E (units of 24.6 kev)

2
5
7.5

10
12

o'n K/rr

4.8
3.2
2.7
2.3
2.1

I.O

I I.

—BR INK M ANN% R A ME R $
PRESENT THEORY

amplitude and the results of this calculation are com-

pared. It is seen that the orthogonality correction
becomes more important for lower energies and smaller

impact parameters. It can also be shown that the
orthogonality correction is of order 1/Ei relative to the
B-K result. Thus, this theory goes over to the B-K
result at high energies, albeit slowly.

It has been pointed out"" that the high-energy
behavior of this cross section should be 8-""and not
E ' This dependence has been shown" to come from the
second Born approximation, and will presumably arise
in the second-order perturbation contribution of this
theory.

For 8=2 it is seen that the B-K amplitude becomes
greater than unity for small impact parameters. This is
clearly in conQict with the probability interpretation
of

~

b„~' implied by (28). Our correction removes this

difhculty at this energy and so extends the validity of
the perturbation procedure to lower energies.

In Fig. 4 the cross section in units of ma' is plotted vs
E in units of 24.6 kev. The cross section obtained here
is lower than the B-K results at all energies. In Table I
the ratio of the 8-K result to our result is given for
several energies.

Comparison of our results with those of Bassel and

Gerjuoy" shows close agreement between the two. It
is dificult to understand this agreement. Bassel and
Gerjuoy make a distorted wave calculation, absorbing
the proton-proton interaction into the distortion of the
proton wave functions, so that in lowest approximation
this interaction does not enter. We have neglected this
interaction on quite different grounds (Sec. II). The
difference between our result and the B-K result is a
consequence of what could be called a distorted wave
calculation for the electron. This results in the orthogo-
nalization of our initial and Anal states. The Bassel-
Gerjuoy change seems to arise from a screening of the
proton-proton interaction by the electron.

We have omitted any comparison with experiment
because our calculations are trustworthy only at higher
energies, i.e., greater than about 70 kev, say, and at
these energies the experiments have only been done in
molecular hydrogen. It has been pointed out" that the
assumption that H»s equivalent to two hydrogen atoms
at high energies is not valid.

2 2
& '+ + +e„+(R) U„+(x,R)=0,

x 2 x
(35)

where R' enters only as a parameter. The eigenstates
have been denoted by n and (g). The (+) indicates
the parity of the functions U„+ under the transforma-
tions R~—R. That is,

V. LOW AND INTERMEDIATE ENERGIES

Our previous approximations were based upon the
fact that the forms of the initial and Anal states were
known. We could then calculate perturbations of these
states leading to transitions. The fact that we were
allowing only small changes in these states restricted
the applicability of our approximation to the high-
energy region. We shall now use the fact that the zero-
velocity states can be obtained to make expansions that
are valid in the low-velocity limit. The states in question
are obtained from'

OI
U„+(x,R) =+,U„+(x, —R). (36)

OOI

These states can be used to expand the electron wave
function, P, in the low-energy limit. However, again we
must make diferent expansions for direct and exchange
scatterings.

For direct scattering we write"

O-OO I I I.
4 6 8

E (24.6 kev)

I I

IO I2

Frc. 4. The charge-exchange cross section in units of m.a'.

'~ R. M. Drisko, thesis, Carnegie Institute of Technology
(unpublished).

u R. H. Bassel and E. Gerjuoy, Phys. Rev. 117, 749 (1960).

lt =g„{C„+(t)U„+exp) —it)„+(t))+C (t)U„
&&expL —it) (t)]) exp(~~ix dR/Ct). (37)

' T. F. Tuan and E. Gerjuoy, Phys. Rev. 117, 756 (1960).' D. R. Bates, H. S. W. Massey, and A. L. Stewarte have sug-

gested this form without the factor e '~". They then neglect
the difhculties associated with the lack of translational invariance.
D. R. Bates and R. McCarrolP have later corrected this and
suggest the form (47).
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Substitution of (37) into (13), with some straight-
forward manipulation and the use of (36), results in

+-
m&n

~ =(~)

where g„ is given by (39). The initial condition on the
d~ 1S

dR
d„+(—~)= d'x U„+*exp~ —-', i x

~

dt )
X4o(x+lR) exp[i(n-+ —p )(t)] (44)

dR d'R
(vR —-'2v„) —-', i x U '

~ dt dt2

Again the lowest order term in an expansion in powers
of the velocity may be obtained by replacing d +(t) by
d +(—oo) on the right-hand side of (43). The result is

Xe p[i(& +
& ')]& ( 8) (dropping d2R/dt')

with a similar equation for C„.The diagonal transitions
have been eliminated with the choice

pl ( +2q
i

p„+(R)+—ddt —i
16)

dt d'x U„+ 7'R U„+. (39)
f

dt

The last term vanishes when the functions U„+ are real.
The initial condition associated with hydrogen in its
ground state is

d.+= — d'x U„+*(x,R) (V'„+-,'V„)
dt

Xg(x—y) —U„+(x,R)U„+'(y,R)]

Xexp( —-', iy dR/dt)pp(y+-, 'R)doy. (45)

The second term in the bracket has the effect of orthogo-
nalizing the initial and final states.

Bates and McCarrolP" have suggested a more am-
bitious expansion than either (37) or (42). They suggest
forming the states

C.+(—~) =b„o/K2. (40)
g +=-', f (U„++U„)exp( —~~ix dR/dt)

& (U +—U„) exp P~ix dR/dt) } (47)

Ke may obtain the first term in an expansion in velocity
by replacing C (t) on the right-hand side of (38) by
C (—oo). This yields (dropping d2R/dt2)

1t dR
C„+=—— d'x U„+* (7'R —-2'7' )Up

v2& dt

Xexp[i(2t„+—2tp-) (t)],
(41)

1 t dR
C„—= —— d'x U„-* (VR—

i'd%

) Up+
V2~ 4

Xexp[i(2t„—2tp+) (t)],

and making the expansion

f7„+(t)y + exp[ —i'„+(t)]
+y (t)g„exp[—i2t„(t)]}. (48)

They point out that the initial conditions take a simple
form, y„+= (1/V2)8 o, and that. the direct- or exchange-
scattering final states also take on simple forms. How-
ever, the drawback to (47) is that the set p„+ does not
form an orthogonal or a normalized basis, so that it is
dificult to obtain equations for the y„. Bates and
McCarroll avoid this by neglecting all p„+ except for
m =0. This is equivalent to a variational calculation with
the assumed wave function

where we have used the fact that for the grouhd states,
Uo+, the parity with respect to R is the same as the 0='Yo+(t)4o+ exp[ —i2to+(t)]+To (t)4o exp[ —i2tp (t)].
parity with respect to x. From these we may calculate (49)
direct excitations. The elastic cross section can be ob-
tained in the next order.

For exchange scattering, we make the expansion

Such a technique is probably useful for the calculation
of scattering in the intermediate region E=1.

Suppose we define a set of functions
P=P„fd„+(t)U„+ exp[—i2t„+(t)]+d„(t)U„

(,)]}„(.;„.dR/d, ) (42)
X-+= 2f LU-+ exp( —i~-"(t))+U= exp( —in=(t))]

Xexp( —4ix dR/dt)

&[U + exp( —i2t +(t))—U„exp(—i2t„(t))]
R Xexp (x'ix. dR/dt) }. (50)

+-,i xU & exp[i( „2t+ '2t ')]d ', —
dt'

This is similar to Bates and McCarroll's P„+ in that it
is not an orthogonal set. It satisfies the equation of
motion, (13), for all R for v=0, and for all v for R= ~,
just as theirs does. However, the X has each of the
V„+ carrying its proper time dependence.
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It is easily seen that

is a variational expression for f and it*. We propose to
use it to determine the cross sections in the intermediate
region. "A reasonable form for it in this region would

be a sum of the high- and low-energy forms:

p=~ (t)x,+++ (t)x;+p (t)y, (x+-,'R)
XexpL —-', ix dR/dt —irto(t) 7+P (t)ye (x—-,'R)

Xexp[~ix dR/dt —ir)e(t) 7. (52)
' This technique has been used recently in the low-energy

region by N. C. Sil, Proc. Roy. Soc. (London) 75, 194 (1960).

Such a form could be used in (51) with the 4 variational

functions n~, P~ to determine the exchange to the

ground state. Such a calculation is now in progress and

will be reported on subsequently.
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I. INTRODUCTION

'0 account for ionization produced by violent
atomic collisions, a phenomenological theory was

developed in two previous papers, ' ' hereafter referred
to as I and II. These papers were restricted in scope to
the collisions of atoms with outer shells of eight elec-
trons (i.e., the noble gases). Since that time some ex-

perimental data have been published for collisions in-

volving nitrogen ions (with five electrons). It was

therefore decided to extend the theory to include atoms
with from two to eight electrons in the outer shell. In
addition, the evaporation theory will be used to show

evidence of resonant electron capture, in violent ion-

atom collisions.
The theory, as originally developed in I, utilizes an

evaporation model of the collision-ionization process.
As the two charge distributions sweep through each
other, a small amount of kinetic energy of translation
of the atoms is transferred to their internal degrees of
freedom by a friction-like mechanism. This energy
(ordinarily called the "inelastic energy") is assumed to

be statistically distributed among the outer-shell
electrons of the atoms. Then, upon separation, the
"heated" atoms get rid of this excess energy, partly by
photon emission and partly by electron evaporation.

In the previous work, ionization probabilities were
calculated only for atoms having eight outer electrons
and the resulting ionization probability curves com-
pared very closely with the experimental curves for
Ar+ on Ar scattering. In Sec. 2 of the present work,
ionization probability curves are calculated for atoms
having from two to seven electrons in the outer shell.
When the five-electron curves are compared with X+
on Ar scattering data, the agreement is good, indicating
that the evaporation model need not be restricted to
the noble-gas atoms, but has validity in other cases as
well.

Recent experiments'4 have shown evidence for a
resonant capture process occurring in ion-neutral atom
collisions. Clear-cut evidence for the resonant capture
effect was found in collisions involving the very light
atoms and for the heavier atoms only in the very gentle
collisions. Resonant capture e6ects, if they occur in the
more violent collisions of the heavier atoms, are masked

'F. P. Ziemba and E. Everhart, Phys. Rev. Letters 2, 229
(1959).' F. P. Ziemba, G. J. Lockwood, G. H. Morgan, and E. Ever-
hart, Phys. Rev. 118, 1552 {1960).


