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Perturbation theory with operator techniques is applied to a nondegenerate many-electron system taking
the entire electron-electron repulsions, Z;» r;; ', as the perturbation. The 6rst order wave function X~, is
obtained rigorously in terms of the 6rst order wave functions of independent two-electron systems. The
wave functions of these electron pairs contain nuclear parameters and can be obtained individually by varia-
tional or other methods, then used in various atoms or molecules. For example Li atom is built up completely
from the (1s)''5, (1s2s)

'Sand�'Estates

of Li+. The X~ gives the energy to third order and as an upper limit
to the exact K The E2 is equal to the sum of complete pair interactions plus many-body terms of two types:
(a) "cross polarization, "which exists even in no-exchange intermolecular forces, and (b) Fermi correlations.

I. INTRODUCTION

HE single-particle theories of atoms and molecules
do not take into account the correlations in the

motions of electrons. Large errors result in the calcu-
lation of energy diGerences of chemical and spectro-
scopic interest. To introduce electron correlation, the
variation method has been used extensively. In the
most common form of this method, a finite number of
plater determinants formed from a set of one-electron
spin-orbitals are linearly combined into a trial function.
This method su8ers from very slow convergence. Also,
it does not allow one to draw general conclusions which
can be extended to larger systems since each atom or
molecule is treated as a new numerical problem.

How can a large atom or molecule be built up from
smaller groups of electrons each containing some
correlation) A treatment directed at answering this
question would reduce a many-electron problem to
several fewer-electron problems, but perhaps more
importantly, would extend the qualitative concepts of
quantum chemistry so as to include correlation.

The shell structure of atoms and the independent
behavior of certain regions of molecules are undoubtedly
valid beyond the usual orbital approximations. For
atoms and molecules as they exist in nature, we wish
to ask questions such as': %hat is the difference between
the free Li+ ion and the core of Li atomic

Recently' we treated a many-electron system by
second-order perturbation theory starting from the
Hartree-Pock energy. %e used the ordinary form of the
Rayleigh-Schrodinger (R.S.) method and classified all
the virtual transitions represented by the unperturbed
determinantal eigenfunctions. ' Thus the energy was ob-
tained as a sum of pair energies and "exclusion sects, "
i.e., three™ and four-particle Fermi correlations, al-
though, to obtain each term in closed form and not as

*This research was carried out under the auspices of the U. S.
Atomic Energy Commission.

[Present address: Sterling Chemistry Laboratory, Yale Uni-
versity, New Haven, Connecticut.' Oktay Sinanoglu, J. Chem. Phys. 33, 1212 (1960).

'This is equivalent to the second quantized or hole-particle
formalism.

an infinite series, the approximation of replacing the
energy denominators by pair "mean excitation energies"
was made.

In this theory as well as in Brueckner's theory of
nuclear matter' all the electrons of the E-electron
system (the "medium" ) affect a correlating pair (i) by
their average (self-consistent field) potential, and (ii) by
their "exclusion eGects" mentioned above. On the other
hand, for the purpose of building up an atom or molecule
from some groups of electrons which can be transferred
from one atom or molecule to another, each group must
be independent of the other electrons of the system and
any extra "medium" effects should be added on rather
than being implicit.

To do this, we apply here formal perturbation theory
to a nondegenerate E-electron system taking the entire
interelectronic repulsions, g;~; i 1/rg, as the per-
turbation. %e consider only the first order wave
function (W.F.) and show how it can be built up from
independent two-electron solutions. The formalism
avoids the infinite sums of R.S. method over complete
sets of eigenfunctions with very large continuum con-
tributions. Instead each pair function is obtainable from
a two-electron differential equation or an equivalent
variational principle. So far, 6rst order W.F.'s have
been determinated mainly for He-like systems. 4 These
can be used for instance to build up larger atoms. The
first order W.F. determines the energy to third order.
The energy comes out as a sum of independent pair
energies and some added "medium" sects. The latter
are examined in Sec„ IV. The formalism of this Article
will also be applied separately' to the correlation energy
of a many-electron system starting from its Hartree-
Fock solution and obtaining the results of reference 1
in closed and rigorous form,

3 See, e.g., K. A. Brueckner, in The Macy-Body Problem, (John
Wiley gr Sons, New Yorlt, 1959). This theory is also based on
pair correlations, but for Gnite systems )See R. j'. Eden, in iVacfear
Reactiols (North-Holland Publishing Company, Amsterdam,
1958), Vol. 1g it requires as yet formidable self-consistency
procedures.

E. A. Hylleraas, Z. Physik 65, 209 (1930).' Oktay Sinanoglu, Proc. Roy. Soc. (London) (to be published).
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II. THE PERTURBATION METHOD

I,et Bo be the unperturbed Hamiltonian and B» the
perturbation; then

In particular, the X» for the lowest state of a given
symmetry can be found approximately by minimizing

Fr&{2(Xi",(Hi —Ei)Cp)+(Xi", (Hp —Eo)xi")), (9b)

If we write:

such that

(Ho+H i)e='E4', -

HoC'o =EoC'o, (C'o,Czo) = 1.

4 —=Cp+X,

(C„e)=1, (C„X)=0,
we get exactly

E=(C'o,He) =Eo+(C'o,Hi+).

The perturbation solution is obtained by

X=xi+Xs+
I-' Eo=Ei+ —E:z+Es+

X» ls a solut, ion of

(2)

with suitable trial functions, X»'". Hylleraas has used
Eq. (9) to obtain the Es and Xi for the ground state of
the He atom. The X» of an arbitrary excited state
which may be of the same symmetry as some of the
lower states may also be found by a minimization pro-
cedure. We have developed such a procedure' and shown
that. for an excited state, X»" must be chosen subject
to some restrictions which require a knowledge of only
unperturbed W.F.'s of the lower states.

The particular solution, XP, of Eq. (5) is given by:

Xiz'=I. (E,—H,)C„ (10)

where I.p
'—= (Hp —Ep) ' is the Green's function oper-

ator. But the general solution, X», is

(Hp —Ep)Xi ——(Ei—Hi)C p= —QHiC p, Xi=Xi +CC'p', (11a)

where Ei=(Cp, HiCp), and Q=1—Cp)(Cp is an operator
that projects out Co.

The X» determines the energy to third order'.

Es=(C pHiXi) —Ei(C p,xi),

Es (XlzHlxl) Ei(XizX1) 2E2(C pzX1). (7)

This is closely related to the fact that energies to odd
orders are higher limits to the exact energy, E, and thus
also follow from the standard variational method. ~

Energies to even orders, however, do not have this
relation to E.

Equation (5) is a nonhomogeneous partial differential
equation. It has solutions only if the solutions of the
corresponding homogeneous equation are orthogonal
to the nonhomogeneity, ' QHiCp. This means that in
cases of degeneracy, the degenerate zero order eigen-
functions, Co~, must be chosen so as to satisfy

(C p', QHiC p")=0.

C is an arbitrary constant which can be chosen such
that

(Cp,Xi)=0. (11b)

Let the nondegenerate ground state of an 3' electron
system be

C'o(xi, », xzp) = det{1(xi)2(xs) &V(»))
v'(& )

= O', {1(xi)2(xs) &V(xsi))

= e(123 ~V)

(12)

8 is the antisymm etrizing operator:

e= P (—1)PP= - det.
v'(fl'l) v'(& l)

(13)

We shall take for the unperturbed system the bare
nuclei Hamiltonian:

Then a different equation like Eq. (5) can be written
down for every 4p with a solution X» .

Equation (5) is equivalent to the extremum con-
dlt, ion:

so that

Hp ——P hP; h —=——,'V'P —P (Z./E. ;),

5{2(Xi, (Hi —Ei)Cp)+(Xi, (Hp —Ep)xi)) =0. (9a)

6H. A. Bethe and E. E. Salpeter, I."ncyclopedha of I'hysks,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 35.

'To see the relation between the energy calculated to third
order and the exact I"., substitute (Co+xi) with (C'o,xz)=0 in
((+,II+)/(+,+))&rt. and use Kqs. (6), (7) and the relation:
(Xz,ffpxz) =Ep(Xz,Xz) —(X»Pz@p) which follows from Eq. (5).
Then we have

&(&o+I''z+1~ X X )
(&o+&'-z+&z+&z,

I'g+E, 3

1+ X„X,)
since (Xz,Xz)= ~Xz~z)0. The normalization correction is of the
fourth and higher orders. See also: P. M. Morse and H. Feshbach,
)!Eethozfs of T1zeoretzeal P/zysics (1VIcGraw-Hill Book Company,
New York, 1953), Vol. 2, pp. 1119—20.

'8, Friedman, I'principles and Techniques of Applied Mathe-
nmtics (John Wiley 8z Sons, Inc. , New Vork, 1957).

E —Q e.o
i=»

Hi Pg;;;——.

h,'k(x;) =- eiok(x, ); (15)

x; designates both 1:he space (r.;) and the spin (P.;)

z O. Sinanoglu, this issue [Phys. IZev. 122, 491 (1961)j.

in atomic units (1 a.u. = 27.2 ev). E; is the distance of
electron i to nucleus cz. The 1(xi), 2(xs), k(x, ) iii

Eq. (12) are the spin-orbitals satisfying
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coordinates of the electron i. In atoms, the complete
one-electron basis set {k}is the hydrogen-like orbitals
multiplied by spin n or P. Thus 1—=1s, 2—= 1so, so
that all odd integers stand for spin-orbitals with o.

spin, and all even ones for those with P.
From Eqs. (12) and (14),

Eqs. (5), (10) to (17), and (20) we have

Xi=Lo '(K—Ifi)c'p=Lp '{ Z (~e &'~—)

g,;}e(123 ~ .Ã) (21)

R=(@o,+iC'o)= P (J,& Jt,&.II).— (16) (Ei—Hi) commutes with e, since it is unchanged
after any permutation of the electron indices. Thus

Lp
A& 1, L& 1( ~ ~ ~ )6& 1

k (xi)l (xp) n(xi'))(k(xi)l (xp) n(xi')

Kl '''6n —61 62 '''6y

J;; and E;;~t are the Coulomb and exchange integrals
between the orbitals i and j:

J j (i(xi) j(x2) glpi(xi) j(x2)) (ij glpij),

&6 =(i(xi) j(xp),g»j(»)i(xp)) =(ij,g»ji), (1'1)

E;; is nonzero only for i and j of like spin.
Notice that in Eq. (12), before e is applied, a, spin-

orbital and the electron occupying it are designated by
the same numeral, e.g., 1(xi), 2(xp), etc.

In the spectral representation of Hp, the Green's
function, L, ', in Eq. (10) is given by

xi=Lo 'e( E (~';—K —ge)}( 2 " &), ( )

(123. Ã) = [1(x~)2(x,)3 (xp) X(xy)].
In g,;, i and j refer to the electrons (r; and r,),

whereas in (Ju—EoII) they refer to the orbitals i and
j'. Since there is a one-to-one correspondence between
i and x; before operating by e, we associate a (J;; E;;)—
with each g;; and write

(23)
then in Eq. (22),

e( g (J,;—E,;II —g,,) (123 1V)}
=p e{m;,(123.. iV)}, (24)

for the space of distinguishable electrons, and by

e(kl n))(e(kl n)
L,p

—' —— Q (19)I) ~ ~ ~ )l)k) 1 (Pk +Pi +P~ )—(Pi +PP +C~ )

for the antisymmetric space of X fermion. s. In Eq. (18),
k, $, etc. , each runs over the complete one electron basis
set of spin-orbitals. The sum in Eq. (19), on the other
hand, is over all the unique E by Ã Slater determinants,
i.e., "ordered configurations'" that can be formed from
{k}.For use in the next section we also define

and write

e;—=h —e,o+ (spin part);, (20a)

Lp ' ——

IIo Eo &i+&p+&p+—
(20b)

III. SEPARATION INTO PAIRS

We now write Xi, of Eq. (5), in terms of the first
order wave functions of independent two electron systems-
each one of which can be obtained from an Eq. (5) or
Eq. (9) in exactly the same way as solving for the
ground or an excited state' of, e.g. , the He atom.

Consider an S-electron state whose zero-order O'.F.
can be written as a single Slater determinant (closed
shell or closed shell plus one electron system). From

0', commutes with Hp and hence also with Lp so that

Xi——Lp Q e(m„(123 Ã)}

N
= eLp-' Q m "(123 X). (25)

If now Lp '=(ei+e,+ e~) ' were applied to each
m, ,(123 . 1V) term in Eq. (25) separately, it would

have singularities in each such term, corresponding to
degeneracies of the type 1(xi)2(xp) with 1(xp)2(xi), etc.
[see, e.g. , Eq. (18)].Of course these singularities cancel
in the sum after applying e in Eq. (25), so that Xi is

Qnite.
To get Xi as a sum of terms, each term containing an

independent two electron solution, E-q. (Z5) must be so

rearranged that each term will baize no singularities before
operating on it by e.

To achieve this we go back to Eq. (24) and introduce
6rst the operator S;, in front of each mij. The S;j is
the antisymmetrizer that operates only on xi and x;;
i.e.,

1
(8;;=—(1—Pu) =—det,

v2 v2
(26)

P;; interchanges only x; and xj and leaves the other
electrons the same. Since P,j is an element of the per-
mutation group of E electrons, the following relation
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holds:
1—QS;,=8

7 (27)

Our aim is to write each u;; as the solution of a non-
homogeneous 2-electron equation in the form of Eqs.
(5) and (9). The condition that u;; in Eq. (34b) not be
infinite is equivalent to the condition that

6 was defined in Eq. (13). From Eqs. (24) and (27)
and considering that g;; is symmetric with respect to
I';;, we get

0',fm;;(123. . .1V)}

(e;+e,)u;;=212;;$(ij) (35)

has a solution. As given by Eq. (2), this condition is

(~p;i2, 2N;, $(ij))=0, (36)

p;;2 denotes either $ (ij) or one of the other solutions of
0',—$,s(212@(123 . S)}

'»'=i v2
(37)(e,+e,)p,,"=0

8=—P ~;;$„(123 "X),
V2 i»=1

and
N 1

Xi ———O', P m, ,$„(123"7). (29)
v2 '&1=1 ei+e2+ .ei1

From Eqs. (15) and (20a),

degenerate with it. If Eq. (36) holds, then u;; can be
obtained from Eq. (35) by any method [including

(28) variational, Eq. (9)7. But Eqs. (34a), (10), and (11)
show that it must be made orthogonal to $(ij) before
it is inserted into Eq. (34a).

In Eq. (34), two of the u; s already correspond to
physically existing two-electron systems: u»(xi, x2) is
the first order wave function of a free I.i+ ion in its
ground state and satisfies

e,i(x;)=0;

thus' for any analytic function, f of e,,

(30a) (el+e2)u12 (+12 g12)$(lsalse) ~

Also, I» is given by

(38)

Therefore:
f(e;)i= f(0)i.

222;;$;;(12 ij . cV)
e1+e2+ ' ' ' eN

(30b) (ei+e2)u12 ——(J12—E»—g»)$(1s 2s ), (39)

and is the same as the (1s2s) 25 state of Li+. It is not
possible to write directly such an equation for u». This
case violates Eq. (36), because

$22(23) = (1/K2) det(lse2s )

= (12 (i 1)(j+1) 1V) —222;;$;;(ij),
e;+e;

and

Xi———6 P (12 (i 1)(j+—1) X)
V2

1
m,;$„(ij) . (32)

(31) is degenerate with $(1s 2se) and is not a pure spin
state. To solve this difhculty we recall that in the over-
all I.i atom this degeneracy is finally removed after the

. application of 0! in Eq. (34a). Thus, again we go back
to Eq. (28), where 1.2 ' had not been applied yet, and
remove the degeneracy in the following way:

From Eqs. (29) and (34), the (23) term is

e; e;

Equation (31) can be verified also from Eq. (18).
Some of the (ij) terms in Eq. (32) are already in the

desired nonsingular forms, others are not. To examine
each term in detail concretely, we now continue the
derivation with a specific case: the Li atom. Then
C'o(xi, x2,x2) = Q, (123) and

1=—[$(23)w$ (14)j.
'@23 v2

(41)

1 0',—(322—g22) (1(xi)$(23)}.
ei+e2+e2 K2

$(1se2s ) is a mixture of a singlet and a triplet state,
so that

(123)= (Is~(xi)lse(X2)2s (x,)), (33) The (+) sign refers to the triplet state

$(14)—= (I/K2) det(1s 2se)

To split Eq. (40) into two parts such that both will

satisfy Eq. (8), we multiply it by 2/2, then add and
subtract E'22[1$22(23)$, obtaining

X~ becomes

1
Xl— 6(1 (X1)u22(X2)X3)+2 (X2)u12(xi~x2)

V2
+3(x2)u12(xi,x2)}, (34a)

where

up=— 222@$(ij).
e,+e;

6
2112—'—( (J22—E22

—g22) [1$(23)]
(34b) v2

+(J22+E22—g22)[1$(23)J}. (42)
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If (528—gss)(1(xi)$(1(xs)4(xs))7 is added and sub-
tracted and then E'28L1(xi)$(1(xs)4(xs))7 is added to
each one of its terms, Eq. (42) remains unchanged,
since

(43)8{1(xi)$(1(x,)4(xs)) }=0.
Then using Eq. (41), we get

6,
Lp '—(Jss—gss){1$(23)}

The triplet and singlet components of 123 are the solu-
tions of

(e2+es) 2428 (+28 +23 g28) 0'28

(e2+es) 2428 (+23++28 g23) +23 (45b)

'123 and 'u~3 must be made orthogonal to 'y23 and 'q23
before they are inserted in Eq. (34a).

The first of Eqs. (45b) and the spatial part of 32423

are the same as Eq. (39) and the spatial part of 24is,

respectively. The 'n» and I» diGer only in their spin
factors, one being the M', =0, (aP+Pn), and the other
M, =+1, (nn), component of the triplet. Thus the
entire XI for the ground state of the Li atom is obtained
by combining in Eq. (34a) the first order W.F.'s of the
(1s)2 'S, (1s2s) 'S and (1s2s) 'S states of the free (Li+)
ion. The advantage of this approach is that the two
electron solutions I;; can be obtained independently
and when they are obtained as a function of the atomic
number, Z, as Hylleraas4 has done for H, He, Li+, etc.,
they can be used to build up larger atoms. In going
from Li to Be, owly one more pair function, the one for
the (2s)2'S state, is needed. (For this state the (2s)2,
(2p)' degeneracy would be removed 6rst. ) In general
the number of independent pair states needed will be
less than the total number of pairs, because of the
multiplicity of some of the pair states.

For the Ã-electron system with a single determinant
C'p we now have (see Eq. (32)7:

N
Xi=—e{p (12 (i—1)(j+1) $)N,;}.(46)

V2 4)i i=
Wherever $(ij) belongs to a row of an irreducible
representation of the symmetry group of the two-
electron Hamiltonian, (hP+hiP+g4i), the corresponding
u;; is the solution of

2Lp +{1(xl)f(+28 1) 28 g23) +23(X2+3)

+ (J28+E28 g28) +28 (X2)xs)7}. (44)

Finally we commute Lp ' and 6 and use Eq. (30b). The
result is that I» in Eq. (34a) is now given by two terms,
instead of by Eq. (34b):

1
N23(X2 X3)=—

L 2428(X2 Xs)+ N28(X2 Xs)7. (45a)

such that (24,;,$(ij))= 0 .In other cases, 24;3 must be
decomposed into symmetry eigenfunctions as in Eq.
(45a), and each part determined from equations such
as Eq. (45b). A survey of the approximate methods for
solving such two-electron equations are given by Bethe
and Salpeter, ' and the variational method, Eq. (9),
and its extension to any excited state has been discussed
by the author. ' All the two-electron degeneracies, e.g.,
arising from angular momentum, etc. , can first be
removed in the same way as shown for the 1sp2s pair
Qf Ll.

( N ) g3 =(4g,es,)=(a(123 E), ) Egg )—
E'))=i j V2

&&fr. Ps" (~ ~)(i+~) &)~ )")

= (F!/2)&(8(123 1)3'), (gis+gis+ )

&([(34 1)))')Nis+ (1256 1V)2484+ 7). (48)

The last step follows because 6, is self-adjoint and
+2= (S!)'S.In (34 X)N», etc. , orbital and electron
indices are the same L3(xs), etc.7.

For the Li atom, Eq. (48) gives

Es ——($(12),gislis)+($ (13),gisuis)+($(23), g282428)

+ (3!2)'{(+(123),gi83(xs)24»(xi, xs))
+(8(123),gi31(xi)N23(xs)x, ))

+(0', (123),gi22 (xs)2448(xi, xs))} (49)

The first term is simply the ground state Es of (Li+);
from Eq. (45a), the sum of the second and third terms
are the sum of the Es's of (1s2s) 'S and 'S states of Li+.
Notice that this result is more than the usual pairwise-
additivity of dispersion forces: e.g. , ($(12),g»N») is the
erltire E2 of Li+ ion. It includes both the dispersion and
the "orbital average polarization" terms' which arise
from double and single virtual transitions, respectively,
in the Rayleigh-Schrodinger expression for Es D.e.,
using Eq. (19)7.

The remaining terms of Eq. (49) are the non-pair-
wise-additive interactions in second order. Their
meaning is inade clear by expanding S(123) in its
minors, in each of the last three terms of Eq. (49). For
instance, the 6rst of these terms becomes

(3!2) '*(6,(123))gi83 (x,)24is (xi,x,))
=2{(22$(1i38),gi83 pl„)—(1,$ (2i38),gi33324is)

—(32$ (1233),gi8382442) }, (50)

IV. THE ENERGY

We now turn to the examination of the energy of an
S-electron system obtained from the first order W.F.,
Xi. Since each I;, in Eq. (46) is orthogonal to its $(ij)
or q;;, we have (Cp,Xi)=0; then

(e~+e;)I;;= 2)3;,$(ij), (47) where we have used subscripts for electron coordinates,
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e.g. , 12——1(x2), etc. , and u12 ——uls(xl, x,). The last term
is the "exclusion effect'" of the occupied orbital 3 on
the correlating pair of electrons" in u~2. As discussed
in reference I, this is a three-body Fermi correlation.
In the theory of nuclear matter, "these exclusion eGects
turn out to be partly responsible for the smallness of
the three-body Coulombic correlations which appear
erst in E3. Whether the same thing is true in atoms and
molecules or not is a point that requires future
investigation.

The first two terms of Eq. (50) are of a different
nature. They arise in Rayleigh-Schrodinger Es Lusing
Eq. (19)j, as the cross terms upon squaring the single
excitation, i.e., "orbital average polarization'" terms
like (S(123),(gg;, ) 8(12k)). Such "cross-polarization"
terms come up, as shown in the Appendix, even in the
second order Van der Waals attraction of three separate
atoms even when they are so far apart that all exchange
effects can be neglected.

Thus, for the energy of an E electron system to
second order, we have from Eqs. (14), (16), and (48):

N

Ep+El+E2 = P (pair energies)

by a variational method. ' Then both the individual pair
energies and the nonpairwise additive sects in E2 and
E3 follow from this X~. These results should be im-
mediately applicable to atoms, since I;;can be obtained
with explicit Z dependence, 4 and Li, Se, etc., can be
calculated from mostly existing calculations on the
ground and excited states of He-like ions. Similar
calculations may be made on molecules, where, e.g. ,
inner shell pairs can be taken over from atomic calcu-
lations, and core-valence electron interactions obtained
using core polarization potentials. ''" In many mo-
lecular problems it is also possible to calculate X~, E2,
and E3 starting from a Hartree-Fock Co. There are now
many Hartree-Fock molecular orbital (M.O.S.C.F.)
calculations available, and we have separately de-
veloped' methods similar to those given here to obtain
correlation energies starting from Hartree-Fock
solutions.

ACKNOWLEDGMENTS

I am grateful to Professor K. S.Pitzer for encouraging
this research. I also wish to express my indebtedness to
the Turkish Educational Society (Tiirk Egitim Dernegi)
of Ankara, Turkey which indirectly made this work
possible.

+P (cross-polarization and exclusion e8ects). (51)

All of these terms and also Es in Eq. (7) are obtained
from Cs and Xi given by Eq. (46). The components of
E3 can be similarly separated and contribute to the
energies of the independent pairs and three-electron
terms. As mentioned in Sec. II, it is important to
carry out the energy calculations to E3 rather than E2
so as to get an upper limit to the exact E.

V. CONCLUSION

APPENDIX. NONPAIRWISE FORCES IN THE
SECOND ORDER INTERACTION OF

THREE SEPARATE ATOMS

Consider three identical atoms A, 8, C suKciently
far apart so that all exchange effects can be neglected.
I et u, b, and c be their ground states and Vgg, etc. ,
denote the instantaneous electrostatic potential between
A and 8, etc. Using definitions similar to those in the
text, we have

We have shown that the first order wave function,
X&, of an E-electron system can be obtained from the
erst order functions of the ground and excited states
of a two-electron system with the same nuclear frame-
work. Each pair function can be obtained from a
2-electron nonhomogeneous differential equation, e.g.,

' The "exclusion effects" can be formally incorporated into
the pair energies by making each I;;orthogonal to the remaining
occupied orbitals k&i, j; e.g. , in Li, we substitute

N12 (Xl&X2) =2&12(Xl&X2) &2$12((2&12(Xl&X2) &3 (X2))x23 (X2))
for 2»2 in ($(12),g&2N&2). The ( )x2 means integration over x2 only.
We have (2»2'(XI,X2),3(X2))x2——0. The 2»2's in the other two terms
of Eq. (50) are left unchanged. In an atom or molecule with more
than three electrons, there will also be four-electron exclusion
effects. ' These arise because double excitations to a pair of orbitals
occupied by two other electrons in C0 are excluded by the Pauli
principle. ' ' The four-body exclusion effect will be much less than
a three-body exclusion effect; because in the latter, not just one,
but a whole set of double excitations are involved. These are the
missing transitions of an electron to a complete set orbitals while
another is prevented from going into an orbital already occupied
by a third electron (see reference 5).

"H. A. Bethe, Phys. Rev. 103, 1353 (1956).

{(Jab —V~B)+(Jac V~c)—
e,+eb+e,

+ (gb, —U'Bc) }(abc), (A1)

Then
e,+eb

(J.b
—V~B) (ab), etc.

(A2)

or
E2=((abc)& (VAB+VBc+Ugc)X&)& (A3)

E2 = (ab&VAB uab)+(ac&V&tc u«)+(bc&VBc ub. )
+2/(abc, V~c cu b) j(abc, Vgc aub, )

+(abc, U~B bu„)]. (A4)

The first three terms of Eq. (A4) are the pair inter-

"oktay Sinanoglu and E. M. Mortensen, J. Chem. Phys. (to
be published).

where, e.g. , J,b=(ab, V&Bab). Using Eq. (30), we obtain

Xi= au bc+ buaa+ Cua b&
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actions. Notice that they include the mutual electro-
static potarisation within a pair in addztzon to the usual
dispersion forces. The last three terms are the 3-body
"cross-polarization" terms mentioned in the text Lsee
Eq. (50)$. If the atoms A, 8, and C are neutral and
spherical and if V~~ is expanded in a multipole series

keeping only the dipole-dipole term, the pair polari-
zation and the cross terms vanish. Then E2 reduces
simply to the sum of the usual London dispersion
energies "'4

"F.London, Z. Physik Chem. 811, 222 (1930).
'z H. Margenau, Revs. Modern Phys. 11, 1 (1939).
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Proton-Hydrogen Scattering System*
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The impact parameter treatment of the scattering of protons by hydrogen is derived and is shown to be
vaM for energies greater than a few electron volts. A novel treatment of the resultant equations is given
which significantly modifies previously obtained results for inelastic scattering and charge-exchange
scattering.

I. INTRODUCTION

''T has long been realized that the system of two
~ ~ protons and an electron is one of the simpler three-
body problems in quantum mechanics because of the
large disparity in the electron and proton masses. Born
and Oppenheimer' used this fact to treat the bound
states of H2+. They made the approximation that the
protons moved very slowly compared with the elec-
trons. The resultant problem, the motion of the electron
in the field of two fixed protons, could then be solved
exactly. ' Similar approximations were made for the
scattering problem, ' resulting in good agreement with
experiment for low energies. The high-energy problem
has been treated by Born approximation, ' but the
discussion of capture collisions has been somewhat
clouded by the lack of orthogonality of the initial and
final states and the consequent ambiguity in the contri-
bution of the proton-proton potential to these re-
arrangement processes. 5 The high-energy scattering has
also been treated by an "impact parameter method, "
where it has been shown that a "Born approximation"
in this method is equivalent to the usual Born approxi-
mation in the limit of the electron-to-proton mass ratio
vanishing. '

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).' E. Teller, Z. Physik 61, 458 (1930).
'N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553 (1931);

D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy. Soc.
(London) A216, 437 (1953);D. R. Bates and R. McCarroll, Proc.
Roy. Soc. (London) A245, 175 (1958); A. Dalgarno and H. N.
Vadav, Proc. Phys. Soc. (London) A66, 173 (1953).

4 H. C. Brinkmann and H. A. Kramers, Proc. Acad. Sci.
AmsterdaIn BB, 973 (1930); referred to hereafter as B-K.

' J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953);
D. R. Bates and G. Griping, Proc. Phys. Soc. (London) A66, 961
(1953).' J. W. Frame, Proc. Cambridge Phil. Soc. 27, 511 (1931).

It is the object of this paper to present a systematic
derivation of the "impact parameter method" (Sec. II).
It will develop that it is suitable for the description of
collisions for proton energies of the order of a few
hundred electron volts and greater. In Sec. III an ex-
pansion is made which is suitable for direct (not re-
arrangement) collisions. This is used to develop an
"improved Born approximation" which is used to cal-
culate the cross section for the transition

p+H(1s) ~ p+H(2s)

as an example. In Sec. IV an expansion is made which
is suitable for the description of rearrangement colli-
sions. A similar "improved Born approximation" is
developed here with the result that the initial and final
states are automatically orthogonalized, thus eliminat-
ing the difhculties mentioned above in connection with
this calculation. The method is applied to the calcula-
tion of the cross section for the process

p+H(1s) ~ H(1s)+p

as an example.
In Sec. V the problem of handling the low-energy and

intermediate-energy ranges is briefly discussed.

II. THE IMPACT PARAMETER METHOD

A Born approximation calculation for the total scat-
tering of a proton by atomic hydrogen yields the fact
that the mean angle of scattering is of the order
(zn~ W's~/ME)*, where

~
Ws~ =13.6 ev is the binding

energy of hydrogen and E is the incident proton energy. '
For incident proton energies above an electron volt or
so this is an extremely small angle, indicating that the
proton travels in essentially a straight line. This means
that the protons are distinguishable and that the Pauli


