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The first-order wave function, Xy, in the perturbation method can be obtained by a variational principle
instead of summing the usual infinite series with a large continuum contribution. For a ground state or the
lowest state of a given symmetry suitable trial functions, X1, are chosen to attain Ej, the second-order con-
tribution to the energy, as a minimum. This method is extended here to any excited state, m, regardless of
its symmetry. To obtain X,™, the expression

Eom= {2, (Hi—Ex) X+ &, (Ho— Ee)Xim) 2 Eam,
is to be minimized with X;™ in the form
m—1 ‘Pok<@ok,fllq’om>
ST USSR
k=0 (Fym— Fy)
with X1 orthogonal to the known unperturbed functions of the states lower than m. The X, gives also the
third-order energy. The method may be applied to such excited states as (1s2s) 1S of He-like ions and to
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the similar electron pairs that arise in the writer’s theory of a many-electron atom or molecule.

IN the perturbation solution of the eigenvalue
problem, H¥=E¥, the first-order wave function,
X1, determines the energy to third order and the
resulting energy will be an upper limit! to the exact £,
The usual perturbation method gives Xi, E,, etc., in
terms of the spectral representation of the unperturbed
Hamiltonian, H,. The resulting infinite sums are very
difficult to evaluate because the largest contributions
to them come from the continuum part? of the set of
eigenfunctions of H,. Instead, X; can be obtained by
choosing suitable trial functions to make a certain
expression, given below, stationary. For the ground
state or the lowest state belonging to a given irreducible
representation of the group of H, the exact X; makes
this expression a minimum. Then one simply tries to
attain this minimum to get the best X;. Hylleraas® has
used this method to obtain a very good approximation
to the X; and the second-order energy, Fs, of the helium
atom.

For excited states which are not automatically
orthogonal to the lower states by symmetry, the
stationary expression will not be a minimum, and the
variation-perturbation method described above must
be modified. The purpose of this article is to develop
such a modified variational principle by which trial
functions, Xi, for an excited state, can be varied to
attain a certain minimum subject to some restrictions.
This is similar to what happens in the ordinary variation
method, 8{(¥,HY¥)/(¥,¥)}=0, where the energy of an
excited state will be obtained as a minimum only if the
trial functions are restricted so as to be orthogonal to
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the ewxact eigenfunctions of all lower states. However,
these exact functions are in general not known. In
contrast, we shall show that the minimum principle
to be developed here for the X; of excited states involves
only the known unperturbed eigenfunctions of the lower
states.

Consider an unperturbed Hamiltonian, H,, and a
perturbation AH; with H=H,+NH,, H¥=E¥, and
H @b = Eg*®,*, where ®¢* is the £th unperturbed eigen-
function. The usual perturbation expansion for the
mth exact eigenstate of H is (for A=1)

‘I/m=‘1)om+X1m+ RN
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The first-order wave function, Xi™, satisfies the non-
homogeneous equation

(Ho— Eo)X1= (E1— H1)®q, 2

where E,=(®,H®,). This equation will have a solution
only if (E1— H1)®; is orthogonal to the solutions of the
homogeneous equation, (Ho—Eo)®=0. Thus, either &,
must be nondegenerate or else it must be chosen such
that the above orthogonalization condition is satisfied
(removal of degeneracy in first order). Equation (2)
determines X, to within an arbitrary multiple of ®. If
this multiple is fixed so that (®¢,X1)=0, E, and E; will
be given by

)

4)

X: does not have to be normalized, since its normali-
zation affects the energy only to the fourth and higher
orders.!

Equation (2) can be put into an equivalent vari-
ational form. The exact solution, X;™, of Eq. (2) for
the mth state of H, makes the expression E,"[Xi™]
={2(&,", (H,— E;)Xm)+(&im, (Ho— EmXim))  sta-

Ey=(®o,H:X1),
Es= (Xl, (111—‘ El)X1>.
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tionary,? i.e.,

SB[ Xy ]=8{2®y™, (H1— E;™)Xi™)
+(Xi™, (Ho— EomXy™)}=0. (5)

This equation provides a convenient means of approxi-
mating to X;™ if the extremum, E,”[X;"], is also a
minimum. Then, X;™, the trial function, can be varied
until the lowest Es[ X;] is attained.

E;m[Xy™] will be a minimum?+* if ®,™ corresponds to
the ground state, ®,". To see this, we write X;"»=X,™
+6Xy™ in Ey»[X1™] [see Eq. (5)] and, using Eq. (2),
obtain

Eym[6X,™ ] = Eym+(6X1™, (Ho— Ey™)0X1™). (6)

Thus, for (®o, (H1— E1)8X:™) real, the first-order vari-
ation of E,™ vanishes corresponding to Eq. (5) and the
error in E,™ is of the second order in 6X;”. Expanding
(Ho— E,)6X1™ in the eigenfunctions of Hy, we have

E—2m[5X1m:l=E2m+Z (Eo“"‘Eom)<‘b0",5X1m>2. (7)
n=0

For the ground state E¢"> E(’ so that the last term is
positive definite and therefore

EX[6X:]2 E. ®)

The same minimum principle applies also to any
other X;™ if it corresponds to the lowest state of a given
type of symmetry. Then, since ®,™, X;” and 6X;™
belong to the same irreducible representation of the
group of H, just by symmetry 6X;™ will be orthogonal
to all the states ®¢* below ®¢™. Then the negative terms,
(Eo*—Eq™), do not contribute to Eq. (7) and we still
have F;™(8X1™) > Ey™. Thus (1s 25) 35, 1P, etc., states
of He can be treated just like its ground state?® by
minimizing E,™ with suitable trial functions, X;™.

Consider now a general excited state which may be
of the same symmetry as some of the lower states. To
apply the minimum principle to the Xi™ of such a state,
m, the variation 6X;™ must be restricted so as to make
the error in Eq. (6) positive definite. Hence in Eq. (7)
we must have

<‘bok,5xlm>= 0, (k<m, Eok’*Eom<0) (9)
to remove the negative contribution of all the ®¢* of
states lower than m. The 6X;™ above was defined as
the error of the trial function, X;™, with respect to the
exact solution X1 of Eq. (2); so the condition, Eq. (9)

becomes
@& Zm=(@* X1, [£=0,1,2, - -(m—1)]. (10)

*H. A. Bethe and E. E. Salpeter, Encyclopedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. 35.
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The particular solution of Eq. (2) is formally given! by

Xym=

—[Em—H o0, (11)

HO'—'EO

where (Ho—Eo,™)™ is the Green’s function operator,®
E1m=<q>0m’H1(§0m>’ and <X1m’q>0m>=0. Substituting Eq
(11) in Eq. (10), and noting that (H,— Ey™)~! is seli-
adjoint since Hj is, we get

1
(P X m)= <_‘~'—‘¢ok, (Eym—H 1)‘I’om>
Hy— Ey™

1
="‘—~—k<<pok,H1(I)om>. (12)

Eym—E,

Thus, even though we do not have X,™ in closed form,
we do know (®¢*,X:™). This makes the choice of the
trial functions, Xi™, subject to the restriction Eq. (10)
or (9), possible. Equations (10) and (12) show that
Xy™ must be of the form

. o et Bk)( ok, H ™)
le>=le>+z ..__..LLO_,

& Em—mr (13a)

and the arbitrary part, X,™, of the trial function, X,™,
must be kept orthogonal to the ®,* fo all the states
lower than m, i.e.,

<le,q)0k>=0: [kzoy 1) 2; e (mh 1):}' (13b)

This gives the method for obtaining approximations to
the Xy™, E»™ and E5™ [see Eq. (4)] of any excited state,
m. The expression,

E[Xam]={2®™, (H1—E™)X1™)
+(&Xim, (Ho— Ee) X0} > Eom,

is to be minimized subject to Egs. (13a, b).

In the ordinary variation method for excited states,
the trial functions must be kept orthogonal to the exact
eigenfunctions of all lower states. In contrast to this,
we note again that the variation-perturbation method
given here by Egs. (13) and (14) require only the known
unperturbed functions, ®¢*, of the lower states. The
method can be applied to such excited states as
(15 25) 1S of the He-like ions to obtain the energy with
explicit Z dependence as done for the (1s2)LS states®*
and also to the similar excited electron pairs that arise
in the theory of a many-electron atom or molecule.!'s

(14)

SIf (Ho—Eo™)™ is written in the spectral representation of H,,
the usual formula,
o Do"XPo™,H 1 ®e™)
le>= 2 P

nEm

Ey»—Eo™

results. We have already mentioned the difficulty of evaluating
this infinite sum.
¢ Oktay Sinanoglu, Proc. Roy. Soc. (London) (to be published).



