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The 6rst-order wave function, X&, in the perturbation method can be obtained by a variational principle
instead of summing the usual infinite series with a large continuum contribution. For a ground state or the
lowest state of a given symmetry suitable trial functions, X&, are chosen to attain E&, the second-order con-

tribution to the energy, as a minimum. This method is extended here to any excited state, m, regardless of

its symmetry. To obtain X~'", the expression

Esm ——{2(Cp", (Hg —Egm)X&'")+(Xi, (Hp —I.'p"')X&'")}& J's'",

is to be minimized with X~ in the form
y g& k(g) I gg y m)

Xm Xm+. g
k=0 (Pm L )

with X~"' orthogonal to the known unperturbed functions of the states lower than m. The X~ gives also the
third-order energy. The method may be applied to such excited states as (ls2s) 5 of He-like ions and to
the similar electron pairs that arise in the writer's theory of a many-electron atom or molecule.

' 'N the perturbation solution of the eigenvalue
~ ~ problem, H%'=Et, the first-order wave function,
X1, determines the energy to third order and the
resulting energy will be an upper limit' to the exact E».

The usual perturbation method gives X1, X~2, etc. , in

terms of the spectral representation of the unperturbed
Hamiltonian, Ho. The resulting infinite sums are very
dificult to evaluate because the largest contributions
to them come from the continuum part' of the set of
eigenfunctions of Ho. Instead, Xi can be obtained by
choosing suitable trial functions to make a certain
expression, given below, stationary. For the ground
state or the lowest state belonging to a given irreducible
representation of the group of H, the exact X1 makes
this expression a minimum. Then one simply tries to
attain this minimum to get the best Xi. Hylleraas' has
used this method to obtain a very good approximation
to the XI and the second-order energy, E2, of the helium
atom.

For excited states which are not automatically
orthogonal to the lower states by symmetry, the
stationary expression will not be a minimum, and the
variation-perturbation method described above must
be modified. The purpose of this article is to develop
such a modified variational principle by which trial
functions, Xi, for an excited state, can be varied to
attain a certain minimum subject to some restrictions.
This is similar to what happens in the ordinary variation
method, 5((%',H%')/(O'P')}=0, where the energy of an
excited state will be obtained as a minimum only if the
trial functions are restricted so as to be orthogonal to
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Es = (C'p, HiXi), (3)

Es—(XI( (Hl El)Xi). (4)

Xi does not have to be normalized, since its normali-
zation affects the energy only to the fourth and higher
orders '

Equation (2) can be put into an equivalent vari-
ational form. The exact solution, Xi, of Eq. (2) for
the mth state of H, makes the expression Es )Xi ]
={2(Cp, (Hi —Ei )Xi )+(Xi, (Hp —Ep )X,m)} sta-

the exact eigenfunctions of all lower states. However,
these exact functions are in general not known. In
contrast, we shall show that the minimum principle
to be developed here for the X1 of excited states involves

only the known unperturbed eigenfunctions of the lower
states.

Consider an unperturbed Hamiltonian, Hp, and a
perturbation )tHi with H=Hp+XHi, HV=ECr, and
HpCp =Ep C p', where C p~ is the kth unperturbed eigen-
function. The usual perturbation expansion for the
mth exact eigenstate of H is (for )i=1)

+m —@ m+X m+. . .

pm E m+E m+E m+E m+. . .

The first-order wave function, Xi, satisfies the non-

homogeneous equation

(Hp Ep)Xi (El Hl)C p (2)

where Ei=(C p,HiC'p). This equation will have a solution
only if (Ei—Hi)C p is orthogonal to the solutions of the
homogeneous equation, (Hp —Ep)C =0. Thus, either Cp

must be nondegenerate or else it must be chosen such
that the above orthogooalization condition is satished
(removal of degeneracy in first order). Equation (2)
determines XI to within an arbitrary multiple of Cp. If
this multiple is fixed so that (Cp, Xi)=0, Es and Es will

be given by
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tlonaly, 1.e, ,

bE,, Lgi"j=b{2(CO, (Hi —Ei )Xi")
+(X- (H —E-)X")}=0 (5)

This equation provides a convenient means of approxi-
mating to Xi if the extremum, E2 )Xi j, is also a
minimum. Then, X», the trial function, can be varied
until the lowest E&LXij is attained.

E& LXi j will be a minimum' 4 if Co corresponds to
the ground state, Co'. To see this, we write X» =X»'"
+bXi in E2™LXij Lsee Eq. (5)) and, using Kq. (2),
obtain

The particular solution of Eq. (2) is formally given' by

Xl LEi Hi jC 0
&o—~o"

where (Ho —Eo"')-' is the Green's function operator, '
Ei"——(C»,HiCO"), and (Xi"Po )=0. Substituting Eq.
(11) in Eq. (10), and noting that (Ho —Eo ) ' is self-
adjoint since Ho is, we get

(I ',I ")= C ', (E,"—P,)Cg")
Bo Eo

g mPX mj E m+(bX m (H E m)bX m) (6)

Eq LbXi )=E2 +p (Eo"—Eo )(40",bXi )2. (7)

Thus, for (Co, (Hi —Ei)bXi ) real, the first-order vari-
ation of E2 vanishes corresponding to Eq. (5) and the
error in E2 is of the second order in bX» . Expanding
(Ho Ep)bXi in the eigenfunctions of Ho, we have

(@ k H &y m)
gm gk

Thus, even. though we do not have X» in closed form,
we do know (Co",Xi ). This makes the choice of the
trial functions, Xi, subject to the restriction Eq. (10)
or (9), possible. Equations (10) and (12) show that
X» must be of the form

For the ground state Eo"&Eo', so that the last term is
positive definite and therefore

i @ k)(@ k H @ m)
X m) X m)+. P 7QI

(13a)

8;Px,j&E,'.

(Co",bXi )=0, (k&m; Eo"—Eo"&0) (9)

to remove the negative contribution of all the Co~ of
states lower than m. The bX»"' above was defIned as
the error of the trial function, X», with respect to the
exact solution Xi of Eq. (2); so the condition, Eq. (9)
becomes

(Co', Xi")=(Co',Xi ), Lk=0, 1, 2, (m —1)j. (10)

4H. A. Bethe and E. E. Salpeter, L~'ncyclopedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. 35.

The same minimum principle applies also to any
other X» if it corresponds to the lowest state of a given
type of symmetry. Then, since Co, X» and 8X»
belong to the same irreducible representation of the
group of H, just by symmetry bX» will be orthogonal
to all the states Co~ below C o .Then the negative terms,
(Eo —Eo ), do not contribute to Eq. (7) and we still
have E2 (bXi~) ~&E2~. Thus (is 2s) 'S, 'I', etc. , states
of He can be treated just like its ground state' by
minimizing B2 with suitable trial functions, X» .

Consider now a general excited state which may be
of the same symmetry as some of the lower states. To
apply the minimum principle to the X» of such a state,
m, the variation bX» must be restricted so as to make
the error in Eq. (6) positive definite. Hence in Eq. (7)
we must have

and the arbitrary part, X», of the trial function, X»,
must be kept orthogonal to the Co' fo all the states
lower than es, i.e.,

(Xi,CO~)=0, Lk=0 1 2 (m —1)$. (13b)

This gives the method for obtaining approximations to
the Xi, E2 and Ea Lsee Eq. (4)$ of any excited state,
m. The expression,

E ~LX mj —{2(@m (H E m)X na)

+(Xi", (Ho —Eo")Xi )}&&E2", (14)

is to be minimized subject to Eqs. (13a, b).
In the ordinary variation method for excited states,

the trial functions must be kept orthogonal to the exact
eigenfunctions of all lower states. In contrast to this,
we note again that the variation-perturbation method
given here by Eqs. (13)and (14) require only the known
unPerlurbed functions, Co~, of the lower states. The
method can be applied to such excited states as
(1s 2s) 'S of the He-like ions to obtain the energy with
explicit Z dependence as done for the (19)'S states'4
and also to the similar excited electron pairs that arise
in the theory of a many-electron atom or molecule. "

' lf (H0 —E0 ) ' is written in the spectral representation of H0,
the usual formula,

C'p")(40&,H&CO )
xg'")= Z

~0 +0
results. We have already mentioned the difhculty of evaluating
this ininite sum.

6 Oktay Sinanoglu, Proc. Roy. Soc. (I ondon) (to be published).


