
P H YSI CAI REVIEW VOLUME 122, NUMBER 2 APRIL 15, 1961

Statistical Mechanics of Ferromagnetism; Syherical Model as High-Density Limit

R. BROUT t

(Received November 15, 1960)

It is shown that there is a class of graphs of the Ising model (or Heisenberg model for T &To„„,) which
is comprised of cycle graphs plus some excluded volume eGects which sum to the spherical model. The
spherical model, suitably generalized for T(T~„„„wasconjectured in a previous work to be the high-
density limit of the Ising model, correct to 1/z, where z is the number oi spins in the range of the exchange
potential (not restricted to nearest neighbor interactions). z& measures the range of the exchange potential.
This is now proved by examining the omitted graphs. The error is shown to be O(1/s ).

I. INTRODUCTION

' 'N this paper, we examine and justify the conjecture
~ ~ of the validity of the spherical model to O(1/z)
which was set forth in a previous work'; s is the number
of spins in the range of the exchange potential (not
restricted to nearest neighbor interactions). We first
show that the spherical model corresponds to the
summation of cycle diagrams, with a certain class of
errors of excluded volume included. Then, it is shown
that the class of graphs which is omitted is higher
order in 1/», completing the proof.

It is rather remarkable that a model first proposed on
grounds of simplicity' alone does in fact correspond to
a well-defined approximation to a certain physical
model. The spherical model apparently possesses many
of the analytic features of the Ising and Heisenberg
models in a qualitative and semiquantitative way.
Further, it oGers the possibility of a first-order approxi-
mation about which one can develop a more exact
theory. In the text it is shown that the spherical model
in fact generates a very convenient propagator which
includes in a rather accurate way spin-spin correlations.
All graphs not included in the spherical model are
conveniently reduced to simpler graphs in terms of
this propagator alone. Finally, it has been shown
recently that a simple extrapolation from quantum spin
waves to the spherical model Curie point can be formu-
lated. ' The validity of the extrapolation rests on the
above estimate in 1/z.

We first discuss the error in the remark of I, that
cycle graphs with no excluded volume effects included
are the 1/z graphs. ' We confine ourselves for the
moment to the case T)T,. For (T—T,)/T, (1/z, then
cycles of order s start to contribute in an important
way to lnZ and as T—& T„cycles of arbitrarily high
order contribute. Now if a cycle has order (s, it is
clear that the number of configuration for which
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II. SPHERICAL MODEL AND EXCLUDED-
VOLUME EFFECTS

We first show how the spherical model accounts for
the excluded-volume eRect mentioned above, in a
qualitative fashion. The most convenient formulation
of the spherical model is in the two equations of I,
Eqs. (5.10) and (5.11)

(I/&)Zs(1 —PLo(q) —53 '= 1, (2.1)

2Z/E, — (2.2)

which supply an equation for the energy PE in terms of
the quantities Ps(tl). This is most easily obtained by
writing Eqs. (2.1) and (2.2) as

2P&=E 2 L—P/(I+»I&I/&) j"Le(q)j" (2 3)
th=2

Solving Eq. (2.3) iteratively then gives the power
series in P for PE(P). We now note that the sum on
cycle diagrams without excluded volume eRects gives
for PE LI—Eq. (4.1)$

—»J-"=2 2 p"b(q)3".
q n=2

excluded-volume eRects are important is small. This
was the basis of the classification of such graphs as
O(1/z') and smaller in I. Hence the reasoning in I is
correct for (T T,)/T—,)I/z and the results quoted
there are correct in this temperature range (precisely
the temperature range where the problem of incon-
sistency of I-Sec. IV did not arise). However, for large
cycles of order &s, the number of configurations where
mistakes of excluded volume arise becomes very large
and in fact soon. dominates the 1/z effect due to a
restriction on summation. In other words, the number
of cycle graphs with dashed line insertions dominates
the 1/z effect due to restrictions. Thus for (T T,)/T, —
(1/z, the classification of I breaks down and it becomes
necessary to evaluate excluded-volume graphs. It is
rather remarkable that the requirement of a consistent
treatment of the 1/z term, taking into account excluded
volume, gives rise to a consistent theory of the Curie
point in that the Curie points found from above and
below coincide.
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FIG. 1. Cycle diagrams to fourth order.
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n2 and 0.3 are two- and three-membered cycles given by
Figs. 1(a) and 1(b) for which there are no dashed line
insertions possible. n4 is the sum of contributions of the
cycle graph on four vertices with all mistakes included

(no dashed lines) plus the two possibilities with diagonal
lines. These are Figs. 1(c), 1(d), and 1(e). Figure 1(f)
is not included. Rather than go on with the tabulation,

Thus the effect of the spherical model is to suppress
the contribution of the mth cycle by a factor of
(1+2p~E~/37) " as compared to the simple result
(2.4). (Recall PE&0.)

Now in I, it was shown that at T= T., we have the
order of magnitude P,E/E 0(1/s) and f'or T&T„
PE decreases with increasing T. We then see from (2.3)
that for (T T,)/T,—&1/s, where pE/X=O(1/s), the
higher order cluster contributions (n&s) are indeed
given an appropriate suppression factor, whereas for
n&s the suppression factor is relatively unimportant.
For (T T,)/T,—&1/s, then pE/E~O quite rapidly
and the suppression factor (1+2p~E!/Ã) " becomes
decreasingly important. This is the range of good
convergence and only cycles for n &z contribute in an
important way; hence the suppression factor need not
play an important role. We then see that the spherical
model expresses in a qualitative fashion the remarks
made in the introduction.

Ke now will prove that the spherical model sums
the class of graphs of the Ising model (or Heisenberg
model for T& T,) which comprises cycles plus all dashed
line insertions in configurations such that the dashed
lines do not cross.

Before constructing the formal proof, we shall indi-
cate the likelihood of the truth of the theorem by
power series methods. Solving (2.3) for PE as a power
series in P gives the following result. We abbreviate
&s")= (1/&)EsLs(a) j"

(2.5)

we pick one more sample case. We shall give the
diagrams which contribute to the factor 7((ss&)s in. mrs.

These are Figs. 2(a), 2(b), and 2(c). There are six
Figs. 2(a), three Figs. 2(b), and two Figs. 2(c) of
opposite sign from 2 (a) and 2(b).

We make one more point here. It has been stated
that all graphs whose dashed lines do not cross are
included in the spherical model. All such graphs are
calculable by convolution, giving rise to the n coeffi-
cients of (2.5). This is not to say that all graphs
obtainable by convolution are counted by the spherical
model. Thus in eighth order, Fig. 3(a) is included and
3(b) is not included even though both have the same
value. This is discussed in detail in Sec. III.

Now we turn to the formal proof. ' lt is our aim to
evaluate the contribution of certain cycle diagrams to
PZ for T& T,. This is given by

Wig )
(b)

FIG. 3. Contribution to
an eighth-order cycle. (a)
Contributes to spherical
model. (b) Does not con-
tribute to spherical model.

cycle is given up). Define the "irreducible" quantity
Ps as the total contribution from all possible orderings
of k particles in a cycle of order )'r+1 with rso dashed
line insertions. The point 1 is considered fixed. Thus

P,=P'+'k! P Ls(1i,) s(i,1)j

=&l(1/&)ZLPs(rf)]'+' (2.7)

Define a "reducible" quantity hE as the total contri-
bution of all cycles of (l+1) particles (with the position
of particle 1 fixed) including all insertions of dashed
lines such that the dashed lines do not cross. With
this definition

bi P'+'i! Q' s(1ii) ——.s(ii1), be=1, (2 g)

where the prime means the same here as in (2.6).
We have according to (2.6)

-2P~/~= Z (bi/i!).
l=l

(2 9)

2'/cV= —PP"+' P' s(1s,)s(sis, ) . v(s~1). (2.6)
il ~ ~in

The prime over the second summation means that the
sum is over those cycle graphs which have dashed line
insertions with no crossings. In what follows we shall
consider as distinct each one of the e J orderings of the
indices ii i„(so that the reRection symmetry of a

(a)

I
l

(c)

~ The work here is inspired by the recent elegant combinatorial
approach to statistical mechanics of E. E. Salpeter, Ann. Phys.
5, 183 (1958); snd E. Meeron, J. Phys. Fluids 1, 139 (1958).

FIG. 2. contributions Qow consider a given graph contributing to bI,. For
to the term ((n2))3 in a
sixth-order cycle.
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the moment we take graphs which are comprised of a
"skeleton" irreducible part comprising k vertices (k(L)
and the particle 1 plus reducible parts which are
articulated on to each one of the vertices. A convenient
graphical notation is obtained by drawing a set of
vertices connected by dashed lines as a single vertex
corresponding to the fact that a dashed line is a 8

function. For example, in the new notation Fig. 4(a)
becomes Fig. 4(a'), Fig. 4(b) becomes 4(b'), and Fig.
4(c) becomes Fig. 4(c'). In this new notation, we draw
for example a contribution to br, for L= 11 in Fig. 5 (a).
For this case we have k=4. To vertex (1) is articulated
no cluster. To vertex (2) is articulated two clusters of
orders two and three (l=1 and 2, respectively). To
vertex (3) is articulated no cluster and to vertex 4 is
articulated one cluster of order five (l=4). The total
contribution of such a configuration to bll is obtained
by summing on all possible contributions which have
the form of Fig. 5(a). For example one would add Fig.
5(b) to Fig. 5(a). The result of this grouping is to
convert each of the figures articulated on to the vertices
of an irreducible skeleton into a sum of reducible
graphs. Thus, associated with such a particular articu-
lated portion of l points, in addition to the vertex of
the irreducible skeleton itself is a factor —b~.

We now calculate the total contribution to bl, due to
a particular splitting up of the L particles with k
particles in the irreducible skeleton (in addition to the
given particle 1), li' particles grouped into a cluster of
order (iii+1) articulated to vertex 1, lP particles
grouped into a cluster of order (li2+1) articulated to
vertex 1, ll"' particles grouped into a cluster of order
(li"'+1) articulated to vertex 1, ~ l, &'particles grouped
into a cluster of order (l, &+1) articulated to vertex i
(i=1, 2, , k+1); the superscript j labels which
cluster articulated to i is in question.

We write down the answer to this problem and
justify each factor in the succeeding paragraph.

FIG. 4. New notation for
dashed 1ine graphs.

(b) (b')

pointi is g, :
(c)

U
(c'3

Making use of the fact that (2.11) is the multinomial
coeKcient, (2.12) is easily summed to

(—1) 'LP l,/l!7 '= (—1)"'(2PI~I/X)"'. (2.13)
l=l

Hence the sum of all clusters articulated on to the
vertex i is

1+/( —1)"(2P)E)/X)"=L1+2P(E(/Ã7 '. (2.14)
v=1

Thus the sum of all diagrams whose skeleton diagram
is of order k where there are all possible diagrams
articulated on to each vertex i (i=1, , 0+1) is

g, (l ,il "')= v t/mi'! m. 't (2 11)

We now calculate the factor which arises from all the
graphs for which there are v, clusters articulated on to
point i. This is clearly

P./k! L1+2P I~I/~7-&"+'&.

(2 10) Summing on k we 6nd
L! &+& (—bi &) f bi,"')——p. II g;I
k! '=i 4 l,'! ) & l, '*'! J

(2.15)

The factor $L!/k!Q, (l,i!) (l,"*!)7 is merely the
number of ways to achieve the grouping in question.
The factor Pi, is the contribution from the k skeleton
particles and particle 1. Each of the factors —bt, & is
the contribution from the articulation of an (l, j+1)
cluster on to point i in the skeleton. The factor g; is a
further combinatorial eGect describable as follows. On
to vertex i a certain number v, of clusters are articu-
lated. These are of various orders l,' (j=1, i,). Let
there be ml' clusters for which /;& is 1, m2' clusters for
which /, &'is 2, etc. Then

2P&/&= &—P 51+2PI&l/&7 '""'
k=1

= P Pyv(q)7"/j1+2P~E~/N7", (2.16)
n=2

thereby proving the theorem.

W),
mg = pg.

The number of ways to articulate these clusters on to

(b)
FIG. 5. Contributions to b~ for!t = 1, 4=4.
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FIG. 6. Sample single cross-
linked graphs.

From the analysis of I, Sec. VI, it is seen that this
proof holds equally well in the Heisenberg model for
T)T, and zero magnetic field. "

For the Ising model and T(T„ the work of I,
shows that the graphs which arise in 1/s are "general-
ized cycles" which merely changes the spin factor from
1 to (1—R2)". The spatial factors, however, are the
same. Since the above work is concerned with spatial
factors only, we then have found the class of graphs
for T(T,which corresponds to the generalized spherical
model with R fixed as given in I.

III. HIGH-DENSITY LIMIT

We show that cycle diagrams not included in the
spherical model (i.e. , those with crossed dashed lines)
contribute higher order in 1/s. To understand why this
is so, consider the general topological configuration of
Figs. 1(e) and 1(f). It is clear that the space which
may be covered in 1(f) is considerably less than that
of 1(e). If s is large, this means that there will not be
as many of 1(f) as of 1(e). As an example, we will
first sum all diagrams with one pair of crossed lines.
Schematically, this is represented by the diagram of
Fig. 6(a). Between points 1 and 2, there may appear
arbitrarily many bonds and dotted lines. The sum of
all such diagrams is equivalent to the evaluation of
(pi@2) in the spherical model where 2 is at a given
distance from 1. We call this function g~2. Its value is
[see I, Eq. (5.10) ff.]

g12=+, g(q) exp[iq (Ri—R,)], (3.1)

g(q) =Ps(q)/[1 —Pw(q)]; w(q) = s(q) —~. (3.2)

This is slightly dif'ferent from the value given in I,
where g(q)=1/[1 —Pw(q)]. The expression (3.2) has
the constant 1/(1+Pp) subtracted from this value.
This only affects g» at R=O which is not pertinent to
the present calculation. For the case R&——R2, it is easy
to see that diagram 6(a) goes like (PZ)2(dPE/dP)
=O(1/s'). The value (3.2) is the one directly obtained
by graph summation and is the more appropriate one.
The evaluation of the energy=+2[g(q)s(q)] is not
affected by which form is adopted since Ps(q) =0.

It is proved in the Appendix that diagram 6(a)
gives a contribution to 2PZ/X equal to

Q2 P(~g12/~P)g21g12g21 (P/4) (~/ilP)+2 g12 ~ (3 3)

This is conveniently evaluated by Fourier transforms.

' Note added in proof. The argument given in I is only correct
for simple cycles. Once indices duplicate, there are commutator
problems which render the above statement incorrect as it stands.
A more complete report on this problem and its relation to spin
wave interaction will be forthcoming.

g(q)-o, (3.&)

and in configuration space, since g(E=O) =PS, we have

g-1/s, 0&S&s~; (3 6)

g- 1/siE. , R&s~. (3.7)

We may similarly analyze PBg»/BP, the Fourier trans-
form of which we call g'(q). This is shown in the
Appendix to be

P"(q)
g'(q) =Ps(q)/[1 —Pw(q)]'=

P'[s(0)—s(q)]'

T= T,. (3.8)

It appears from (3.8) that g'(q) has an infrared diver-
gence at g=0. This would be serious, but is avoided
because of the saddle-point condition of the spherical
model in the following way. Consider an integral of
the form J'f(q)g'(q)dq such that f(q=0) exists. The
saddle point condition is

1= (1/X)+,[1—Pw(q)]
—'

which upon differentiation is

r.,[W /q) je]/[1-P (q)] =o.
Now

(3.9)

(3 10)

lim [aPw(q)/aP]= v(0) —(BP8/aP) —=ux0. (3.11)

The infrared divergence of (3.10) cancels out. We then
see that a subtraction procedure is available:

P~(q)
f(q)g'(q)dq= '

f(q) dq
[1—Pw(q)]'

{Ps(q)f(q)
1—Pw q

—[P&(0)f(0)/~](~Pw(q)/~P)) (3»)
Since we generally will deal with f(q) an even function,
the curly bracket in (3.12) is of O(q2), thereby can-
celling the infrared divergence. Thus as far as order of
magnitude arguments at small q (large E) are concerned,
it suKces to replace PBg/BP by g since the property
(3.4) and hence (3.7) holds for the former as well as
the latter quantity once the subtraction procedure is
adopted. At small R, however, this is not the case,
since as seen from (3.12), s(q) is no longer a factor;
hence there is no cutoff at q=O(s &).

With the above remark, we first calculate +2 g12'

Accordingly we analyze g(q) given by (3.2) at T= T,
since the maximum value of all functions is attained
at this temperature. At T=T„ the behavior of g(q) is
given by

g(q)-P &(0)/s'V2- 1/s'*q'
I ql &s '; (3 4)
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~00

P g»4- —~ R'dR+
z4 J, ~8/3 g

dR/R' 1/z'. (3.13)

and then discuss the appropriate modifications to
evaluate (3.3). Using (3.6), we have~

FIG. 7. Sample double cross-
linked graph. I Jp

For the calculation of g»'(dgrs/dP), the above discussion
has shown that the second term is 1/z'; however, at
small R we have P(dg/dP) —P» Pv(q)/P1 —Ptt (q)1'. It
is difIicult to evaluate this expression exactly; however
it certainly varies between 0(1) and 0(1/z), probably
more likely being of 0(1), like the specific heat. This
is obtained from the use of (3.12) with f(q)=Pe(q),
the upper limit of this integral being independent of
z, we expect 0(1).We then find

2 P(~g»/~P)g»'-0(1/z') (3 14)

We now proceed to sum all graphs of the form (6b).
In the Appendix these are shown to be

P (—1)"+' g (&giit/&P)gi»gii's' g'. i'. (3.15)
n=l &1' ' &n

Again we first will study

Q (—1)~+i P gi;r2 g;„is
n=1

00 00

P (—1)"+ P giii' gi&i =—P P (—1)"G"(q)
n=l ~ ~ ~ QQ

= (1/1V) Z» G'(q)/E1+G(q) j (3 16)

From Eqs. (3.6) and (3.'/) it is seen that the function
L1+G(q)1 ' is well behaved for all q and G(q) is higher
order than 1/z. Because of this, it may effectively be
replaced by unity and the estimate (3.13) applies to
(3.16). A check on this statement is made by noting
that for small q we have G(q) (1/qz4"). Substituting
into (3.16) and integrating to z & gives (1/z')$1+(1/z)
)&ln(1/z) j. Further, for small R, g'(R) 1/z', so that
for q&s&, there can be no trouble either. Finally the
discussion after (3.13) still holds for the present case
and therefore leads to the statement that the sum of
all graphs of type (6b) is 0(1/z').

The next set of cycles to consider is that of Fig. 7
with two sets crossing. Unlike the set of Fig. 6 this set
cannot be summed analytically. However, the following
argument applies. Introducing one more crossing as in
Fig. 7 introduces two extra g factors and one extra
integration. From our previous experience (e.g. , Eq.

'We replace all sums by integrals. This is permissible to
calculate orders of magnitude. The lower limit in (3.13) should
be the lattice distance rather then zero. This also however, does
not acct the estimate.

and then show how to modify this to obtain an estimate
for (3.15). Let the Fourier transform of giss be G(q);
then we have

3.13) it is seen that each factor g introduces a factor of
1/z and each integration a factor of z. Hence Fig. 7
will introduce one extra factor of 1/z compared to
those of Fig. 6. This argument continues —the more
crossings, the higher the order in 1/z.

Other diagrams which should be reconsidered are
those which are not included in the cycle approximation.
For example, there are the ladder diagrams of reference
I (e.g. , Fig. 4(d) of I). Summation over these ladders'
replaces the function Pz, ; by tanhPv;; —Pv;,+0(1/z') at
P=P,. Hence these can be neglected. Similarly there
are diagrams like Fig. 8 which itself is obviously higher
order in 1/z. Such diagrams have the same topological
structure as diagrams with crossed dashed lines Li.e.,
Fig. 8 and Fig. 6(a) have the same topological struc-
turej. Since it has been shown that the order of magni-
tude of the crossed dashed lines is of higher order in
1/z, it follows that the same is true for the graphs of
overlapping cycles, of which Fig. 8 is an example.

Finally we return to the point made earlier: that
some graphs in the spherical model are included while
others of the same magnitude are not (e.g. , Figs. 3(a)
and 3(b)j. From the derivation in Sec. II, it is seen
that the set of graphs for which more than one reducible
cluster is articulated on to a vertex of the irreducible
skeletons changes the factor (1—2PE/iV) s to (1
+2'/JV) s. However, since PE/E 0(1/z), this is an
unnecessary refinement. In fact the energy need only
be calculated to 1/z in order to get the Curie point to
1/z; i.e., if the suppression factor is (1—2P~E~/1V)
rather than (1+2P E~/E) ' we would obtain kT,
= e(0)L1—2E/EkT, )—Pn(0) —2E/1V+0(1/z')$ where
2E/'JVkT, need only be calculated to 0(1/z). However,
it would be more consistent to calculate PE to 0(1/z')
in the spherical model in order to exhibit the same
singularity for all thermodynamic functions. With this
thought in mind we now observe that Fig. 3(a) con-
tributes to a refinement of the spherical model in
0(1/z'). Hence it did not have to be used in the high-
density proof. All that is claimed is that the coeKcient
of 1/z in the spherical model is the same as the coeK-
cient of 1/z in the Ising (or Heisenberg for T)T,)

FIG. 8. Sample overlapping
cycles.

'In fact this is the basis of the method of Kac and Ward on
the two-dimensional Ising model PM. Kac and J. Ward, Phys.
Rev. 88, 139 (1952)].
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model. On this point, it is a matter of indifference
whether Fig. 3(a) is included or not.

In reference I, a considerable issue was made about
the fact that the Curie points did not coincide when
obtained from above (divergence in C„) or below
(confluence in root of R=O or alternatively divergence
of x). In the Gaussian model this relative discrepancy
was 0(1/s). We now see that the spherical model
guarantees kT, to 0(1/s) and thus we have the right
to demand of it that there be agreement to 0(1/s). It
is the virtue of the spherical model, that it sums just
those terms of higher order in 1/s to lead to perfect
agreement. However, the value of kT, so obtained
should still be regarded as having a relative error in
1/s'. Further, the singular analytic behavior of thermo-
dynamic function for finite 1/s is by no means guaran-
teed by the spherical model since the coefficient of 1/s'
may have entirely diferent analytic properties at
T= T, from the coefficient of 1/s. Even for small 1/s,
it is possible that sharper singularities in the coefhcient
of 1/s' and higher orders might dominate the term in
1/s very close to the Curie point.

One Anal point is the necessity of having to sum
cycle diagrams in the order given in the paper. Had
we first not taken the spherical model diagrams, but
rather only cycles with no excluded-volume e6ects
included (Gaussian model), then the infrared divergence
of (3.8) could not have been eliminated. We would have
been led to a spurious inanity in the same way that the
Gaussian model leads to infinite C, at T=T,. The
elimination of this infinity comes from the no-crossing
rule regrouping. The very fact of the convergence ob-
tained in this manner leads one to conjecture on the
mathematical necessity of the type of regrouping con-
sidered here. In any case, one's confidence in the
spherical model is enhanced thereby.

APPENDIX

Consider a special diagram of the form Fig. 6(a),
such that between the vertices connected by dashed
lines there are e~, e2, m3, and m4 vertices in all orders
where e&/e2/n3/e4. The total number of ways to
lay the crossed lines to pick up all such splits is the
number of ways to lay down, say point 1 (where by
definition ei is the number of points to the right of 1),
multiplied by the number of ways to arrange the other
three groups. Thus

[Number of crossed line graphs splitting a cycle
into ni, m2, e3, n4] =3!(mi+e9+tl3+B4). (A.1)

This combinatorial factor is multiplied by the contri-
bution of each of the segments, i.e., ei factors of
pv/(1+p8) from 1 to 2, etc. Now the number of ways
that such factors come up in (Bgi2/Bp)g23g~4g4i is

calculated as follows. If Ni factors come up in Bg»/Bp,
this gives a factor mi from differentiation of p"& (it is
understood that 8 is not to be differentiated); the
distribution of e2, m3, e4 in the remaining factors comes
up in 3!ways. Similarly for m2 factors in Bg»/BP, etc.
Thus (A.1) is accounted for.

Similar arguments are easily carried out if two or
more of the m, 's are equal. For example, if two e,'s are
equal, the number of dotted line configurations is
3(2e+e2+e3). The number of ways that this distri-
bution comes up in. (Bg»/BP)g»g34g4$ is calculated as
follows: For e bonds in Bgi2/BP, the total number of
ways to achieve this is 3. which is then multiplied by
m2 or m3, respectively. The result on adding is (3!e)
+3 (n,ye, ).

Clearly the same argument applies for general
diagrams of the type Fig. 6(b). Here the number of
ways to lay down configurations for arbitrary splits
(e,} is (P;=i"e,)(v—1)! for v segments and all n;
diGerent. This is precisely the factor arising in

(Bgi~/Bp) g, i from such splits. For some ii, the same,
it is easily verified that the result is still valid.

We complete this Appendix by proving Eq. (3.8).
We have, on summing spherical model graphs,

g (q)=(1+p&)-'[p (q)+p (q)(1+p~)-'p (q)+ 7
= [Pv(q)/(1+PS)7(1/[1 —Piv/q)7}. (A.2)

Remembering however, that for the graphs in question
with various g,, attached to one another, that the
common vertex has only one set of articulated reducible
parts, not two.

Hence one should only articulate reducible graphs
on to one end of a g bond and not to each end as in
(A.2). Therefore the result (A.2) must be multiplied

by (1+pb). Finally we must differentiate the result
with respect to p, ignoring however the dependence of
p5 on p.

Pdg»/dP = [Pv/q)/(1+P~) 7+2[Pv(q)/(1+P~)]'+ "
= (1+P~)Pv(q)/[1 —P~(q) 7'
=Pv(q)/[1 —P~(q) 7'[1+0(1/s)7 (A.3)

It is the form (A.3) that is used in the text.
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