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Thermal conductivity measurements are reported for Gve single-crystal Ge-Si specimens containing 0—7.56
at. % Si. The measurements were made under steady-state conditions and cover the temperature range
2—50'K. The experimental results are compared to three theoretical models, those of Berman et al. , Callaway,
and Klemens; it is found that the data are best fit by Callaway's model. Good agreement between experi-
mental results and theoretical models is obtained by postulating only three sources of phonon scattering in
the specimens: three-phonon processes, isotopic point-defect scattering by the germanium and silicon atoms,
and boundary scattering. However, evidence is presented that boundary scattering occurs not only at the
external surfaces of the specimens, but also at internal surfaces associated with microscale Ructuations of
composition of the type reported by Goss, Benson, and Pfann.

I. INTRODUCTION

HE purpose of this experiment was the study of
the effect upon lattice thermal conductivity of

the scattering of phonons by point defects. These are
defects whose linear dimensions are much less than the
wavelengths of the important phonons, i.e., 1(((8/T)a,
where L is any dimension of the defect, 8 is the Debye
temperature, T is the absolute temperature, and a is
the lattice parameter. At 20'K, 8/T is approximately
20 in germanium. One way to study the point-defect
scattering is to modify the defect concentration in a
known way and measure the resultant change in thermal
conductivity, In this experiment, the materials studied
were single crystals of germanium-silicon alloys, which
contained 0 to 7.56 at. % Si. In this alloy system, the
silicon atoms, which diRer from the germanium atoms
in mass, size, and chemical bonding, constitute point
defects in the host germanium lattice. Klemens' has
discussed the phonon scattering cross section of point
defects; on the basis of Klemens' formulas, the author
has estimated that the mass diRerence between silicon
and germanium accounts for about 99% of the scat-
tering cross section for a silicon atom in the germanium
lattice. Hence in alloys of germanium with silicon, the
silicon atoms may be considered, to a erst approxi-
mation, as isotopes of germanium. Naturally occurring
germanium itself consists of five isotopes. Therefore,
the germanium atoms diRer in mass from each other.
Because any departure from perfect periodicity in the
lattice causes phonon scattering, the germanium atoms
scatter phonons —they are isotopic point defects. The
germanium-silicon alloy system was chosen for this
study for the following reasons: First, the materials are
simple insulators at low temperatures, having no
electronic contribution to the thermal conductivity;
hence the conduction of heat is entirely by lattice

vibrations, i.e., phonons. Secondly, crystals which
contain relatively few dislocations and chemical im-
purities can be grown. And thirdly, the silicon atoms
are a particularly simple type of point defect, primarily
diRering from the germanium atoms in mass. Three
theoretical models are considered —those of Klemens, ' '
Berman et al. ,' and Callaway. 4 All of these models
relate the thermal conductivity to the scattering of
phonons by various mechanisms.

In Sec. II of this paper the experimental details are
briefly described. Section III contains descriptions of
the three theoretical models considered in this paper.
In Sec. IV is contained the discussion of the theoretical
models and their comparison to the experimental
results. Section V contains a summary of the con-
clusions. Finally, in the Appendix is a description and
discussion of the microstructure found in the alloy
specimens.

TAsLz I. Specimen characteristics.

Specimen Composition

Ge
Ge+0.77 at. % Si
Ge+4.23 at. % Si
Ge+7.25 at. % Si
Ge+7.56 at. % Si

104r

5.72
34.6

166.
282.
294.

1044 A
(sec')

2.40
12.9
65.1

108.
116.

II. EXPERIMENTAL DETAILS

The alloy crystals, which were very kindly supplied
by S. M. Christian of the RCA Research Laboratories,
were 8 in. &(8 in. g 8 in. in size. The compositions are
tabulated in Table I and were determined by the author
from density and x-ray lattice parameter measurements.
The uncertainties stated are those estimated from the

The experimental work reported in this paper is part of a 'P. G. Klemens, proc. Roy. Soc. (London) A20S, ]08 (1951).
thesis submitted in partial fulfillment of the requirements of the R. Berman, P. T. Nettley, F. W. Sheard, A. N. Spencer,
degree of Doctor of Philosophy at Cornell University and was sup- R. W. H. Stevenson, and J. M. Ziman, Proc. Roy. Soc. (London)
ported in part by a grant from the National Science Foundation. A253, 403 (1959).' P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955). 4 Joseph Callaway, Phys. Rev. 113, 1046 (1959).
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precision of the two measurements. The manner in
which the specimens were mounted is as follows. One
end of the specimen is soldered with indium to an
electrical heater, the other end to a heat sink whose
temperature can be varied. A one-dimensional steady
heat Qow is set up along the specimen by means of the
heater, and two carbon resistance thermometers
mounted on the central region of the crystal measure
the temperature gradient. The entire assembly is then
mounted in a vacuum chamber. The thermal con-
ductivity K can then be calculated from the power, Q,
carried by the specimen; the temperature difference,
AT, of the thermometers; the separation of the ther-
mometers, Al; and the cross sectional area of the
specimen, S. The relationship is simply K=Qhl/SAT.
The thermal conductivity measurements were carried
out over the temperature range 2—50'K. The uncer-
tainty in the temperature measurements is approxi-
mately 1% for temperatures below 30'K and 1—2%
for temperatures above 30'K. The uncertainty in the
measured values of thermal conductivity is estimated
to be less than or equal to the following values: &5%
in the temperature range 4—30'K; +5 to 10% in the
temperature range below O'K, the error increasing with
decreasing temperature; and &5 to 10% in the tem-
perature range 30—50'K, the error increasing with
increasing temperature.

III. THEORETICAL MODELS

First consider the results of Klemens, ' who found
the scattering time vl, due to isotopic point defects to
be given by

that, because of the inQuence o'f the nonresistive 3-
phonon processes (the momentum-conserving X proc-
esses), the impurity scattering time rr should be
modified at low frequencies in the following way:

1/rr =Ard4, cu) kT/A;

1/rr=A(kT/A)4, ~(kT/~. (3)

If this modified expression for 7-1 is inserted into Eq.
(2), the resulting thermal conductivity is given by

k 1 r t' ~4e~d~ t'~r edda
&r= + (4)

27r'c A(kT/k) ~s (e*—1)' "i (e~—1)'

For 8/T»1, the second integral is a constant and
El is inversely proportional to T. In any real crystal
with finite boundaries, phonons are scattered at the
boundaries, giving an upper limit to the total relaxation
time. Hence the conductivity must always be finite.
This problem was first treated by Casimir, ' who ob-
tained a relaxation time for boundary scattering of the
form 1/r~=c/L where L is a length characteristic of
the size of the specimen and c is the velocity of sound.
Combining the boundary scattering with Klemens'
relation for point-defect scattering, the resultant
scattering time is

1/r = c/L+A(u4, rs) k T/A;

1/r = c/L+A (kT/ls)', rd(kT/A. (5)

Substituting Eq. (5) into Eq. (2) gives for the thermal
conductivity,

t' x4e*dx

vo
Q f;(1—m, /m)' a)4=Acv4.

7g 4vrc' '

In Eq. (1), c is the sound velocity; Vs, the atomic
volume; m, , the mass of the ith species of atom; f;, the
atomic fraction of the ith species of atom; m is the
average atomic mass which is equal to P; f,m, ; and ~
is the phonon frequency. A similar expression was sug-
gested somewhat earlier by Pomeranchuk. ' The fre-
quency dependence is, of course, the same as that
obtained in the classical Rayleigh treatment. If the
scattering time defined by Eq. (1) is inserted into the
expression for the thermal conductivity, ' '

4 ~ k 8/5 jg2~2 el~/IcT

(lsd(u (2)
27r'c "s k'Ts (e"~'"r 1)'—

where k is Boltzman's constant, and A is Planck's
constant divided by 2m, then the resulting integral
diverges at the lower limit. Physically, this occurs
because the relaxation times for the low-frequency
phonons become very large, giving rise to a very large
conductivity. Klemens' presents arguments to show

s I. Pomeranchuk, J. Phys. U.S,S,R. 6, 237 (1942).

2''c A (kT/k) 1+(c/LA) (It/kT)' "s (e*—1)'

e dx

1+(c/LA)(A/kT)4x 4 (e* 1)'—(6)

The model by Berman et al. differs from the other
two under consideration in that it is based on a vari-
ational calculation of the phonon mean free path. This
calculation includes the effects of three-phonon proc-
esses and isotopic point defects, but does not include
the effects of boundary scattering. Hence the model is
not applicable at temperatures below that of the thermal
conductivity maximum and at all temperatures repre-
sents an upper bound to the thermal conductivity. By
substituting the expression derived by Berman et al.
for the average phonon mean free path into the kinetic
formula, K=C„ct/3, which relates the thermal con-
ductivity E to the lattice specific heat C„the phonon
velocity c, and the average mean free path l, one
obtains the following expression for the thermal
conductivity:

0.042csC„(8~'
t

Ac y p 3f

&T) &kT) & rkT)
' H. B. C. Casimir, Physics 5, 495 (1938).
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In Eqs. (10), (11), and (12), r, is the combined re-
laxation time defined by

IO 1/r, =A~4+Bi TBar2+B T3oP+c//I. . (13)

The quantity r is the relaxation time for momentum-
conserving 3-phonon processes (1V processes) and is of
the form

1/r „=B2T'co', (14)

where 82 is a constant.
In the right-hand side of Eq. (13), we can identify

the first term as the reciprocal scattering time due to
point defects. The second term represents the reciprocal
scattering time caused by Umklapp processes; the
third term is due to E processes, and the last term
results from boundary scattering.

O.I

IO

TEMPERATURE toK)

IOO

FIG. 1. Thermal conductivity: Data points 1, 2, 3, 4, 5 are
measured for specimens 1 through 5 listed in Table I. Corre-
sponding to these compositions are curves E1, E2, E3, E4, and
E5 calculated from Klemens' model. Also corresponding to these
compositions are curves 81, 82, 83, 84, 85 calculated from the
model of Herman et ul. with the Gruneisen constant assumed
equal to 0.71. See Sec. IV of the text.

IV. DISCUSSION OF THE THEORETICAL MODELS
AND THEIR COMPARISON WITH THE

EXPERIMENTAL RESULTS

The thermal conductivity data are shown in Figs.
1—4. In each figure, the data points reading from top
to bottom are for specimens 1—5, respectively. For
comparison, curves are shown which have been calcu-
lated from theoretical models by Klemens, Herman
et al. , and Callaway. In Fig. 1 are shown the curves
calculated from Klemens' model, denoted E1 through

In this expression, M is the atomic mass; I is the
quantity P; f, (1 m, /m)' w—hich has appeared in Eq.
(1) and Table I, and y is the Gruneisen constant.
Equation (7) is further simplified if we substitute for
C, the low-temperature limit of the Debye specific heat
expression, C„=1944(T///)' joules/mole-deg. This re-
sults in the following expression:

0.179hc'/M~ &

z=
&(uT)» il )

The third theoretical model used was that by
Callaway, 4 in which point defects, boundary scattering,
and 3-phonon processes are included. Callaway's
expression for the thermal conductivity is

10

where

E'= (Ii+pI2) =Xi+Eg)
2x' c

and

e/r

0 &n

x4e dx

(em 1)2

p'/r 1 p r, y x4e*Ch

"o r„& r„l(e —1)'

r ke/@ $2~2 ga"/kr

&c QPdM)
P2T2 (eh+/kT 1)2

ke/A $2~2 eke)/kT

I2 = t r~/r~ M /EM&

/PT2 (ehco/Tcr 1)2

(10)

(12)

O.I
I IO

TEMPERATURE ( K)

50

FIG. 2. Thermal conductivity: Data points 1, 2, 3, 4, 5 are
defined as in Fig. 1. The calculated curves corresponding to these
data points, C1—C5, respectively, were computed from Callaway's
model with 8&+82 set equal to 2.77&(10 "sec/'K . Also corre-
sponding to specimerrs 1 through 5 are curves 81, 82, 83, 84, 85
calculated from the model of Herman et a/. with the Gruneisea
constant set equal to 1.42.
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E5 to correspond to the specimens. Shown in Figs. 1
and 2 are the curves calculated from the model of
Berman et al. , designated 81 through 85 to correspond
to the five samples. In Figs. 2, 3, and 4 are shown
curves calculated from the model of Callaway and
denoted Ci through C5 to correspond to samples 1
through 5, respectively.

Consider first the thermal conductivity curves which
were calculated from Klemens' model. Equation (6)
has been numerically integrated by Slack, ' and it is
his integrated results which were used to calculate
curves K1 through E5. The calculations were made as
follows: The value for c, the average phonon velocity,
was taken to be 3.50X10' cm/sec. ' The quantity A
was calculated from Klemens' expression for the isotopic
scattering time given in Eq. (1), using the measured
silicon concentration, the measured atomic volume, and
the known isotopic constitution of germanium and
silicon. It was thus assumed that all the point-defect
scattering of phonons by silicon and germanium atoms
can be accounted for by the mass variation of the atoms.
In addition it was assumed that the phonon velocity c
varies inversely as the square root of the average atomic
mass, m. The values for 2 are given in Table I.

The quantity I. was calculated from the specimen
dimensions using the Casimir model, ' i.e., ~(L/2)' is

I J I I I I I I

I I I I I

)0

0
I
X
O
COI-
I-
cg

I-

O
O
O

p

O.l

I lp

TEMPERATURE ( K)

50

Fxc. 4. Thermal conductivity: Data points 1, 2, 3, 4, 5 are
defined as in Fig. 1. The curves are calculated from Callaway's
model with the parameters given in Table II.
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' G. A. Slack, Phys. Rev. 105, 832 (1957).
s T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958).

FIG. 3. Thermal conductivity' . Data points 1, 2, 3, 4, 5 are
defined as in Fig. 1. The calculated curves corresponding to these
data points, C1—C5, respectively, were computed from Callaway's
model with 81+82 set equal to 5.54)&10 "sec/'K3. See text for
details.

set equal to the cross-sectional area of the specimens.
In this way, c/L was calculated to be 0.94X10s sec '.
In the low-temperature region, T&8'K, the Klemens'
model predicts quite well the magnitude and tem-
perature dependence of the thermal conductivity data.
Although rzz=L/c had to be decreased by a factor of
five from that value calculated from the specimen
dimensions in order to fit the experimental data for
specimen No. 5, this procedure seems quite warranted
in view of the evidence for the existence in this specimen
of internal boundaries associated with large microscale
Quctuations in composition. This evidence is discussed
in the Appendix. Because of the good fit between
Klemens' model and the experimental data in this
temperature region, it seems reasonable to conclude that
the relevant assumptions made in deriving the model
are applicable. Hence one may conclude that the Debye
expression for the phonon specific heat is a good approxi-
mation, that the boun. dary scattering time, rzz=L/c, is
substantially correct, and finally, that the silicon and
germanium atoms scatter phonons as isotopic point
defects, i.e., 1/rz=Aco'. These conclusions, however,
are independent of the cutoff mechanism assumed by
Klemens Lsee Eq. (3)$, for in this temperature region
one calculates the same results from Callaway's model
(see Figs. 2, 3, and 4), or even from Klemens' expres-
sions without the cutoff; if one substitutes 1/r=c/L
+Aco4 into Eq. (2), one gets the same values in the
low-temperature region as with the relaxation time of
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Eq. (3). In the high-temperature region, on the other
hand, the Klemens model gives a poor fit to the data.
The predicted conductivity for pure Ge at 30'K is too
high by a factor of two. The predicted values of thermal
conductivity for the alloy samples are too low. For
example, the conductivities predicted for the 7% Si
samples at 30'K are too low by a factor greater than
two. One does not improve the fit by altering the value
of rz from that given by Eq. (1). For if rz is increased
to obtain agreement with the data in the range 30—50'K,
the fit in the low-temperature region is worsened. If
then 7.~ is altered to restore the low-temperature fit,
the fit in the region of the maximum is poor. Clearly,
the use of the cutofI in the point-defect relaxation time
does not seem to be the correct way to take account of
three-phonon processes. When Callaway's model is
discussed, it will be clear that there is a better way to
handle three-phonon processes in this type of model.

Next, consider the calculations by Berman et at.
Since these calculations do not include the effects of
boundary scattering, they are not applicable at tem-
peratures below that at which the conductivity maxi-
mum occurs. In Figs. 1, 2 are shown curves 8~ through
85, corresponding to specimens one through five,
which have been calculated from Eq. (8). To calculate
E from Eq. (8), one must know y. The Griineisen
theory of thermal expansion' gives

y= (3u V„/C„K,), (15)

See for example, J. C. Slater, Intsoduction to Chemica/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1939).

'0 D. F. Gibbons, Phys. Rev. 112, 136 (1958).

where n is the linear coefficient of expansion, C„is the
specific heat at constant pressure, V is the molar
volume, and E, is the adiabatic compressibility. If one
calculates p from Eq. (15), one meets with difficulties
for materials having the diamond lattice structure,
e.g. , Ge, Si, and InSb. For these materials, y is not a
constant but is a rapidly decreasing function of tem-
perature for temperatures lower than about 8/3; and
for some of these materials even becomes negative. "
For Ge, p decreases rapidly below 120'K, but is approxi-
mately constant and equal to 0.71 for a wide tempera-
ture range above 200'K. This value was used to calcu-
late E in Fig. 1 although its use is arbitrary, Had
smaller values for y been used, e.g. , y=0.049 at 40'K,
the agreement of Eq. (8) with the data would have
been far worse. In every case, the curves of Berman
et al. give values for the thermal conductivity which
are too high. At 40'K the conductivities calculated
from Herman et al. differ from the experimental meas-
urements by a factor which varies from 0.92 for speci-
men No. 2 to 2.2 for specimen No. 5. If, instead of
calculating y from thermal expansion data, one treated
y as a parameter to be determined from the thermal
conductivity measurements, better agreement between
the Herman et al. model and the experimental data can

be obtained using p equal to 1.42. Curves calculated
in this manner are shown in Fig. 2.

In Figs. 2—4 are shown the curves calculated on the
IBM 704 from the model of J. Callaway. ' In this model,
we have the constants c, c/L, and A which appear in
the Klemens formula. In addition, however, we have
the quantities B~ and 82 which are associated with
three-phonon processes. As Callaway did, we assume
Bi and 82 to be temperature independent. (Actually,
if one allows 8& to vary exponentially with temperature,
as might be expected, no better agreement with the
data is obtained. )

Callaway fitted Eq. (9) to the data of Geballe and
Hull~ for the thermal conductivity of ordinary ger-
manium and isotopically enriched germanium. In this
calculation, Callaway estimated that PI& was small
compared to Ij for the ordinary Ge and he neglected
/Is in the calculation for the enriched Ge.

The quantity L, Callaway calculated from the low-
temperature limit of the thermal conductivity of the
enriched Ge specimen. For the sample 0.13 cm&(0.157
cm in cross section, he obtained L=0.180 cm. Using
this value for L, Callaway, by fitting Eq. (9) to the
thermal conductivies of the two specimens, obtained
his best fit for (Bi+Bs), assumed temperature inde-
pendent, equal to 2.77)&10 " sec/'K' and a value of
3 of 2.57)&10 ~ sec' for the ordinary Ge. This value
for 3 is in very good agreement with 2.40&10-44 sec'
calculated from Klemens' formula, given by Eq. (1).

In Figs. 2 and 3, curves C1 through CS have been
calculated from Eq. (9) using the values for c/L and
3 previously used with Klemens' model. In Fig. 2 the
value for Bz+Bs was taken to be 2.77X10 " sec/'K',
the value selected by Callaway to fit the data of Geballe
and Hull. In the low-temperature region, the curves are
nearly identical to those calculated from Klemens'
model and fit the data well. At high temperatures, the
curves fit the experimental data much better than the
corresponding Klemens curves, and predict the change
in curve shape (broadening) as A is increased. The fit
to the 0.77% Si sample is excellent. For the pure Ge
sample, the Callaway calculation with Bi+8& equal
to 2.77)&10 " sec/'K' gives too high a conductivity
in the high-temperature region, the measured value
being about 37% lower than the calculated value at
30'K. For the samples containing 7% Si, the experi-
mental and calculated curves intersect, i.e. , the theo-
retical temperature dependence is not quite correct in
the temperature region 10-50'K. If one picks for Bi+82
a value larger than that selected by Callaway, the
agreement between calculations and experimental data
is improved. As can be seen in Fig. 3, (Bi+8&) set equal
to 5.54)&10 " sec/deg' gives a reasonably good fit to
all of the experimental data.

It is possible to obtain agreement between the
Callaway model and the experimental data better than
that indicated in Fig. 3 by varying the quantities 2,
(Bi+Bs), and c/L. In Fig. 4 are shown theoretical
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TABLE II. Parameters of Callaway model giving the best fit to the experimental data.

Sample

Ge
Ge+0.77 at. % Si
Ge+4.23 at. % Si
Ge+7.25 at. % Si
Ge+7.56 at. % Si

10 A exp
(sec')

5.0
11.0
60.0
94.0

100.0

10»(a,+a,)...
(sec/'K')

4.0
4.6
8.8

11.1
10.0

10 '(c/I) exp
(sec )

0.63
0.94
1.3
0.94
4, 7

A.„p/A.,).
2.1
0.85
0.92
0.87
0.86

curves based upon Callaway's model which were Gtted
to the experimental data. The parameters chosen are
shown in the second, third, and fourth columns of
Table II. In the fifth column is shown the ratio of the
value for A giving the best fit to the data to the value
for A calculated from Eq. (1). From Table II, come
the following observations:

(1) The values of A, ~ obtained by curve fitting,
are, with the exception of the Ge specimen, in excellent
agreement with those calculated from Klemens' ex-
pression (see Table I). As the last column of Table II
indicates, for the alloy specimens, A, ~ is 8—15%
smaller than A„~,. The fact that A, ~ is smaller than
A„~,is also consistent with the evidence presented in
the Appendix to show that the silicon concentration is
not uniform throughout the specimens. The fact that
A, ~/A„&, is approximately equal to two for the Ge
specimen is dificult to satisfactorily explain. Com-
parison of the thermal conductivity of the germanium
specimen to other published results for high-purity
germanium reveals the nature of the problem. For
example, thermal conductivity data reported by
Carruthers and others" are about 24% higher than
those reported here for the temperature range 25—50 K.
The results below 15'K are in good agreement, how-
ever. The discrepancy in the high-temperature region
is higher than the estimated experimental error,
implying either an unknown systematic error in the
high-temperature data for that specimen or an unknown
scattering mechanism present. Since spectroscopic
analysis of the germanium specimen reveals 10 ppm
of copper, 10 ppm of aluminum, and 5 ppm of mag-
nesium, it is believed that the discrepancy is caused
by some additional scattering mechanism associated
with the electrically active impurities. It has been
shown by various workers" ""that concentrations of
one part per million of electrically active impurities
have a significant effect on the low-temperature lattice
thermal conductivity.

(2) The values obtained for Bi+Bs increase with
increasing silicon concentration. In Fig. 5 are plotted
the experimental values of (Bt+Bs) as a function of
silicon concentration. Although the scatter in the data

"J.A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M.
Ziman, Proc. Roy. Soc. (London) A238, 502 (1957)."E. Fagen, J. GoG, and N. Pearlman, Phys. Rev. 94, 1415
(1954).

"N. Pearlman and J. F. GoG, Bull. Am. Phys. Soc. 4, 410
(1959).

CL

6
Ol

Cl
+
IQ

fO 4f
O

0
0

1 I

4 5

ATOMIC PER CENT SILICON

Fzo. 5. Variation of (B~+B2), p with silicon concentration.

"R.Berman, F. E. Simon, and J. M. Ziman, Proc. Roy. Soc.
(London) A220, 171 (1953)."R.Berman, E. L. Foster, and J. M. Ziman, Proc. Roy. Soc.
(London) A231, 130 (1955).

is large, (Bi+Be) seems to increase linearly with
silicon concentration. Since 3-phonon processes, of
which (Bi+Bs) is a measure, arise from contributions
to the interatomic potential which are cubic in atomic
displacements, one might conclude that the Ge —Si
bond has a higher anharmonic content than does the
Ge —Ge bond. On the other hand, the variation of
Bi+Bs with silicon concentration may be an indication
that the model is not quite correct.

(3) With the exception of the 7.56 at. %%uoSi specimen,
all of the c/L values lie within about 30% of the value
calculated from the Casimir model. It is quite likely
that the large value of c/L obtained for the 7.56 at. %
Si crystal can be attributed to the presence of large
microscale Quctuations in silicon concentration. This
point is discussed in some detail in the Appendix. It is
also likely that the presence of these microscale Quc-
tuations in the 4.23 at. % Si accounts for the 30%
deviation of its c/L value from the results for 0.77 at. %
Si and 7.25 at. % Si. The low value of c/L for the Ge
specimen may be explained if one assumes that some
fraction of the phonons incident upon the specimen's
boundaries are specularly reQected. This effect has
previously been reported in diamond'4 and sapphire. '~

On the basis of the model of Herman, Simon, and
Ziman, '4 which corrects the Casimir model to include
specular boundary scattering, 20% of the boundary
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l.o

8)
BI BP r=0

~~ r=O. I

As a final observation, it is interesting to note a
relationship between the variational calculation of
Berman et al. and Callaway's calculation. It can easily
be shown from Callaway's Eq. (24) that the thermal
conductivity in the limit of low temperatures for an
infinite crystal, i.e., one with no boundary scattering,
is given by the expression

bC
0

I
X

CO
lI-

0.1—

r =0.9

E=
4vrc LA (Br+B2)T'j'*

(16)

4~Vpi' 2

(Br+ Bs)T' (17)

H we substitute Klemens' expression for 2, Vsi"/4~c'
into Eq. (16), we obtain the result

0.0 I

O.OOI
IO

TEMPERATURE ( K)

IOO

It is interesting to note the similarity between Eq. (17)
and Eq. (8). By equating Eqs. (17) and (8), one can
obtain a relationship between (Br+Bs) and y.

Br+Bs——y'k'/L4 (0.318)'k'c'M Ve].

If we substitute into Eq. (18), the appropriate constants
for germanium and take y=1.42, we obtain (Br+Bs)
=3.18&&10 " sec/'K' which agrees within 12% with
Callaway's value of 2.77)&10 " sec/ K' and within
25% with the value in Table II.

FIG. 6. The magnitude and temperature dependence of
Er,=kPI2/2~'c. The calculations shown are for germanium with
8&+82 set equal to 2.77)& 10 ' sec/'K3.

scattering is specular. In this connection it is of interest
to note that all of the specimens had smooth, shiny
surfaces. All were etched in CP-4 previous to being
soldered to heater and heat sink. It is not clear, how-

ever, why the Ge specimen should exhibit partial
specular scattering when the other specimens ap-
parently did not. For specimens No. 2 and No. 4,
containing 0.77 at. % Si and 7.25 at. % Si, the values
for c/L which gave the best fit to the data were equal
to the values computed from the specimen dimensions.

In Callaway's expression for the thermal con-
ductivity, given in Eq. (9) of this paper, there occurred
two contributions, i.e. , E=Er+Es, where ICr is equal
to kIr/2''c and E, is equal to kPIs/27r'c'. Calculations
of E~ and E2 on the IBM '704 indicate that for the
specimens discussed here E;2 is negligible compared to
EI. In Fig. 6 are shown plots of E2 calculated for
specimen 1, pure germanium, for which Er/E, isa'
minimum. The various curves correspond to different
values for r =Br/(Br+ Bs).The parameter r is a measure
of the relative importance of Umklapp and lV processes.
For r=1, 82 ——0 and X processes are unimportant, in
which case E2 ——0. For r=0, 8~=0, which implies that
Umklapp processes are unimportant and gives an upper
bound for Es (for a given value of Bt+Bs).Comparison
of these curves to C1 of Fig. 2 indicates that E2 is at
most 4% as large as Er.

V. SUMMARY OF CONCLUSIONS

By comparing the thermal conductivities computed
from the theoretical models of Klemens, Berman et al. ,
and Callaway to the thermal conductivities measured
for specimens 1 through 5 whose compositions are listed
in Table I, the following conclusions were reached:

1. The good agreement between the experimental
data and the predictions of the models of Callaway and
Klemens in the low-temperature region (i.e., at tem-
peratures below that at which the maximum con-
ductivity occurs) suggests the validity of the relevant
assumptions made in the derivation and application of
the models. These assumptions are:

(a) The silicon and germanium atoms scatter
phonons as isotopic point defects with a relaxation time
given by the expression derived by Klemens.

(b) The scattering of phonons at boundary surfaces
is well represented by the constant relaxation time
derived by Casimir.

(c) The phonon specific heat can be adequately
approximated by the Debye expression. ' "

(d) For all of the specimens, the thermal conduc-
tivities in the low-temperature region can be adequately
described by postulating only the above two scattering
mechanisms: boundary scattering and isotopic point-
defect scattering.

2. The model which best fits the experimental
thermal conductivity data in the vicinity of the con-
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ductivity maxima and at temperatures above that at
which the maxima occur is the model proposed by
Callaway. The good agreement between Callaway's
model and the experimental data in this temperature
region indicates that the relaxation time for three-
phonon processes in Callaway's model is correct for
germanium and dilute germanium-silicon alloys. In
this temperature region, Klemens' model does not fit
the data well. This was pointed out by the author in a
previous paper. "The model of Berman et al.' predicts
fairly well the thermal conductivities of the specimens
at the highest temperatures if one chooses for y, the
Gruneisen constant, a value of 1.42. However, because
the model does not take into account boundary scat-
tering, one cannot expect to get agreement with the
data in the vicinity of the conductivity maxima or at
temperatures below that at which the maxima occur.
In summary, of the three models considered, the one
which best fits the experimental data over the entire
temperature range considered, 2—50'K, is the model
proposed by Callaway.

3. There is strong evidence for the existence in the
alloy specimens of internal boundaries which can
scatter phonons in the same manner as the external
surfaces. These internal boundaries are believed to be
associated with microscale Quctuations in composition
previously reported by Goss, Benson, and Pfann.
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APPENDIX. DISCUSSION OF PLANAR DEFECTS

Fro. 7. Bright-6eld photomicrograph of etched surface of
Ge+0.77 at. % Si sample. The interval indicated on the photo-
graph is equivalent to 15 microns on specimen. Arrow indicates
direction of heat Qow during thermal conductivity measurements.

etching with CI'-4. Because etch rate varies with com-
position, Quctuations in silicon concentration are
manifested as surface striae lying parallel to interface
positions. In a specimen of Ge+6 at. % Si, Goss,
Benson, and Pfann also observe dislocation etch pits
lined up parallel to the striae. They infer that for a
discontinuity in solute concentration of perhaps 0.1
at. % or more, an array of edge dislocations may be
expected.

It seems quite likely that the planar interfaces
between regions differing in solute concentration would
scatter phonons. Further, it is likely that the scattering
would be similar in nature to that which occurs at
crystal boundaries, i.e., it would manifest itself by a
decrease in L (or an increase in c/L). To see whether
such Quctuations in solute concentration occur in the
specimens under discussion, they were etched in CI'-4
and examined. In Figs. 7 to 11 are shown some of the
results.

It is clear from Figs. 1 and 4, that in order to ht any
of the models under discussion to the alloy specimen
containing Ge+7.56 at. % Si, one must use a value for
c/L which is at least five times larger than for any of
the other specimens, including the one containing
Ge+7.25 at. % Si. Since it is extremely unlikely that
the phonon velocity varies much from specimen to
specimen, it follows that L, the mean free path for
boundary scattering, must be about five times smaller
for this specimen, even though it is the same size as
the other specimens.

It was pointed out by Goss, Benson, and Pfann'
that microscale Ructuations of solute concentration
occur in Ge-Si alloy crystals grown from the melt. These
are revealed by grinding the specimen surface and

"A. M. Toxen, Phys. Rev. 110, 585 (1958)."A. J. Goss, K. K. Benson, and W. G. Pfann, Acta Met. 4,
832 (1956).

FIG. 8. Bright-Geld photomicrograph of etched surface of
Ge+4.23 at. % Si sample. The interval indicated on the photo-
graph is equivalent to 15 microns on specimen. Arrow indicates
direction of heat Qow during thermal conductivity measurements.
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FIG. 9. Bright-field photomicrograph of etched surface of
Ge+7.25 at. /0 Si sample. The interval indicated on the photo-
graph is equivalent to 15 microns on specimen. Arrow indicates
direction of heat Row during thermal conductivity measurements.

FIG. 11.Dark-field photomicrograph of Ge+7.56 at. /0 Si. The
interval indicated on the photograph is equivalent to 15 microns
on specimen. Arrow indicates direction of heat Qow during thermal
conductivity measurements.

All of the alloy specimens show striae. In Figs. 7 to
10 are bright Geld photographs of the specimens:
0.77 at. % Si, 4.23 at. % Si, 7.25 at. %Si, and 7.56 at. %
Si, respectively. The arrow marked Q shows the direc-
tion of heat Row during the thermal conductivity
measurements. The Ge specimen showed no evidence
of striae. In addition to the striae, the 7.56 at. % Si
specimen exhibited etch pits lined up parallel to the
striae. None of the other specimens showed this feature.
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Fro. 10. Bright-field photomicrograph of etched surface of
Ge+7.56 at. /0 Si sample. The interval indicated on the photo-
graph is equivalent to 15 microns on specimen. Arrow indicates
direction of heat Bow during thermal conductivity measurements.

This is shown best in Fig. 11 which is a dark-6eld
photomicrograph of the 7.56 at. % Si specimen.

Since the 7.56 at.
%%uzSi specime nexhibit s th emost

prominent striae as well as the arrays of dislocations,
it seems reasonable to conclude that in this specimen
the fluctuations in silicon concentration are the most
extreme. Hence, if the interfaces between regions of
differing silicon concentration scatter phonons, the
e&ect should be most prominent in this specimen.
Indeed, it is just for this specimen that it was necessary
to increase c/L by a factor of five from the expected
value to account for the observed thermal conductivity.

The specimen with the next most prominent striae
was that containing 4.23 % Si. In addition, in this
specimen the direction of heat Qow in thermal conduc-
tion measurements was normal to the interfaces,
whereas the heat Qow was parallel to the interfaces for
the other specimens. It is therefore significant that for
this specimen also an increase of c/L improved the fit
of the theoretical curve to the experimental data.

The nonuniform distribution of the silicon would
have an additional effect. The values for 3 used in
calculating the theoretical curves of Figs. 1, 2, and 3
were calculated under the assumption that the silicon
was homogeneously distributed. Any deviation from
the homogeneous distribution would result in smaller
values for A. This is the observed deviation as is
evident from a comparison of Table I with Table II.












