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Anharmonic Attenuation of Localized Lattice Vibrations
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Lattice modes localized about defects can interchange energy with the continuum of lattice waves by
anharmonic interactions. The relaxation time of a localized mode is calculated, taking account of cubic
anharmonicities and using perturbation theory analogous to the treatment of three-phonon interactions. At
zero temperature the relaxation time is typically of the order of 100 periods, but decreases with increasing
temperature.

I. INTRODUCTION

I
~HE vibrations of a perfectly regular and harmonic

lattice can be resolved into travelling waves.
Montroll and Potts' have shown that point defects
modify these vibrational modes, and that in some cases
there arise normal modes of vibration, localized in the
vicinity of the defect and of frequency above the band
of frequencies of the travelling waves.

%hile these localized modes of vibration are true
normal modes if the interatomic forces are perfectly
harmonic, the anharmonic components of these forces
lead to an interchange of energy between a localized
mode and travelling waves, just as the anharmonicities
give rise to an interchange of energy among the travel-
ling waves themselves. It is of some interest to inquire
into the strength of these interactions, because if the
relaxation time of the localized mode due to anharmonic
interactions would turn out to be shorter than the vibra-
tional period, one could not ascribe physical reality
to these modes. One would expect the anharmonic
eGects to be strong, because much of the energy of a
localized mode is concentrated near the defect, where
the amplitude of the oscillation is large.

The present paper considers cubic anharmonicities,
which lead to three-phonon interactions in perfect
crystals and to the elastic scattering of phonons by
static strain 6e]ds. The formalism for these interactions,
developed for calculating thermal resistance, ' is here
adapted to the case when a quantum of the localized
oscillation breaks up into two phonons. As surmised
above, the resulting relaxation time is short, but not
so short as to invalidate the concept of localized modes.
At higher temperatures the relaxation time is shortened
further, due to enhanced emission of phonons into the
travelling wave modes.

II. THE PERTURBATION HAMILTONIAN

where V is the volume of the crystal, x the spatial
coordinates, k,k', k" the wave-vectors of the three
interacting waves, e(k,k', k") a coefficient describing the
interaction. The a(k), a(k'), a(k") are the matrix
elements (creation or annihilation operators) of the
time-dependent wave amplitude, given explicitly by

pkq& 1V

~(k) =
It.31o)) 1V+1. (2)

where co is the frequency, M the atomic mass, E the
number of quanta, and the factor 1V or 1V+1, respect-
ively, is used for annihilation or creation.

In the present problem one of the three travelling
waves in (1) is replaced by a localized mode. According
to Montroll and Potts' the displacement about the
defect is given by

u(r)= (up/kr)e ""+' ' (3)

where r is the radial distance from the impurity, co the
frequency of the localized mode, and k an attenuation
length.

The amplitude uo is related to the energy of the mode
as follows: The kinetic energy is

M 1 r IV% tI up—tp'— dx u'(x) = 4s e '""dr——
2 as& 2a' Jp k'

where c' is the volume per atom. The energy of the
mode is twice the kinetic energy, and is to be identified
to (1V+s)her, where 1V is the number of quanta in the
local mode. Thus Noe'"' is replaced by the oscillator
matrix
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The displacement due to a travelling wave is given by

The perturbation Hamiltonian due to cubic anhar-
monicities for three-phonon interactions is of the form

u(x) = P ea(k)e'" *
Q 1r

(6)

H'= Q — dx e*'* &"+"'+~"&

~,v,s" P' J
y e(k,k', k")u(k) a(k') a(k"), (1)

' E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
P. G. Klemens, in Solid-State Physics, edited by F. Seitz and

D. Turnbull (Academic Press, New York, 1958), Vol. 7, p. 1.

where G is the number of atoms in the crystal, e. the
polarization direction. Thus a(k) in (1) must be re-
placed by G&u(x)e'~'. Noting that, according to (3),
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we obtain, after the above replacement,
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and

Hence
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Here we have il= k'+k".
The coeKcient c(k,k', k") is the same as that used

for three-phonon interactions, and is approximately'
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/ //
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where e is the velocity of sound and y the Gruneisen
constant.

If we write N=N+n, where N is the equilibrium value
of E, and e the deviation from equilibrium, then if
n'=m"=0 the rate of change of E is proportional to
terms of the form n(N'+N—"+1) Thus the. inverse
of the relaxation time r is given by
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We must now sum over all k' and k". The resonance
factor in (11) ensures the conservation of energy, i.e.,
the only real interactions contributing to (11) are those
for which

G&= 67 +M (12)

Without loss of generality we may assume that co'&

Thus in summing over all k' and k" we first choose a
value of k' and then a value of k" consistent with (12).
Thus

d'O'-
I d&" d'k",

(2~)'J p0 J
(13)

III. THE RELAXATION TIME

The perturbation Hamiltonian (8) and (9) can be
used in standard second-order perturbation theory.
Because of the dependence of (8) on N, N' and 1P',
the rate of change of X is composed additively of terms
each of which contains a factor

(N j1)N'N" N(N'+1—) (N"+1)
=1PN" N(N'+N"+—1). (10)

To simplify the integration we make the replacement

k'/(k'+q')' —+0 if q) k
1f q(k. (16)

This simplification will cause the scattering to be some-
what underestimated. Let p, be the cosine of the angle
between k' and —k". Then because of (16) we only
count processes such that q &~ k. In view of the conserva-
tion of energy and the condition il= k'+k", this implies
that we count only processes such that

(~
u&~140= ]
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In general ~ vk, so that pp= —1 and hence

d2k"= 27rk"2J dI4=47rk"2

As a further simplification consider the absolute
zero of temperature when X'=E"=0.Then the inte-
gration in (15) becomes, since &o"=~—~'

dan/ 4 p//2 / //

where

(k'+q')

(kr)' kn4
aFI (a)/ar n), (19)

4

I(x)= " y'(1 —y/x)'dy, (20)

and varies from 1/140 for x= 1 to about 0.06 for x= 2.
Substituting (19) and (20) into (15), and. noting that

(4 /3)( k )'=(2 )', (21)

we obtain after some reduction for the relaxation time
at absolute zero
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In most cases of interest kD/k=cuD/cu and k is com-
parable to kD. In a typical case y = 2 and A~/Ms2~1/100.
Taking or 1.2coD, so that I 0.02, this implies that
~0 100/ru. Hence the anharmonic interaction is not so
strong as to destroy the character of the localized mode.



ATTENUATION OF I. OCA L I Z E D LATTI CE MODES

At higher temperatures the interaction is increased
because of the factor (N' jN"+1). If we define a
characteristic temperature

T,=5 (o) rar—))/k, (23)

where k is now the Boltzmann constant, then at T)T,
the term in N" is dominant. In the integral correspond-
ing to (19) the frequency co" now only occurs to second
power, and (22) is increased by a factor typically of
order 3T/7', . Thus r is substantially decreased at
elevated temperatures.

IV. DISCUSSION

Expressions (22) and (24) give an estimate of the
rate at which an excitation of the localized lattice vibra-
tions around a defect will return to equilibrium, if
excited above the equilibrium value by external means
(e.g. , optical pumping of an electronic excitation which
is coupled to the local mode). Alternatively the quantity
cur is a measure of the relative broadening Aar/to of
the defect mode frequency, and Ace describes the broad-
ening due to anharmonic interaction of any optical
spectral line invo]ving the vibrational energy of the
local mode.

We have seen that in typical cases at low tempera-
tures Ato/cu 1/100. The broadening of an optical line
due to this cause would in typical cases only be of the
order of 10—' ev or less.

The present estimate is probably a lower limit of the
anharmonic broadening because in the treatment all
approximations were made to underestimate the inter-
action. Thus expressions (3) for the local mode displace-
ments is only an asymptotic expression for large r,
and its Fourier transform (7) holds only for small q.
Montroll and Potts' obtained an expression for the
Fourier transform of the form A/(8 —cosaq), which
merges into (7) for low q, but is larger than (7) as q ap-
proaches kD. Again we have underestimated the scatter-
ing by the approximations (16), perhaps by a factor 2.
Finally, it should be remembered expression (9) for
c(k,k', k") is based only on an approximate estimate of

the cubic anharmonicities from their eGect on the thermal
expansion, and it is known that this estimate leads to
a value for the thermal resistance due to three-phonon
interactions and due to scattering of phonons by disloca-
tions which is somewhat too low. It is not possible to
give a reliable estimate of the eGect of all these approx-
imations, but in the author's opinion it is quite possible
that the interaction has been underestimated by a factor
of order 3 to 10.

The author is not aware of any existing spectroscopic
data which would test the present theory. Pick' has
observed an infrared absorption line due to U centers
in some alkali halides which has been interpreted by
Wallis and Maradudin4 as being at the frequency of a
localized mode. In this case the line is somewhat
sharper than the present theory seems to allow. Due
to the extremely small mass of the impurity, however,
the local mode frequency is about four times the highest
frequency of the continuum, so that a local mode quan-
tum cannot split into two phonons. The anharmonic
interaction must therefore be due to higher order
processes, so that it is weaker at low temperatures
than the present theory would predict, and presumably
more strongly temperature dependent. Englman' has
attributed certain sharp details in optical absorption
spectra of chromium ions in magnesium oxide and alumi-
num oxide to' the excitation of localized modes. The
width of the small peaks is consistent with the present
considerations, but this could hardly be regarded as a
verification of this theory.
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