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Phototheruial Effect in Semiconductors*
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When a sample of semiconducting material is illuminated, pairs of excess carriers are generated which
diffuse through the material according to the density gradients established. Each pair carries an energy
approximately equal to the band gap of the material. This energy is deposited where the excess electron
recombines with a hole and causes local heating of the lattice. A temperature distribution will therefore be
established in the sample which depends on the characteristics of optical absorption and bulk and surface
recombination in and on the sample. This establishment of a temperature distribution in a solid by optically
excited diffusing and recombining carriers is called the photothermal effect. The paper gives a formulation of
the theory governing the photothermal effect, and the case of small temperature elevations in an in6nite slab
is worked out in detail.

I. DEFINITION OF THE EFFECT

HEN a sample of semiconducting material (see
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Fig. 1) is illuminated with photons of sufhcient
energy, electron-hole pairs are generated which diffuse
through the crystal from the place of their generation to
regions of lower excess-pair concentration. Each pair
transports an amount of energy approximately equal to
the band separation, thus contributing to the thermal
conductivity. This energy is deposited where the pair
undergoes nonradiative recombination, increasing the
local (measurable) temperature of the lattice. A non-
uniform temperature distribution is therefore estab-
lished in the sample which depends on the nature of the
incident radiation, on the characteristics of optical ab-
sorption, on the bulk and surface recombination mech-
anism, on the boundary conditions for temperature and
energy Aux, and on the ordinary thermal conductivity of
the material. This establishment of a temperature dis-
tribution in a solid by optically excited diffusing and
recombining carriers and the attendant modi6cation in
the thermal conductivity is called the photothermal
(PT) eGect. The related effect with applied magnetic
fleld is called the photomagnetothermal (PMT) e8ect
and shall be the subject of a future publication.

In the following, a simple theory of the PT effect is

developed which appears applicable to germanium and
silicon.

II. BASIC FORMULATIONS

%e first consider the various components of energy
Aux inside and outside the sample:

Components of Energy Flux
Outside Front Surface

The energy flux fr incident upon the front surface
(energy per unit time and area) is carried by radiation,
conduction, and convection, and is conveniently split
into seven components:

ff fT+ftt+ f~c+f~L+fzc+ fzL+ fcc. (&&.1)

Here fr is the radiated flux transmitted through the
sample. ftt is the radiated flux reflected by the sample.
f~c is the radiated flux absorbed exclusively under
carrier generation in the bulk or on the surface of the
sample; it is directly related to the optical carrier-
generation rates. f~z, is the radiated flux absorbed ex-
clusively by the lattice and by the equilibrium carriers;
it consists of absorbed photons of insufBcient energy to
excite an electron-hole pair and of the excess energy of
photons which have excited electron-hole pairs. f~c is
the Qux emitted by radiative recombination of carriers. '
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FIG. 1. Analysis of the PT effect.
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fsL is the radiated flux emitted by the lattice and the
equilibrium carriers (usual "radiative" surface condi-
tions, Stefan-Boltzmann law). fcc is the flux carried by
conduction and convection.

fc= Kgl a—dT. (II.3)

~ is the thermal conductivity of the material in the
customary sense, T is the absolute local temperature.
This Aux component contains in particular lattice con-
duction and conduction by carriers which are in local
thermal equilibrium with the lattice, including "ambi-
polar diffusion" with negligible lifetime. '

fp is the energy flux transported by individual par-
tides which are not in local thermal equilibrium with
the lattice and whose motion may to a 6rst order be
independent of gradT. This Qux component is primarily
responsible for the PT effect; an analytical expression
for this component can be found when certain assump-
tions about the carrier transport mechanism in the
semiconductor are made. To obtain a definite descrip-
tion of the PT eGect which is particularly applicable to
germanium and silicon single crystals, we follow the
widely used formulations given by van Roosbroeck, '4
and the interested reader is referred to these papers for a
discussion of the underlying assumptions. The analytic
expression for fp could be based on the "differential
transport velocity" mentioned by van Roosbroeck, ' but
a more direct approach is provided by the "current
density 6j associated with added carrier concentration
Lp" (ap=p —ps=I —Np: DN), also given by—van
Roosbroeck4:

Components of Energy Flux Inside the Sample

Inside the sample we may split the energy flux f; into
eight components:

f;=fr+f~c+ f~L+fpc+fEL+ fc+fp+f pc (II.2)

where fr, fgc, fgL, fxc, fxL have been defined Previ-
ously and fc is the heat flux carried by ordinary
conduction:

fpc is the energy flux transported by particle com-
plexes not in thermal equilibrium with the lattice.

Heat Flux Outside Back Surface

Heat Qux may leave the back surface of the sample by
conduction, convection, and radiation.

Tempexature Distribution Inside Sample;
Continuity Equation for Heat Energy

A volume element of solid is gaining heat energy Q at
a rate

Be/Bt =A div f;— (II.6)

Q is the heat energy density in w sec m ', A is the
spontaneous heat generation-annihilation rate in w m '
(Joule heating, radioactive decay, chemical reactions,
etc. ; in general, A may enhance the energy density of
the lattice and equilibrium carriers as well as of the
excess carriers, but in the interest of a concise treatment,
we assume in the following A =0); f is the heat flux
inside the sample defined earlier. Q may be split into
three parts,

1 2 3y (II.7)

where Qi is the heat energy density of the lattice and the
equilibrium carriers, and is associated with the measured
temperature of the sample,

iter/itt =sd(itT/itt), (II.S)

where s is the specific heat and d is the density of the
material.

Q& is the energy density of the excess carriers in the
volume element which under the assumptions made
earlier' 4 is given by

equal to the band gap Ea, we find an expression for fp
from Eq. (II.4):

fp (E——a/q)hj =Ea(tJ,„net'p tip—pal'~)/

(qti„rtp+qy, ,p p) .(II.5)

~i = (qt .«i p
—

qt ppoi-)/(qt -«+qt ppo) (II 4) Qs= Ee~p. (II.9)

q is the electronic charge, p,„andp~ are the electron and
hole drift mobilities, ns and ps are the equilibrium elec-
tron and hole densities, rt and p are the actual electron
and hole densities, Ae= d p is the density of excess pairs,
and j„andj„arethe hole and electron current densities.
Trapping' will be neglected here but it will in general
considerably modify the following discussions. It may,
however, be analyzed along analogous lines. Since every
excess pair carries an amount of energy approximately
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The individual terms are derived from Eqs. (II.3),
(II.S), (11.8), (II.9) and

dlvfAc= Eagep (II.12)

Qs contains all other forms of energy density, such as
that of an electromagnetic held. For conciseness of
formulation, we assume in the following that Qs=0.

To keep the treatment as simple as possible, we as-
sume in addition that

f L f c f L fpc ——div fr——=——0. ——(II.10)

One thus obtains from Eq. (II.6)

~e ~e. ~e.
+ = divf~c divfc d—ivfp. (I—I.11)—

Bt Bt Bt
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Mp 1=- divhj+g, —r~+g;
Bt q

(II.14)

where r~ is the rate of hole recombination, g~; is the
internal (thermal) generation rate for holes. One thus
obtains the following basic equation for the photothermal
effect:

sd(BT/Bt) —«V'T= Eg(r~ g„,). —(II.15)

Under the assumption of constant lifetime (monomo-
lecular recombination), one has

where g, is the external generation rate (by photons) for
excess carrier pairs. Equation (II.12) is consistent with
the assumptions about the carrier transport mechanism
made earlier.

Substituting these various terms, one obtains from
Eq. (II.11),

BT ( Bhp 1
sd «V'T=—Egl ——divj n+g I (II 13)

Bt ( Bt q

The continuity equation for excess pairs is given by gn= gni+gne)

gn= gipi+ gee

(II.25)

(II.26)

One may then define a net internal recombination rate r
equal to r„—g„;for electrons or r„—g„;for holes. To
obtain the temperature distribution in the crystal, one
must in general solve the simultaneous system consisting
of Eqs. (II.15), (II.18) through (II.24), and Maxwell's
equations. To render this problem tractable, it is obvi-
ously necessary to make .simplifying assumptions.
Among several possibilities we select the following
special case for further analytical treatment.

diffusion constants for electrons and holes; ) and X„
characterize the contributions to the electron and hole
currents caused by the temperature gradient alone, and
present even in the absence of an electric field and any
carrier-density gradients; g„,g„,r„,t ~ are the generation
and recombination rates for electrons and holes, re-
spectively. The generation rates g may be separated
into two parts, one, g;, describing internal thermal
generation, the other g„describing external generation
such as by light:

r„+—g„;=—Ap/ „, (II.16) III. SPECIAL CASE: THE PT EFFECT
IN THE INFINITE SLAB

and Eq. (II.15) assumes the form

sd(AT/itt) «V'T= Eg—tip/r„. (II.17)

To determine the temperature distribution in the
sample, it is thus necessary to calculate the distribution
of excess carriers. These carrier distributions are calcu-
lated from a set of differential equations which consists
of Maxwell's equations, expressions for the conduction-
current densities, and continuity equations for the
carrier densities. '

The expressions for conduction-current densities are:

1con d = 1n+] n &

j„=j„*+tan8„(j„Xk),

j„=j„*+tan8„(j„Xk),

(II.18)

(II.19)

(II.20)

6 This formulation is patterned after that for the photomagneto-
electric effect given by We van Roosbroeck, Phys. Rev. 101, 1713
(1956), and a generalization given by W. W. Gartner, Phys. Rev.
105, 823 (1937).

jn*= qt4 NE+qD„r—agdn+X„grad ,T(II.21)

j„*=qt4„pE qD4, gradp—+X~ gra—dT. (II.22)

The continuity equations for the carrier densities are:

itn/Bt =g„r„+(1/q) divj, — (11.23)

BP/Bt =g„r (1/q) divj„—. — (II.24)

The symbols in these equations have the following
meanings: j„„dis the total conduction current density;
8 and O„are the Hall angles for electrons and holes,
respectively; k is the unit vector in the direction of the
magnetic field; E is the electric field; D„andD„arethe

We assume (1) local charge neutrality, hrt=hp,
grade= gradp; (2) a plane parallel homogeneous slab of
semiconductor infinite in the x and s directions (see
Fig. 1); (3) steady state; (4) open-circuit conditions;
(5) small Hall angles; (6) small injection levels; (7)
constant lifetime; (8) external generation rate g, only a
function of y. The minority-carrier density is then
described' by a simple diffusion equation which in the
case of E-type material reads,

d (Ddhp/dy)/dy Ap/r = —g„„—. (III.1)

where D is the ambipolar diffusion constant given by
D= (rt+ p)/(m/D„—+p/D„) and frequently well ap-
proximated by D„=const. To obtain the distribution of
excess pairs, one must solve Eq. (III.1) for a given
temperature distribution, a given external generation
function g„„andunder the prevailing boundary and
auxiliary conditions.

To obtain the temperature distribution, including the
consequences to the PT effect, one must in general solve
Eqs. (II.17) and (III.1) simultaneously. Under the
assumption, however, that the temperature differences
caused by the PT effect are small enough to leave D, po,
and r in Eq. (III.1) essentially constant throughout the
sample, one may first solve Eq. (III.1) for hp (with
T=const) and then obtain the temperature gradient
due to the PT effect by solving Eq. (II.17) for T.

A particularly simple case prevails if the external bulk
generation rate g~, is zero (surface generation only) and
carrier and temperature gradients lie in the y direction
only; then

T(x,y,s) = —(E@D~/«)Ap(y)+cix+c&y+cas+c4, (III.2)
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where ct through c4 are constants of integration to be Under the assumption that D„,pe, and r~ are constant
determined by the boundary conditions for temperature throughout the sample, one obtains the following ex-
and energy Qux. pressionr for hp:

where

hp=ne» +pe—»~ (—L/D) g„,(ri) sinhL(y —ri)/L]dg,
0

(&+$1)%2+(0 $2) Rl exp( w/L)+ (0+$1)I

(X)+sr) (S+$~) exp(w/L) —(S—s~) (S—s2) exp( —w/L)

(n —sr) R2+ (n+s, ) (Rt exp(w/I. )+(n+s, )I'

(X)+st) (0+$2) exp(w/L) —(X)—st) (S—s2) exp( —w/L)

1 r )w —g) (w —t7)I'=— g, (g) D cosh( I+s L sinh( [ dq,
D~, (L) (L)

(III 3)

(III.4a)

(III.4b)

(III.4c)

and S=D/L; L= (Dr~)l is the diffusion length for
excess pairs; Rr and tRs are the external (optical) pair
generation rates on the 'front and back surface, re-
spectively; s~ and s2 are the corresponding surface
recombination velocities; m is the thickness of the slab.
This solution is valid even when g„,is an arbitrary
function of y, i.e., when the incident light contains
components of diferent absorption coefficients, and
when internal reQections occur. Many special cases are
discussed by Gartner. ~

Substituting these solutions for hp into Eq. (II.17)
and solving for T(y), one obtains the temperature
distribution in the sample which contains the contribu-
tion from the PT eGect. For the case where R~= S~——0
and monochromatic radiation,

g„=Ikexp( —ky), (III.5)

where I is the photon Qux density and k is the absorption
coeKcient of the incident monochromatic radiation, one
finds the following expression for T(x,y,s):

EgL'Iw E (E'—$2) (W Sr)e —x (K+—Sr) (W+$2)e~
T(x,y,s) =— ~

—Y

W' E' (W+Sr)(W—+$2)e~—(W—St)(W—S2)e ~

(E—S,) (W+St)e—x—(K+St) (W—$2)e ~
e"+e &x'~'r +c&x+c2y+cas+c4, (III.6)

(W+Sr) (W+$2)e~ —(W—St) (W—Sg)e ~

with W=w/L, I =y/L, K=kw, S& $&w/D, and S——2 s2w/D. For t——he case where (1/L) =k, the solution for T,
Eq. (III.6) assumes the indeterminate form 0/0. Solving Eq. (III.1) for 1/I.=k(W=K) then yields

T(x,y, s) =— E+S2+(E 1—$2) (E—St)—EgL'Izv Y-
e—x+ e

—Y

2KrD (K+Sr)(K+Sr,)ex (E—St)(E S2)—e x E—
E—Sg+ (E 1—S2)(E+Sr)—

e +c&x+c2y+css+c4. (III.7)
(E+Sr) (E+Sg)e (E—St) (E—Sg)e—

For the case of front-surface generation only,

I &0, e.,=0, g„.=0,
one finds

EgI.'(Rj
T(x,y,s) = —— (~ $ )eY—w+(~+s )e

—(r—w)

+ctx+c2y+c~s+c4.
Kr (X)+$1)(5)+s )e (S Sr) (X) sg)e

(III.S)

(111.9)

The constants of integration, c~ through c4, must be
determined from the boundary conditions for tempera-
ture and/or heat flux. There are obviously many differ-
ent possibilities for the type of boundary conditions one
might employ, depending on the assumptions about the
various energy-Aux components (see Fig. 1) and the

fr= fr= f~i= fee= foal. =0.
' W. W. Gartner, Phys. Rev. 105, 823 (1957).

(III.10)

temperature at front and back surfaces. We shall discuss
here only a few special cases.

In the following discussions we assume that
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The simplest boundary conditions are then given by

T(0)= Ti——const at y=0,
T(w) = T2——const at y= w.

(III.11)

This condition may, for example, be realized by bringing
the front surface of the sample in contact with a stirred
transparent liquid (to permit simultaneous illumination).

It is now of interest to determine the heat Qux though
the sample for this temperature difference which is
equivalent to determining the "apparent thermal con-
ductivity" of the crystal under the inhuence of the
photothermal effect. As an illustration, we shall do this
for the case characterized by Eq. (III.8). The constants
in Eq. (III.9) are then given by

c)=c3=Oq

C2=
T2—Ti EgL'(Rg 1 25)—(S—$2)e —(S+s2)e

w xr w (S+si) (S+s2)e —(I)—si) (S.—s,)e—

(III.12a)

(III.12b)

&OL'+i
c4= Ti+

(n —s,)e—~+ (5)+s2)e~

(S+si) (S+s,)e~—(S—si) (S—s2) e—~ (III.12c)

The heat Qux carried through the slab by the lattice and electrons and holes is in the steady state equal to the heat
flux fe leaving the back surface. It consists of two contributions:

where from Eq. (II.3)

and

f&=fc(w)+f p(w)

fg(w) = —K

Eg Bp
f~(w) = J.(w) = EgD—

y=m

(III.13)

(III.14)

(III.15)

The last equation is obtained by substituting the expression for the Dember field Lsee, e.g. , reference 7, Eq. (18)j
into Eqs. (II.20) and (II.22). From Eqs. (III.9) and (III.12) one finds

T2 Ti EgL(R—i 2s2+L2X)—(K)—s2)e ~—(S+s2)e~jw '

i4r (X)+si) (I)+s2)e —(S—si) (S—s2) e
(III.16)

The second term on the right-hand side of Eq. (III.16) describes the modification in the temperature distribution
due to the PT effect, and it vanishes for 6I,&=0, or 7 —+ 0, or sj —+ ~, or any combination of these conditions.

(Bp/By) may, for example, be calculated from Eqs. (10) and (11) in reference 7, and one obtains

2$2Bp Sy

By „=„I. (5)+si)($+s2)e —(5)—si)(X)—s2)e
(III.17)

Substitution of Eqs. (III.14) through (III.17) into (III.13) yields the following expression for the heat flux fe
through the slab:

&GL @). 2$—(S—s2)e-~—(S+s,)e~

rW (Q+si) (S+s2)e —(S—si) (S—s2)e
(III,18)

The second term on the right-hand side is due to the PT
effect.

To calculate some numerical examples, we simplify
this expression by assuming very long bulk lifetime, i.e.,

For high front-surface recombination, s~/si —&0, the
second term on the right-hand side and thus any evi-
dence of the PT effect vanishes. For extremely long
lifetime, W ~ 0, fe assumes the form

and one finds
8'«1 ~ e+~=1aW, (III.19) &0+i$2

fbi (W ~ 0)= i4 + )
si+$2

(III.21)

Tj—T2 EgL(Rg
+

$2
X (III.20)

5)(si+s2) +XPW+siss W

and for low front-surface recombination and high back-
surface recombination, si/s~ —+ 0, there results

T1 T'
fJi(W ~ 0, si/s~ ~ 0)= x +Eg(Ri. (III.22)
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which is a function of its temperature T~. In the simplest
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where 0, is the "exterior thermal conductivity" and To
is an external reference temperature. Equation (III.26)
may, for example, be the linear approximation to the
Stefan-Boltzmann radiation law. In the steady state,
the incoming heat flux fzc must then equal the heat flux
leaving the sample (far„,fbi), i.e.,

The last equation indicates that under the conditions
mentioned before, the entire incident radiated Aux,
fzc=Egr14, is transported through the sample by the
photothermal effect, although the crystal is completely
opaque to the incident light.

To get a quantitative idea of the magnitude of the PT
effect as compared to ordinary thermal conductivity,
we dehne an "apparent thermal conductivity, " a„as
the ratio of the actual heat Aux f~ divided by the
temperature gradient (Ti—To)/w which would prevail
in the absence of the PT effect:

(III.23)

Table I shows the "relative apparent thermal con-
ductivity" »,/»,

3) I.—=1+ E|.-(Rg-
»(Ti T,)—

$2X,(III.24)
5)(sr+so)+ 5)'W+sisoW

for various values of temperature difference between
front and back surface, incident light intensity, and
front and back surface recombination velocities. The
fixed parameters are (for germanium)»=0. 64 w deg '
cm ' D=50cm'v 'sec ' W=10())1)lL=1cm, r 20=
msec. The table indicates that strong radiation and
small temperature differences result in a high value of
a, which is also increased by small values of sI and high
values of s~. One observes that in extreme cases the heat
transported by the photothermal effect may be several
times that carried by ordinary conduction. Furthermore,
a, may become infinite which means that heat is trans-
ported through the slab although no temperature differ-
ence exists between opposite faces of the slab. Finally,
the apparent thermal conductivity may even become
negative, indicating that heat Qows against the tempera-
ture gradient. Obviously, the apparent thermal con-
ductivity is strongly anisotropic and shows the strongest
deviation from the ordinary thermal conductivity in the
direction perpendicular to the faces of the slab.

The boundary conditions for the PT effect may, of
course, be more complicated than the ones given by Eq.
(III.11).One may, for example, still have

T(w) = T&——const at y= w, (III.25)

(III.27)

Substituting foal, from Eq. (III.26) and fe from Eq.
(III.18) [under assumption (III.8) about carrier ab-
sorption where f~c=EG6lij, one finds the following
expression for the front-surface temperature T~

2$—(S—so)e ~—(5)+so)e~
X

(X)+sr) (n+so) e~—(X)—si) (K)—so)e ~

The second term in the square bracket describes the
modi6cation of the front-surface temperature due to the
PT effect as compared to the case where the entire
incident radiation is absorbed on the surface by the
lattice and the equilibrium carriers only.

Many other special cases of the PT effect may be
calculated in analogy to the treatment of the Dember
effect in references 6 and 7.

IV. CONCLUSIONS

The photothermal effect is readily analyzed for the
case of small injection and monomolecular recombina-
tion. For small temperature gradients it may lead to
large deviations of the apparent thermal conductivity
from the ordinary thermal conductivity of the bulk
material. Its measurement, however, seems to be deli-
cate. It appears easier to observe the related photo-
rnagnetothermal effect, just as it is simpler to measure
the photomagnetoelectric effect than the Dember effect.
The photomagnetothermal effect, whose theory may be
worked out from the basic equations given in this paper,
will be the subject of a future publication.
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