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Early cyclotron resonance for holes in Ge gave evidence of two resonant peaks associated with the so-
called light and heavy holes. Luttinger and Kohn predicted, on the basis of a careful investigation of the
theory of degenerate bands, that at low enough temperatures additional peaks should appear. Subsequent
experiments confirmed this prediction. In this paper a comparison is made of the cyclotron resonance theory
and the experiments of Fletcher, Yaeger, and Merritt, Values of the effective mass constants which best fit
the data are found. Resonant peaks additional to those found by Fletcher, Yaeger, and Merritt are pre-
dicted and discussed.

I. INTRODUCTION Their experiments gave many resonant peaks at the
lowest temperature considered (1.3'K). These peaks
gave way to only two prominent peaks as the tempera-
ture was raised to 4.2'K.

It is the purpose of this paper to 6t the theory of
JML and LK to the experimental results of FYM in
order to determine the best values of the effective-mass
constants. In Sec. II it is shown that for a "germanium-
like" crystal the momentum along the direction of the
magnetic field may be taken to be zero without intro-
ducing appreciable error. The determination of the
effective-mass constants is given in Sec. III.

For the details of the development of the theory of
cyclotron resonance in degenerate bands, the reader is
referred to JML. Deviations from the equations in
JML are mentioned as they appear.

~ NK of the principal methods of describing the
motion of charge carriers in perturbed periodic

fields is the so-called effective-mass theory. In this
method the eGect of the periodic potential on the
motion of a charge is replaced, under certain conditions,
by terms which appear in the equations of motion much
in the same way that the mass appears in the free-
electron case. In the simplest band theory these con-
stants take on the form of a tensor. ' Several authors'
have extended the theory to include degenerate bands
and found that the effective-mass constants enter in a
more complicated form. It is well known that degenerate
band theory is required in order to describe the valence
band for both silicon and germanium. ' Luttinger4 has
given the most general form of the Hamiltonian for
such cases and has shown that in the presence of an
external magnetic field Ave constants are needed for the
valence band in both silicon and germanium.

Qne method of finding the effective-mass constant
is by cyclotron resonance absorption methods. ' Value
for the effective-mass constants have been reported b
several writers. ' In these experiments, however, onl
two resonant peaks appeared for both germanium an
silicon. Luttinger and Kohn' found that more peak
were predicted at lower temperatures since the spacin
of the energy levels becomes nonuniform at low quan
turn numbers. The experiments of Fletcher, Vaeger, an
Merritt" showed this to be the case for germanium
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II. A TEST OF THE P~=o ASSUMPTION

Solutions to the general equation

(1)
where D is given by Eq. (45) in JML, are, in general,

y not known. There are, however, two special cases which

may be solved. These are (1) if the momentum com-
ponent along the magnetic field direction (Ptr) is zero

g and (2) if the effective mass constants ys and ys given

by JML are equal. In an earlier paper' it was shown
that the assumption is valid in the classical limit and
leads to errors of less than 3% in the cyclotron reso-
nance absorption peaks. It will now be shown that it is
also valid in the quantum limit for germanium.

The rough estimate of y2 and y~ obtained from the
classical results given in Sec. III shows that y2 and ys
are within 20% of the same value. Thus, to a fair
approximation, germanium may be assumed to have
&2=&3=p. Cyclotron resonance in this "germaniumlike"
crystal may now be considered to see if the P~=O
assumption holds since solutions of (1) may be found
for both P~= 0 and P~/0. For convenience the orienta-
tion of the magnetic field will be along the $111j
direction. Using methods identical with those in JML,
P and J are rotated in order to get one component of
P along H. The q in JML has been estimated to be

t J. M. Luttinger and R. R. Goodman, Phys. Rev. 100, 673
(1955).
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0.01 by Kohn and will be omitted. The 6nal matrix D is given by

—(6)&yI'rra

mc——D—
eH

—v3y(at)'

—(6)&yI'Ha"

(6)&yI'rrat

(Vr —V) (a'a+i)+2~
—v3y(a')'

(6)**yI'rra

(2)

where a factor eB/mc —has been omitted. This only
affects the units of measure of energy in cyclotron
resonance analysis. The solutions are of the form

C 'I
Cm Nm —I

)
C I
.C 4N

(3)

where all symbols are the same as those given in JML
except k is given here by P. For m &3 the solutions are
subject to the conditions

m=0:
m —1.
m=2:

C '=C '=Co'=0'

C '=C '=0.
7

C2' ——p.

W. Kohn (private communication).

Using the properties of the creation and annihilation
operators a~ and a operating on the harmonic oscillator
wave functions u and substituting (2) and (3) into
(1), a set of determinantal equations are obtained for
the determination of the energy levels E . For each
m~& 3, there are four values of E . Thus it is necessary
to label each E with another index p (p=1, 2, 3, 4).
For m=2, p=1, 2, 3; for m=1, p=1, 2; and, for m=0,
there is only one Eo. The convention chosen here for
E,, is that E,~ &E,~ &E,s &E,4. These deter-
minantal equations may be computed numericaHy by
electronic computers. The special case PII=O which
also is of interest here is seen to be identical with that
considered in t.uttinger s paper simply by setting P~——0
in (2) and comparing the matrix to Luttinger's Eq.
(71). The labeling of levels in Luttinger's paper is
different from that used here, however.

The energy levels and the wave functions are now
known for both P~=O and PII/O. It remains to com-
pare the absorption line shapes for both cases. In order
to do this we make use of the equation for the absorp-
tion line shape derived in Appendix A. All quantities
appearing in the line shape Eq. (A21) are in principle
known. The matrix elements may be expressed using

Eq. (2) as

gm, p;m+1m , LCm, p Cm+rp(~, 2) +Cm, p Cm+l, p g'rl
%207()

+C„,'C +r .'(m —1)-'*+C„,'C ~r .'(m+1) l) (5)

where cuo=eH/inc. Thus if the integration in (A21) is
to be performed, it is necessary to obtain the energy
levels E,, as well as the coefficients in the eigenfunction
(3). In general this requires the solution of quartic
equations. The integrals, being too complicated to
perform in general, were done numerically. The IBM
650 digital computer was programmed to find the E,p

and C,,' as a function of PII. Several transitions were
considered.

Before presenting the numerical results, it is of
interest to consider the types of transitions which are
possible for both the P~=O and PII/O cases. It has
already been shown that transitions may occur only if
the Anal state differs from the initial state by ~1 in
the quantum number m. This must be true for both
cases. In the PII——0 case transitions between any of the
four levels associated with m and those with m~1.
Some of these transitions turn out to be relatively
improbable. For the PII——0 case, these same selection
rules do not hold. Setting P'~ ——0 splits the Hamiltonian
into two independent 2)&2 matrices. This automatically
eliminates transitions between the levels of one 2)(2
matrix and those of the other 2&(2 matrix. The PIE/O
tends to allow these forbidden transitions. (In JML's
notation for energy levels for P~=O, the transitions
which are allowed for P~/0 but forbidden for P~=O
are these between the ladders er+(I) and e2+(e).) Since
a comparison of line shapes for PII ——0 and P~&0 is
desired, only transitions which are allowed for both
schemes will be considered.

For the purpose of comparison a typical transition
was chosen and the absorption curve for PII=O was
calculated for comparison with the calculated curve for
PIIWO. Using the method outlined above, the typical
values of the effective-mass constants used were

yg
——13.2, y =4.4, g= 4.0.

The transition m=2, p= 1 —+ m=3, p=2 was con-
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sidered. The integration of the line-shape equation
(A21) as well as the determination of the eigenvalues
and eigenfunctions were done on the IBM 650 computer.
Calculations were performed using the parameters

a&= 1.5&&10" rad/sec,

(cur)'= 57

T=1' and 3'K.

The numerical results are plotted along with the PII= 0
results in Fig. 1. From Fig. 1 it is seen that the shift in
the absorption peak is less than 2% when I'Ii 0 is-—
assumed. Thus, the type of transition which is allowed
for both P&=0 and P&/0 may be found with little
error by using the much simpler P~=O calculations. It
is true that only one transition of this type was con-
sidered here; however, remembering that the classical
absorption curves, or higher quantum transitions, are
not shifted significantly by setting P'lI ——0, it seems
reasonable that none of these transitions will be
affected appreciably.

One of the transitions allowed for P~/0 and for-
bidden for PII =0 was investigated. The transition line
shape for no=0, p=1 ~@=1,a.=1 was calculated and
found to be of an entirely diferent character than the
one presented above. It mas found to be very tempera-
ture dependent and highly asymmetric. The "PII-
induced" type transition is, therefore, easily distin-
guished from the P~=O transitions. It is also estimated
to have a relative intensity to the normal absorption
curve of less than 10%. Figure 2 shows the line shape
for this "P~-induced" transition.

III. DETERMINATION OF THE EFFECTIVE-MASS
CONSTANTS

With the validity of the PII=O assumption verified,
it is now possible to continue on with the cyclotron
resonance analysis. As mentioned earlier, it is possible
to find solutions to (1) for the I'~ Ocase when the——

magnetic 6eld is in the [111]direction. The other
directions may be handled by approximation methods.
It is the results of these calculations which will allow
comparison with experiment. The experiments chosen
were those of FYM. The values of y~, y2, j3, and sc were
varied until a best fit of their data was obtained. The
experiments of FYM were done at two temperatures:
4.2' and 1.3'K. In order to obtain estimates of these
constants, the 4.2', or "classical" case, was analyzed
first. For this case the equations of DKK are valid.
They showed that the cyclotron resonance frequencies
in the valence band for Ge are given by

2'
~+(8)=2~ I pp{Q+pp+iC2(1+g(y))]2}—i (6)

"o

where

g(g) = (1—3 cos'8) {(cos'8—3) cos4@+2 cos'P) (7)

and 8 is the angle of the magnetic field in the (110)
plane measured from the [001]axis. Equation (6) may
be expressed in terms of complete elliptic integrals of
the first and third kind. Since the existing tables for
the elliptic integrals of the third kind are too incomplete
to be of use here, Eq. (6) was expanded in terms of g(p)
and integrated term by term. For H in the [001],[111],
and [100]directions, (6) may be written as

cd+[111]=A a (8'+-'C') l

(v+[100]=-or+[111] 1&
! 16~d+[111](8'+-,'C') l

~+[110]=~+[111]
64(a+[111](8'+-',C') &

By using the values of co+ given in FYM for 4.2', the
constants 3, 8, and C may be determined. The values
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Using these values in 22 t 1007 and cv+$1107 and evalu-
ating them serves as a check, giving results in good
agreement with the values given in FYM. Using JML's
identities these constants give

yy = I3.21, yg =4.28, y3= 5.56. (10)

The p& and p3 must be considered as only rough esti-
mates due to the approximations used in handling the
expansions of (8). In order to obtain a value for C'/4,
it is the difference between the experimental values

co+L1117=23.75, a2 $1117=2.66, and co+$1007=22.88
give

g = 13.21, 8'= 73 03 —C'= 38.06. (9)

a2+L1117, ~+[1007, and ~+$1107 which must be used.
It may be seen in FYM that the values of ~+ do not
diGer by much and, therefore, small experimental error
shows an appreciable variation in the value of C'/4. If
the experimental values of co are used, the correspond-
ing series converge very slowly.

For the purpose of comparing the quantum results
with FYM's experiments at 1.3', the values of y~ and

V3 may be varied about the values given in (11).Using
transformations similar to the one used in the previous
section and taking I'~——0, it is possible to obtain the
desired Hamiltonians for the $1107 and t 1007 cases.
The Hamiltonian for the $1117 case is obtained by
setting I'~~ 0 in Eq. (2). Th——ese three cases are then
given by the Hamiltonians:

DIOO=

(v2+v2) (ata+2)+2»

V~((v2 —v3)a'
+ (v2+v3) (at)' }

0

2v3((v2 —v3) (a')'
+ (v2+v3) a*}

(v2 v2) (ata+2) —2»

(v2 —v2) (a'a+i)+ 2»

V&((v2 —v3)a'
+(v2+v3) (a )'}

0

2~( (v2 —v3) (at) 2

+ (v2+v3) a*}

(v2+v2) (ata+2) —2»

( +v2)(va3ta+2)+2»
—(1/~) (v2+2v3) (a')'
—(3)'(v3-v2) a'

0

—(1/~) (v2+2v3) a'

(v2 —v3) (ata+2) —2»

0

(3)'(v3-v2) a'

—(3)'(v3-v2) (at)'

0

(v, —v, ) (atay-;)+-',
—(1/K3) (v2+2v3) (at) 2

0

(l)1(V -V)(at)2
—(1/A) (v2+2v3)a2

(vl+v3) (ata+ 2) —2 K

(12)

(v2+ lv2+-'v3) (ata+2)+2»
3(v3 v2) (—a'+ (a—')')

—:~((v3—v2) (ata+-:+-:a')
—

2 (3V2+5V3) (a")'}
0

l~(h3 —v2) Ea'a+ l+-.'(at)2)
—

2 (~v2+~v3) a'}

(vl 3v2 Kv3) (a2a+2) 2K

+ 3 (v3 —v2) (a'+ (at)')
0 (v2 —lv2 —3v3) (a'a+2)+2»

+ 3 (v3—v2) La'+ (a')'j
le(h3 —v2) (a'a+2+2a')

—
2 (3v2+~v3) (at)2}

-'~(h 3—v2) La'a+k+3(at)2$ (1&)

—l (3v2+5v2) a'

(v1+ 3v2+Kv3) (ata+ 2) —2K
——', (v3 —v2) fa2+ (at)2$
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The only one of these Hamiltonians which has a known
exact eigensolution is the Dttt. Upon inspection of (12)
it is seen that the solution for the wave function is

C„4N

For a=0, 1 it is understood that C„'=C„'=C„=O, and
for a=2, 3 that C„'=0. The equation for the eigen-
values of E„of the Schrodinger equation for g, ~&4 is
given by a 4&4 determinant. For a=0, 1 the energy is
given by

& = (vt —va)(+2) —klr. (13)

A 3&(3 determinant is found for m=2, 3. By varying

the values of y2, y3, and g, it is possible to get values of
the energy from these equations which, with the help
of the selection rules for harmonic oscillator wave func-
tions, may be fitted to the data of FYM. The selection
rules for dipole transitions allow only An= ~1.Energy
levels were calculated by the use of an IBM 650 for
the range of values 5.4~& y3~&5.7 and 3.7~& g~&4.2. The
value of y& was fixed at 13.21 and p2 was determined by

yg
——L(10.54)' —3y32ji (14)

which follows from the classical analysis. The values of
& were chosen near Kohn's' estimate A:=4. The energy
levels of a typical calculation appear in Fig. 3. Some
of the allowed transitions are indicated by the arrows.
All values of y3 between 5.4 and 5.6 give good agree-
ment for the resonant peaks &=3.01, 2.78, and 2.60
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found by FYM. Other transitions are sensitive to varia-
tions in ys and g such as +=3, p=i~+=2, p=1;
m=3, p=1~e=2, p=2; m=1) p=1~e=2, p=2. Three
sets of values of y3 and g are found which give best
agreement with FYM. These are

F3=5.55~0.02, g= 3.9~0.1
y3= 5.60+0.02, g =3.9+0.1
F3=5.61&0.02, A:=4.2~0.1.

(15)

Table I indicates the experimental resonant frequencies
and those given by theory for the above values of y3
and g. Even these values do not predict all peaks ob-
served by FYM, and they all predict additional peaks
not observed. More will be said concerning this later.
These three sets of values may now be used in either
the L1007 or L1107 cases to determine which fits the
data best. The L1007 direction is considered next. It has
already been mentioned that an exact solution to (11)
is not known. It may be noticed, however, that the
Hamiltonian contains terms with coeKcients vo+vo
and p2 —p3. Since it may be roughly estimated from the

TABLE I. A list of lines predicted which account for
the observed lines of FYM.

Resonant
freq. found

by FYM L'1117
direction at y3 =5.55%0.02
T= 1.3'K I(:=3.9

Predicted by
y3 =5.60&0.02

re= 3.9
y3 =5.61~0.02

a=4.2
2.23 (?)
2.47
2.66
2.78

3.01
3.22
3.94(?)
4.37(?)

23.75

NP'
2.43+0.07
2.69 b

2.99
3.03

NP
NP

4.37a0.12
23.69b

2.16+0.10
NP

269 b

2.97
3.03

NP
NP

4.78a0.20(?)
23.7ib

2.25&0.07
NP

2.69 b

2.97
3.04

NP
NP

4.56&0.12
23.71b

a NP = not predicted.
b Many lines are also predicted in this region.

classical results that (vo —vo)/(vo+vo) 0.1 it is pos-
sible to consider the {v,—vo} terms as a perturbation
in the problem. Writing

Dioo=Do+Di
where

(vi+ v,) (ate+-', )+-',»

!~3(v.+v.)(")'
0 0

0

K~(vo+vo)~'
(Vi Vo) (~t—~+o) o»—

0
0

0 0
0 0

(vi vo) (~t~+l)+-,'»,'~—&(vo+vo)~'

l~(Vo+Vo) (~')' (Vi+Vo) (~'~+ o)—o»-

it is seen that the problem reduces to two 2&(2 per-
turbation problems. Solutions are easily found for the
zeroth order equations. (Each is a 2X2.) These are

1 b 'I
(ii — ~o own-2

p (2i — n. iso—o

a 'u„' " b„'I (19)

TABLE II. A list of lines predicted which account for
the observed lines of FYM.

Observed by FYM

1.69
2.71
3.1/(?)
3.34
3.59
4.20
4.76

17.54&0.60
22.88

y3 =5.55&0.02

NP~
NP
NP
NP

3.60&0.05b
4.00&0.20(?)

NP
18.09+0.08
22.70&0.26

y3 =5.60+0.02

2.00 ~0.30
2.56 ~0.12

NP
NP

3.65 ~0.05b
4.20 ~0.12"
4.68 %0.030

18.26 &0.08
22.06b&0.26

a NP = not predicted.
b Many lines are predicted near this value.

is the zeroth-order Hamiltonian and the perturbation
term is

0 (at)' 0 0
g' 0 0 0

D = &3(v v ) p 0 p ( )
0 0 u' 0

where the (1) and (2) refer to the upper 2)&2 and lower
2&(2 matrix, respectively. Numerical solutions of the
second order perturbation were made for the energy
levels by the use of a computer for the values of the
y3 and I(: given above. The best fit to the FVM data is
given by 5.60&0.02=p3 and ~=4.0&0.2. Table II
shows results of these calculations as compared to
FYM. For y3= 5.60&0.02 all observed peaks are
accounted for except. or=3.17 and 3.34. Most transi-
tions are relatively insensitive to variations in &, thus
its value could not be narrowed down by the L1007
analysis.

In order to verify this choice of p3, it was used in the
t 1107 analysis. The other constants were taken to be
vi ——13.21 and «=3.8. The $1107 solutions may be
obtained by a second-order perturbation exactly
analogous to the L1007 case. Numerical results show
good agreement for the resonant peaks 3.21, 2.91, and
2.72 of FYM. The peak at 3.83 may be accounted for
by one transition which is predicted near 4.01 but is
extremely sensitive to small variations in p3. Again a
variation in & may be shown not to give significant
changes in the predicted frequencies. The results do
not conQict with the choice of y3. Thus the best set of
values are given by

y3= 5.6, I(:=3.9.
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IV. DISCUSSION

The above values of y~y2y3 and & are subject to error
for several reasons. Experimental error in FYM's
measurements is probably of the order of 1%. The
PII=0 assumption causes an error which is estimated
to be no larger than 1%.Additional error is introduced
in the perturbation calculations in the [100)and [110)
cases. The error of this is estimated to be of the order
of 2%. Since none of the values of y~ and z fit the data
completely, the possibility of other values, say p3

——5.55,
which also fit some of the peaks may not be altogether
excluded.

From Fig. 3 it may be seen that some transitions are
predicted which are not observed in FYM. Experi-
mental limitations could account for this. One such line
is the transition from g = 1, p = 1 ~ g =0, p= 1, which,
from Eq. (13), may be shown to have a frequency

"=(vi —v3)

and is, therefore, estimated to ~= 7.6. The observation
of this transition mould simplify the analysis since it
has such a simple functional dependence on y~ and y3.
Since the value of yi is well established, it would im-
mediately determine p&. Similar transitions occur for
the [100)direction (co~8.9) and for the [110)direction
(co—9.0) of magnetic field. There is a possibility that
this line was observed by Dousmanis et u/. " in an un-
accounted-for peak in their negative-mass cyclotron
resonance experiments.

Some lines appear in FYM which are not predicted
here. Some of these such as in the [100) case possibly
could be due to the P~-induced lines previously men-
tioned. If this is the case they could easily be identified,
since P~-induced lines are strongly temperature de-
pendent, by a small change in temperature. The exact
location of these peaks at a given temperature is difIi-
cult to determine numerically. Since in general PII-
induced lines are not strong, it is difFicult to see how
they could account for a strong transition such as
"=3.34 in the [100)data.

More detailed analysis is plausible when more com-
plete experiments have been performed at a number of
temperatures. This would allow identification of P'II-
induced lines, if any exist, and also give information
concerning the population of levels at different tem-
peratures. Hensel and Martin" have recently suggested
that Stark shifts are plausible as a means of identifying
cyclotron resonance transitions. An identification of
transitions would greatly simplify the analysis.
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E(t)= E' cosa&t, (A1)

where E' is a constant vector. The Hamiltonian which
includes the perturbation may be given by

e
X=Xo+—E' v sinad,

4)
(A2)

where v is the velocity of the system. The gauge chosen
here is

1 8
——A= —E' cosset.
CR

We wish to calculate the power absorbed per unit
volume, which is easily seen to be

(P=ee((v, (t))E (t)) (, (A3)

where { ) ~ indicates an average over time and ( ) indi-
cates an averaging over the time of the last collision as
well as a Boltzmann averaging. Thus

(-(t))=E 2 (.)-( (t)) (A4)

where p(t) is the density matrix averaged over the time
of the last collision. It is the (p(t)), which must be
calculated before (A3) can be written in an explicit
form. The precise meaning of this quantity will become
clear in the next paragraph.

To begin with, the strong collision assumption is made.
Assume that such a collision occurred at a time tp.

Complete equilibrium, being reached immediately after
the collision, allows the density matrix for t= tp to be
written

p(to) =exp[—PX(to))/Tr exp[ —PX(to)). (A5)

It is also true that

ihip/Bt= [X,p), (A6)

where [,) is the commutator. The density matrix at
some time t clearly depends on t and tp. The value of p
then must be averaged over all tp. Call this averaged
quantity p. If the probability that a collision last

"R.Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).

APPENDIX A

The quantum theory of line broadening is presented
in this Appendix for the purpose of obtaining a line-
shape equation. The mechanism for the line broadening
is assumed to be, for simplicity, that of a simple colli-
sion which has a relaxation time r. The formalism used
here is similar to that of Karplus and Schwinger. "

We begin by considering an oscillating electric field
which perturbs a system which has an original Hamil-
tonlan 3Cp. The electric Geld is given by
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occurred in the interval t 8—to t 8+—d8 is given by steady-state case, we may write

(P(t)) .=p (')8 „

p(t) = —p(t, t 8)e—et'd8—.
oi

It is easily shown from this that

Bp 1 1 ("Bp(t, t—8)—=—PC,P]— e-«de.
Bt ih r" o 88

(A7)

(AS)

p (o) p (o))
+-(E'v)-I pp ")4.—

2 (. h(d „)
ia(

(1+ir((o+(o „) z(o)

+ ) + ~e-'"i
E1+zr(o) „(o)— (A16)

If the integral is integrated by parts

Bp 1 1—=—pe, p]——(p (t) —po (t))
Bt ik

(A9)

With this explicit form of p(t) it is now possible to
perform the time average in the equation for the power
absorption. Considering, of course, only the real part
of the result, (A3) becomes

where
(A 10) 2 2 o o

2P
(P= mme r+a +y ' P (2)a)mm(()y)mmPm (o)

1+((or)2

po(t) =—p(t, t).

p (o) p (o)

&a mn &y mn
m 2 n ~mn

D—=p(t) —po(t) (A11)

Integration of (A9) is now necessary. Define the devia-
tion of p from p as

If a representation is chosen such that the unperturbed
Hamiltonian Ko is diagonal, it is easily seen that Eq.
(A9) yields, in matrix language,

BD. ( 1)
+/ z(o +-,fD„

Bt

8 ie
=—(po(t))-.——2 [(E'v)»-

at

xl + I
. (A17)

( 1+r ((o+oo ) 1+rz((o—oo )2)

The n and y are the vector component indices. If the
special case where the electric vector E' is directed
along the y axis is considered, the simplified result

(P= ~zzezr(k~)2 P (v„) 'p «)
1+(~r)2-

where
(1/)rz) (g (o) g (o)) (A13)

—D;(E' v);„]sino)t, (A12)

m 2 n

p (o) p (o)

&y mn

The E„(') are the unperturbed energy eigenvalues.

Using perturbation methods the density matrix to first
order may be written

1
xi +

( 1+r2(ot)+(o )2 1+r2 ((o (o )2)
(A18)

( pe
( o(t))„„=p„«)g„„~1—(Eo.v) „sin~t

~

(o

p (o) p (o) z
—(E' v) „sino~t. (A14)

is obtained. It is this equation that is to be modified to
our needs. The summation must be extended to include
a summation over the index p (discussed in Sec. III)
as well as the quantum number N. An integration over
PII must also be included. Considerable simplification
occurs when, using the relation

This step follows directly from the method given in

Appendix I in Karplus and Schwinger. "The term p (') to give

is the unperturbed density matrix given by

(v ) = (i/lz)pe, x.]„„
&a mn, +mn &a mn y

p(') =exp[—pro]/Tr exp[—pxo]. (A15)

The last term in (A12) is clearly of second order in the
perturbation, so to erst order it may be omitted. Com-

bining (A12), (A14), and (A15) and considering the

it is noted that for our case (v ) =0 and, due to the
fact that the wave functions are related to harmonic
oscillator wave functions it is easily shown that for n
different than m&1 the matrix elements are zero. In-
cluding all of these comments it is easy to prove that
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(A18) may be written in the form

&O

&P= ptesr(E')s dI'rr g p &0~+&...„,p
0 @i=0 ps+'

X (p, ,&el —p~t, .&'&) (y, ,;~t,.)'
xi +

(1+V (op+Glna+l, p;m, p) 1+r (&o—'M~1, p;tp, , p) )
(A19)

The density matrix p, p('& must now be written as

PeHh
(0) exp g (0)

SEC

a single transition, say from m, p to m+1, o will be
denoted by 6', , and, neglecting the coefficient, may
be written as

+m, p;o

d~K &em+1, a",mp(ytp. p;m+1, p)

PeHh ) ( PeHh
X exp( — E„,,&"

[
—exp~ — E +l.."'

(

me
' i ( mc

' )

xi +
&1+r'(cp+cp~t. .. , p)' 1+v'(a& —

&o +t,, p)')

ao

2 dI'rr Q P exp
J0 n~0 a

PeHh
E...&'& . (A20)

ssc

X
aJ 0

( peHh
dI'Ir P P exp~ — E„,„&'&

(
n=-O v ( tptC )

(A21)

The subscripts p and 0- refer to the eigenvalues attached The line-shape curve for I'II ——0 is just the integrand
to each quantum state z. The absorption line shape for taken at I'II=0.
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Reflection of Slow Electrons from Tungsten Single Crystals, Clean and with
Adsorbed Monolayers

P. KISLIUK
Bell Telephone Laboratories, 3Eurruy Hill, Eem Jersey

(Received December 15, 1960)

The reQection of electrons with kinetic energy up to a few electron volts from tungsten single-crystal
surfaces is measured both on the clean surface and with adsorbed monolayers of nitrogen and oxygen. For
the clean surface, diffraction from the lattice is responsible for a considerable part of the reflection in the
thermionic range of energy. The magnitude of the reflection is such as to have a barely measurable eRect
on experimental tests of the thermionic emission equations. This technique permits continuous recording
of the change in work function as gas is adsorbed, yielding information about the kinetics of chemisorption
and the surface dipoles due to the adsorbed gas atoms.

INTRODUCTION

HE well-known theoretical expression for the cur-
rent density of thermionic electrons is' '

X=A (1—8)T' exp( —&p/kT), (1)

where A is 120 amp/cm' deg', B is the reflection coef-
6cient averaged over the energy distribution, and q
is the work function. If the assumptions leading to this
equation are valid, the energy distribution is Maxwel-
lian except for the factor R, which may depend on the
energy. MacColP' calculated R using a one-dimensional
model with a sinusoidal internal potential connecting

~ C. Herring and M. H. Nichols, Revs. Modern Phys. 21, 185
(1949).

W. B.Nottingham, Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, j.956), Vol. 21, p. 1.

s L. A. Maccoll, Bell System Tech. I; SO, 588 (1951).

smoothly with an image potential at the barrier. He
foun. d about 5%%uz reflection at zero kinetic energy of
approach, falling rapidly at higher ene'rgy, with regions
of 100% reflection very close to the energies where
diffraction maxima are to be expected from the perio-
dicity of the internal potential. The width of the region
of 100% reflection in his examples is approximately
equal to the amplitude of the sinusoidal internal vari-
ation in potential energy. It is, in fact, generally true
in the weak-binding approximation that the width of
the forbidden region is approximately equal to the
matrix element of the periodic potential. 4

For a more realistic model, one would expect to ob-
serve diffraction due to the three-dimensional space
lattice. The effective mass, which enters into the calcu-

4 P. A. Wold (private communication).


