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Electron Energy Bands of One-Dimensional Random Alloys*
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A method for calculating the density of states for an infinite, one-dimensional random alloy is obtained
by investigating the asymptotic behavior of the trace of the "transmission" matrix which relates the values
taken on by the wave function and its derivative at either end of the crystal. This matrix can be calculated
if the potentials of the constituent A and B atoms, Vg and Vg, are given. The equations are first derived for
a very general case, and then the results of a calculation for an alloy in which the A and 8 atoms have equal
concentrations is shown for the case that Vg and Vg are 8-function potentials. Certain generalizations of the
method for treating other nonperiodic problems are discussed brieRy.

I. INTRODUCTION

' 'N order to investigate qualitatively the band struc-
k ~ ture of random alloys, while minimizing the mathe-
matical difhculties, we consider a one-dimensional
model. The method to be developed gives an asymptotic
expression for the density of states in the limit as the
length of the crystal approaches inanity, and does not
rely on perturbation theory.

Other investigations of various one-dimensional
models have appeared in the recent literature. Schmidt'
has derived an equation for the density of states of an
infinite random alloy which may be solved by iteration,
although no calculations were shown. Landauer and
Helland' have used a method first suggested by James'
to calculate the density of states of a random alloy made
up of 150 atoms. They used the same method to treat a
one-dimensional liquid metal made up of 150 atoms.
Frisch and Lloyd, 4 and Ford' have investigated the
latter problem for the infinite case. Bomb, Maradudin,
Montroll, and Weiss' studied the vibration spectrum
of a disordered linear chain. They used the "moment-
trace method"; with machine calculations they obtained
results closely related to some of ours.

Our method can be applied to a variety of non-
periodic models, but we will emphasize the one described
in Sec. II. We will also present a certain amount of
background material there. In Sec. III the basic
equations are developed; in Sec. IV these are applied
to the special case of delta-function potentials. In
Sec. V we discuss some generalizations of the method.
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II. GENERAL PROPERTIES OF THE MODEL

We will investigate the eigenvalues of the one-electron
Schrodinger equation,

+V(x) %=&I,
2m dx

with certain boundary conditions. The x axis is divided
into cells of length d, the eth cell being the interval
rid&x& (Is+1)d; a local coordinate system for the Nth
cell is given by

x =x md.

(3)

The one-electron potential function, V(x), is specified

by giving its form in each cell:

V(x) = V„(x„), ed&x& (ri+1)d.

In our model of a random alloy, the V„(x„)may take
on two possible forms. If V„(x„)= V~(x„), the eth cell
is said to contain an A atom, and if U (x ) = UR(x„),
the mth cell is said to contain a 8 atom. (The condition
that the potential depends only on the type of atom in
the cell neglects the variations due to the environment
of the atoms. ) We specify further that V&(x„) and
VII(x„) are symmetric about the center of the cells, and
that VA(0)= UA(d)= VR(0)= VII(d) so that V(x) is a
continuous function of x. The arrangement of the A
and 8 atoms in the lattice is random, but the concen-
tration of A atoms, C~, and the concentration of 8
atoms, C~= 1—C~, are fixed numbers.

Boundary conditions are imposed on Eq. (1) by
considering a finite crystal 0&@(Nd, where N, the
number of atoms in the crystal, is large enough that
end eAects can be ignored. We will use the periodic
boundary conditions

+(0)=4 PVd),

4'(0) =4'(1Vd).

A simple choice for the form of the functions VA(x )
and V&(x„), which is used in the Kronig-Penney model
of a random alloy, is

VA = (5'/md) Pgh (x„—',d), —

UR = (fi'/md) PR5 (x„,'d), —-
390



ENERGY BAN D S OI- ONE-DIMENSIONAL RAN DOM ALLOYS

where 6 (=det e) is the Wronskian of q&i and ys. Since
h(I'.+L)=h(g), it follows from Eq. (4) that

detA= 1.

Solutions of Eq. (1) of the form

X(&)=ciV'i(&)+csV's(&)

(5)

can be formed which satisfy the generalized boundary
conditions

provided X is a solution of the secular equation

Here I is the unit matrix. Using Eq. (5), the solutions
of this equation are found to be

vrhere

' D. S. Saxon and R. A. Hutner, Philips Research Repts 4, 81
(1949).' J. M. Luttinger, Philips Research Repts. 6, 303 (1951).

H. A. Kranmrs, Physica 2, 483 (1935).

where I'~ and I'~ are real constants. This model was
considered by Saxon and Hutner who were led to
conjecture that an energy band which is forbidden for
both the pure crystal made up of A atoms and the pure
crystal made up of 8 atoms is also forbidden for a
random AB alloy. This was later verified by Luttinger, '
whose proof remains valid for potentials that do not
have the simple form of Eq. (3).

In order to explain the motivation behind the method
that we will use, it is necessary to employ certain
theorems concerning the eigenvalues of Eq. (1) which
are proved in a paper by Kramers. ' Kramers considered
a very general case in which the only restrictions on the
potential function, V(x), are that it should be real and
continuous. His theorems deal with the energy-
dependence of the trace of a certain matrix which, in a
Inanner that will be described, yields the eigenvalues
of Eq. (1).

I.et q i(x) and q»(x) be the two linearly independent
solutions of Eq. (1), for a given energy, on the interval
$&x&$+L. A "transmission" matrix A with elements
0.;, is defined by the equation

+(5+1)=A(k+1 () ~'(5)
where

v i(~) v i'(*)
e(x) =

q s(X) q s'(X)

A typical element of A is

It can easily be shown that the trace, f, is independent
of the particular choice of basis functions, y» and p2,
among all the linear combinations x. Thus, for any
given potential function, f depends only on the energy.
Since pi and ps may be chosen real, f is real.

Kramers proved the following theorems: (a) The
trace, f, is a continuous function of the energy, K
(b) There exists an energy Es such that, if E&Es, then
f)2. (c) If E)Es, then f is an oscillating function of
the energy with an infinite number of maxima and
minima. (d) At the maxima, f)2, while at the minima,
f& —2. (e) When f(E)=2, the eigenvalue E of (1) is
nondegenerate unless r)f/r)E=O, in which case the
eigenvalue is twofold degenerate.

These theorems can be used in two ways: If I is set
equal to d (the length of a cell), they may be made the
basis for a discussion of the band structure of a periodic

- lattice. Writing fq trac——eAL(is+1)d, tide and

X~"= exp(+ikd), (7)

"J.C. Slater, Technical Note No. 4, Solid State and Molecular
Theory Group, Massachusetts, 1953 (unpublished).

we see from Eq. (6) that k is real in those energy
regions for which

f f~ f
&2 (the allowed bands), and that

k is imaginary for
f fqf )2 (the forbidden bands). That

any periodic lattice will exhibit a sequence of allowed
and forbidden bands as the energy increases from Eo on,
follows from the behavior of f(E). This is the use that
Kramers made of the theorems.

If L is set equal to Ãd, then the periodic boundary
conditions of Eq. (2) can be satisfied for those values
of Efor which'A=1 (or f=2).

For the periodic lattice, it can be shown that the
trace of A(Xd, 0), f&z~ is given by

f~s =2 cos(Eking),

where k is defined in Eq. (2). The quantity kd varies
monotonically from 0 to ~ (or m to 0) as the energy
traverses an allowed band. Thus, in an allowed band,
f&z~ has the energy-dependence as shown by the upper
curve in Fig. 1. Except for the highest and lowest
values, the energy eigenvalues in the band are twofold
degenerate according to theorem (e).These degeneracies
for the periodic crystal with periodic boundary condi-
tions are due to the invariance of the system under
translations and reQection»0; they are likely to be
absent in a random alloy. Thus, in accordance with
theorems (a)-(e), the trace of A(Xd, 0) for a random
alloy, f&P, will have the energy dependence in an
allowed band as shown by the lower curve in Fig. 1.

One can see from the preceding how the eigenvalues
of Eq. (1) with boundary conditions (2) can be obtained
from the trace of A(1Vd, 0) and, in a qualitative way,
how this trace varies with the energy. In order to carry
the investigation further, it is necessary to construct
this matrix for the model described at the beginning
of this section. This can be done as follows. A matrix,
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FIG. 1. Qualitative behavior of the trace f as a function of the
energy for a periodic and for a random lattice.

X„, that depends on the shape of the potential in the
22th cell and on the energy (i.e., is independent of the
choice of basis function 1121 and p2) can be defined by

X„=4 t(22d)AL(I+1)d, 22d]4 (22d). (8)

H the 22th cell contains an 3 atom, we write X =5, and
if it contains a I3 atom, X =8.For a given crystal made
up of N atoms, r of them being 8 atoms, we define

N—j

eigenvalues of Eq. (1) by taking the trace of this
product. This approach would be quite arduous, and
it would require that we specify the exact sequence of
atoms in the crystal whereas, in practice, only the
concentrations C~ and C~ are measurable quantities
for a random alloy. The basic assumption in an energy-
band investigation of a random alloy is that the distri-
bution of energy eigenvalues approaches a limiting
distribution as S~ ~ which is the same for almost all
sequences of atoms (i.e., except for a fraction that goes
to zero as 1V -+ eo) so long as the concentrations remain
axed. This assumption has been justified in several
papers. ''" Due to the connection between the trace,
f'(JV, r), and the energy eigenvalues, we assert that
the traces also approach a limit. This limit, if it exists,
will be given by the ensemble average, (f), (i.e., the
average of the traces for all sequences which have the
given concentrations) in the limit as JV —+ ~. The
existence of the limit can be inferred from the asymp-
totic behavior of (f) to be discussed for an example in
the next section. Qne would expect a smoothing out of
the rapid oscillations of the individual traces (see
Fig. 1) if the random phase factors shifted the eigen-
values, for a 6nite fraction of sequences, by an amount
comparable to their separation. From the existence of a
limit of (f), we can infer that this is not the case.

We will now derive an expression for the average
trace, (f). The sum of all possible products that can be
formed by permutation of (1V—r) 5 matrices and r 8
matrices is equal to the coefhcient of s" in the expansion
of (5+28)~. The average of all these products,
(P), is thus given by the contour integral

P'(&,r)= g X„=M8 888, (9)

where the order in which the 5 and 8 matrices appear
in this product is the same as the order in which the A
and 8 atoms occur in the crystal. The superscript i
indicates which of the

~ ~
distinct crystals that can be

g r
formed from (1V—r) atoms of type A and r atoms of
type 8 is meant. It is easily seen that the A matrix for
that crystal, A' is given by

A'= e(0)P'e-'(0),
and

f'= traceA'= traceP' (10)

III. ASYMPTOTIC EVALUATION OF THE
ENSEMBLE AVERAGE OF f'

One could, in principle, write down the matrix
product P'(JV', r), Eq. (9), and then investigate the

"H. M. James, Phys. Rev. 76, 1602 (1949).

The 5 and 8 matrices defined in the previous
paragraph are the transpose of similar matrices intro-
duced in a paper by James, " and a prescription for
calculating them for any potential is given in that paper.

where the contour of integration goes once around the
origin. The trace of the sum of a set of matrices is equal
to the sum of the traces; therefore:

(f)= trace(P). (12)

where

with

D'= det(5+28) = 1+2Ps+22

P tib (812821+821812)

a=-'2 trace%, b=12 trace8.

(13)

(13a)

The determinant takes this relatively simple form
because 5 and 8 are unimodular [see Eqs. (5) and
(8)].We introduce the matrix

5+28—D Icosp
G(s) =

7

iD sinp
'2 F. J. Dyson, Phys. Rev. 92, 1331 (1953).

(14)

The average matrix, (P), can be put in a more useful
form by bringing 'P+s8 in exponential form. We have
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traceG(s) =0, (16)

where p(s) is defined by

cosp= (a+sb)/D. (15)

The functions p(s) and D(s) can be made single-valued
by a choice of Riemann sheets. It can easily be shown
that

h (sa) =h+~(s), (22)

In this equation P is given by Eq. (13a) and x=C&/Cz.
Since the coeScients are real, the complex roots of
Eq. (21) occur in conjugate pairs.

If the Riemann sheets that make h~(s) single-valued
are chosen such that

and then the conjugate of any saddle point of It+ is a saddle
G'(s) =I. (17) point of h . If we consider the contribution to the

for any value of s Fro F (14),d (17) f 11
integrals of just one comPlex saddle Point, s&, we have"

that

and hence
5+sI=D exp(ipG), K,+= (K,—)"=

( [ L2s h" (si))—& exp'(sr).
l r

=2s C44-lC~1 exp( —Np),
&r]

1 t'Nq-'
(f)=—

i i
D~ cosNp s-"-'ds.

i~&r]
(20)

Wllel'e

p, = inC~+Cs ln(C~/Cs).

(I+s8)N=D"g cosNp+iG sinNp). (19)
Evaluating by the saddle point method gives

We can now find the average trace, (f), by inserting «)
Eq. (19) into Eq. (11) and making use of Eqs. (12),
(14), and (16):

An asymptotic expression for (f) can be found by
using the saddle point method of integration. %e first
break up the integral into the sum of two integrals,

(f)=K++K,
where

1 (N)K+=
( ) expNh~ds,

2~Er)
with

h~ ——+ip+lnD Cs lns. —
The quantity C& in the last equation is equal to
(r+1)/N which is, in the limit as N ~ ~, just the
concentration of 8 atoms. The saddle points of h+ and Ig

can be found from the equations

dhg/ds =0.

By manipulation of either of these equations one
obtains the following sixth degree algebraic equation
for the saddle points of h+. and h:

6

Q c„s"=0,

cp
——(1—a')x', ca——1—b',

ci——2L(P—ab)x'+ (1—a')Px(x —1)),
c~——2p —ab+ (1—b')p(1 —x)),
c2

——(1—b') x'+4P (P—ab) x(x—1)
+ (1—a') p'(x —1)'—2x)+ (ap —b)'(1+x')

c4 1 a'+4P (P ab) (——1 —x)— —
+('—'»'(x —')' —'*)+(»—')'('+")

c4= 2 f (1—b')Px(x —1)
+ (1—a')p(1—x)+ (p —ab) p'(x —1)'—2x)

+ (ap —b) (a—bp) (1+x')).

Thus, the contribution to (f) from one complex con-
jugate pair of saddle points is

where
(f)i——

Q4 COS(N8+b) exp'&,

8= Im h+(s&),

b= ——,
' argh" (sr),

Q, =2C,&cs-&
~

h"(.,) ~-&,

yr ——Re h4. (Sr)—l4.

(23)

where
(f)2=Q2 expNy2,

vs= h+(ss) —u

Q2= Cg&Cs—&(h"(s2))-&.

(24)

The quantity (f)2 is real since h4. (s2) is either real or
contains an imaginary part of the form rlrr/N, where
m is an integer. The contribution to (f) from a real
saddle point of h is also real.

For a given energy, all of the saddle points of h+
and h are roots of Eq. (21) with the coe%cients
evaluated at that energy. It is necessary to know the
form of the function Reh~(s) at that energy to see
through which saddle points the path of integration

'I P. M, Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., ¹wYork, 1953).

It can be shown that a saddle point of h+ or h which
is real will in general fall on a branch cut if the Riemann
sheets are taken so that Eq. (22) is satisfied. For this
case it is convenient to choose the Riemann sheets
differently in evaluating the integrals. A real saddle
point of jg+ will of course not also be a saddle point of
h, and hence the integrals E+ and E— are quite
different. The contribution to (f) from the real saddle
point s2 of h+ is
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must pass. It can be seen from Eqs. (23) and (24)
that, of these, the complex saddle points for which
Reh+(sr) &p and the real saddle points for which
h+(ss) &p will contribute nothing in the limit as E
approaches infinity.

If, in a given energy region, the only contribution to
(f) is from one conjugate pair of saddle points, and
if one has calculated these saddle points and also
h+(st) for a sufficient number of values of the energies
in that region to plot 8 as a smooth function of the
energy, then the number of allowed states between two
energies Ej and E2 in that region can be found from

(25)

The quantity p& can be interpreted as a measure of the
degree to which the degeneracy that occurs for the
pure crystal (see Fig. 1) is removed. An energy region
for which the only contribution to (f) is from a real
saddle point is obviously a forbidden zone for the
random alloy. An interpretation of the results for
energy regions in which various combinations of the
diferent types of saddle points contribute can also be
made in a straightforward manner, although for this
case (f) may not have the form required by Kramers'
theorems. It would then be necessary to conclude that
the traces f" do not app'roach a limit. In the following
example no such problem arises.

of them h+(ss) &p so that it contributes nothing in the
limit as Ji/~ ~. Thus, the only contribution to (f)
is from one real saddle point and therefore the doubly
forbidden region is a forbidden band for the random
alloy. (2) In the singly allowed region, IaI)1 and
IbI&1, there are two different cases that arise. For
energies above a certain critical energy, E„Eq. (26)
has three real roots and the situation is the same as it is
for the doubly forbidden region. For energies less than
L'"„Eq. (26) has one real and two complex conjugate
roots and the situation is the same as it is for the
doubly allowed region that will be discussed next. (3)
In the doubly allowed region,

I
aI&1 and

I
bI&1, Eq.

(26) has one real and two complex conjugate roots.
The real root does not contribute and one of the complex
roots is a saddle point of h+. while the other is a saddle
point of h so that (f) is given by Eq. (23). Energies in
this region are in an allowed band for the random alloy.

Since the energy regions for which the random alloy
has a forbidden band correspond to the regions for
which Eq. (26) has three real roots, while regions for
which the random alloy has an allowed band correspond
to the regions for which Eq. (26) has one real and two
complex roots, it follows that the allowed and forbidden
bands can be speci6ed by an investigation of the energy
dependence of the discriminant of this cubic equation
alone. Thus, we have a relatively simple criterion for
specifying the forbidden bands of a Kronig-Penney
random alloy that is more restrictive than the one

IV. APPLICATION TO THE KRONIG-PENNEY MODEL

VVe have made a calculation of the energy band
structure for a Kronig-Penney model of a random alloy
[see Eq. (3) for the potentials; we took I'~ and Pn
negative as did Saxon and Hutner]. This case is
particularly simple because P [see Eq. (13a)j is equal
to unity for all values of the energy. Due to this
simplification, the sixth degree algebraic equation for
the saddle points of h+ and h is replaced by the following
cubic equation:

(26)

Cs' ——(1—a') a', Cs' ——1—fi',

ct'= (1—2ab+ u') x' —2 (1—g') g

cs' ——(1—2ub+ b') x' —2 (1—b') x

1

l

l

l

l

l

l

l

l

l

l-I

COS e

I

e

where x=C&/C&, as before. A qualitative, graphical
study of the functions Reh+(s) at various energies,
aided by a calculation of the roots of Eq. (26), shows
that: (1) In the doubly forbidden energy region, "
IaI)1 and IbI )1, Eq. (26) has three real roots. Two
of these roots correspond to saddle points through
which the path of integration must pass, but for one

"Since trace $=2o, an energy region for which ~a~)1 is a
forbidden band for a crystal made up of A atoms, while a region
for which

~
o

~
& 1 is an allowed band.

Fro. 2. Coss as a function of the reduced energy e= (8mds/hI)E
for a Kronig-Penney model with Pz=s, Ps=s/2, C&=Ce=r.
Solid curve represents present theory; dashed curved, virtual-
crystal method.
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FIG. 3. Allowed and forbidden bands in a one-dimensional
crystal. 'Ihe numbers in blank spaces which represent the allowed
bands, give the number of states.

The results of this investigation can be summarized
as follows: (1) The lowest lying allowed band of the
random alloy, which is in a region of negative energy,
contains a number of states equal to the number of A
atoms in the crystal. (The A atom in our example has
the deeper well. ) (2) The next allowed band contains a
number of states equal to the number of 8 atoms in
the crystal. (Of course, the factors of ~i occur in these
zones in Fig. 2 because C~=Cs ——~i.) (3) The allowed
bands that lie in higher energy regions each contain E
states and 0 behaves qualitatively as in the higher band
shown. (4) The distribution of the states within these
high energy allowed zones is quite like the distribution
that is obtained from the Nordheim-Muto virtual-
crystal model except that the density of states tails oG
more slowly at the high-energy end of the allowed zone.
Results 1 and 2 corresponds to the appearance of
localized states associated with the bound state of the
A or 8 atoms, while result 4 is in agreement with the

"L. Nordheim, Ann. Physik 9, 607 and 641 (1931)."T.Muto, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34,
377 (1938).

proved by Luttinger, although there is no conQict
between the two criteria.

In order to get more detailed information about the
number of states in each allowed band and about the
distribution of these states within the band, we have
determined numerically the energy dependence of 8,
and used Eq. (25). It is convenient to plot cos8 versus
E rather than 0 itself, and this is shown in Fig. 2 for
the case P~ —m=, P'= —n./2, and C~=Cs= —',. For
comparison we also plot in that figure a calculation of
cos8 using the virtual-crystal approximation of Nord-
heim" and Muto. "The virtual-crystal approximation,
which is based on perturbation theory, reduces for the
simple Kronig-Penney case to replacing the random
lattice with the potential

V-(x„)=(5'/nod)(CgP~+CgPg)&(g„', d). —(—27)

For a periodic lattice we have, from Eq. (7), 0=M.
In Fig. 3 we show the allowed and forbidden bands

of the random alloy compared with those of the pure A
crystal, the pure 8 crystal, and the ordered AB alloy.
The number that appears in each allowed band is the
number of states in that band.

Fn. 4. The parameter yI as a function of the reduced energy e.

suggestions of Parmenter'7' as to the corrections that
should be made to the Nordheim-Muto theory.

Additional calculations show that the two low-energy
sub-bands each containing N/2 states coalesce into one
band with g states when the difference in potentials,
P~—E~, is made smaller.

The quantity p&, as can be seen from Fig. 4, is large
in the two low-lying allowed zones. In the allowed
zone of higher energy, it is zero at the low-energy end,
it increases slowly as the doubly allowed zone is
traversed, and it increases more rapidly in the singly
allowed zone.

Although the machine calculations of Landauer and
Helland' were for a finite crystal made up of two
di6erent types of square wells, certain of their results
may be compared with ours. In particular, they also
obtained allowed bands in the negative energy regions
made up of localized states, whereas at higher energies
some of the forbidden bands which occur for the ordered
AB alloy are absent in the case of the random AB alloy.

Thus, the band structure that our method predicts
for the Kronig-Penney model of a random alloy is in
agreement with that which one wouM expect from the
work of Luttinger, Parmenter, and Landauer and
Helland.

V. GENERALIZATIONS

In the above, only the periodic boundary conditions
of Eq. (2) were considered. Itcanbe shown from Eq. (4)
that the fixed end-point boundary conditions, %(0)
=%(Nd) =0, are satisfied at those energies for which
the element P2i'of the matrix P'Lsee Eq. (9)]vanishes.
The average of the functions P2I' over all possible
permutations is given by

1 (Ny sinNp
(p)2i=

~ )
D —'(S~i+s+2i)

sinp

' R. H. Parmenter, Phys. Rev. 97) 587 (1955).
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COS y

FIG. 5. Cos9 as a function of e as obtained with the scattering-
matrix method (solid curve} (reference 18), and with the virtual-
crystal method (dashed curve).

where the quantities appearing in this integral are as
dined in the preceding sections of this paper, and the
contour of integration encloses the origin. An asymp-
totic expression for this integral would be expected to
reflect the properties of P»' for any random sequence,
and could thus be made the basis of a band structure
investigation for the fixed end-point boundary
conditions.

The band structure for a random alloy made up of
more than two types of atoms can be described by

replacing the contour integral of Eq. (11) with a
multiple contour integral. Also, the unit cells of the
diGerent types of atoms that occur in the crystal can
have diGerent lengths, since the properties of the
matrices needed for the derivation of Eq. (11) are not
aGected by this change.

Another type of random system on which band
structure investigations have been made recently is the
one-dimensional liquid metal. By this is meant a
linear array of atoms which are all of one kind, but
whose positions are random. A simple model of such
a system to which our method can be applied is obtained
by considering a random sequence of atoms and spacers,
the spacers being short cells in which the potential is
zero.

Although the methods described in this paper can be
applied to many one-dimensional problems of interest,
a generalization to three-dimensional problems would
not be straightforward. It can still be used to check the
validity of approximate three-dimensional theories,
such as the one developed by one of us, ' by applying
the latter to a one-dimensional case. This was done for
a simple Kronig-Penney model. The results are shown
in Fig. 5, where we have plotted costt as a function of
E as found with the method of reference 18 and as
calculated with the virtual-crystal method. Although
we do not get the splitting of the lowest band into
sub-bands, as predicted by our present work, the
correction to the virtual-crystal theory in the higher
energy bands is in the right direction.
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