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The usual random-phase approximation combined with an equations-of-motion technique for the many-
electron problem is extended, yielding many of the known results of series summation methods in a straight-
forward manner. The method should apply to other types of many-body problems as well.

INTRODUCTION

IN recent years the approach to the ground-state
problem of the free electron gas known as the
“random-phase approximation™ (hereafter called RPA)
has been vindicated by rigorous partial summation of
perturbation series2~” It was shown, particularly in
reference 3, that at high electron densities the dominant
term in the correlation energy may be derived either by
formal summation of the most divergent integrals in the
expansion in powers of the interaction parameter, or
else by a consistent application of the RPA.

However, the summation methods have also answered
questions that are out of reach of the ordinary RPA.
Two cases in point are the damping of plasma oscilla-
tions,® and the Du Bois result for the ground-state
energy of a free electron gas.® Similarly, the result of
Gell-Mann® for the specific heat of an electron gas is
inaccessible from the RPA, which would predict only
the Hartree-Fock single-particle exchange correction
with its logarithmic singularity near the Fermi surface,

* National Science Foundation Predoctoral Fellow.

1 D. Bohm and D. Pines, Phys. Rev. 92, 626 (1953).
( 2;\'/71) Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
1957).

3 K. Sawada, Phys. Rev. 106, 372 (1957).

4 K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys.
Rev. 108, 507 (1957).

5 R. Brout, Phys. Rev. 108, 515 (1957).

8 G. Wentzel, Phys. Rev. 108, 1593 (1957).

7 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);
A243, 336 (1958); A244, 199 (1958).

8 D. F. Du Bois, Ann. Phys. 7, 174 (1959); 8, 24 (1959).

9 M. Gell-Mann, Phys. Rev. 106, 369 (1957).

and hence zero specific heat.l This paper demonstrates
that at least some of these defects of the RPA can be
remedied by extending it just one step.! Specifically, we
demonstrate that the extension reproduces the result of
Du Boiss for the ground state energy, and the result of
Gell-Mann® for the specific heat of a degenerate electron
gas. :

Our procedure is based on the well-known fact that if
O is an operator such that its commutator with the
Hamiltonian H satisfies

[H#,0]=w0, O

then Oy is an excited eigenstate of the system, with
excitation energy w above the energy of the true ground-
state ¥¢. This is seen by operating on y ¢ with both sides
of Eq. (1). As an example, one may consider the motion
of a hole in an existing electron cloud. In that case, w (or
rather its derivative), as the momentum of the added
electron approaches the Fermi momentum, is the
quantity needed in a calculation of the specific heat. It
then seems natural to try for O the operator Cy which
destroys an electron with momentum .12 One then finds

10 The ordinary RPA, when used to decompose the electron
motions into collective modes and screened single-particle motions,
will of course lead to an at least qualitatively correct modification
of the Hartree-Fock energy ; the point here is that the RPA applied
directly to the motion of an excess electron (or hole) does not.

11 H. Suhl, Bull. Am. Phys. Soc. 5, 279 (1960).

12 Actually the spin index, o, can be considered as incorporated
into the momentum subscript provided we alter the definition (11)
of the potential to read

v(pars) =3[v(p—1)80p, o, —v(p—8)80p, 05 Bp-tq,r+s-
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that the commutator with the kinetic energy part of H
is consistent with Eq. (1), while the commutator with
the potential energy is not. We have

H=Z Bka*Ck
k

2me?

1
—Cip* Cw—p* Clw=K+V, (2)
Q kK ,p0 P2
and
4are? 1
[HC]=—a0+— ¥ —Cip*CrCx. (3)
Q  x,p70 p?

In fact, only in trivial cases is there an exact relation
like (1). The ordinary RPA now proceeds by retaining,
of the offending triple terms, only those which may be
“linearized,” i.e., those in which the momentum sub-
script of one of the two C’s coincides with that of the
single C*. The resultant combination is replaced by its
expectation value in the ground state. Equation (1) then
takes the form

dare?

€
w=- 9k+"§7 2 ma/p=—g. 4)

p#0

The expectation value 7y, in the true ground state is
not known. Therefore, it is usual to make the further
approximation that the #’s may be replaced by their
values appropriate to the ground state of the non-
interacting gas, that is by unity below, and zero above,
the Fermi surface. The excitation energy then becomes
equal to the ordinary Hartree-Fock separation energy.
A familiar difficulty now results: The sum has a deriva-
tive with logarithmic singularity when A=kp, the
Fermi momentum, leading to a zero in the density of
states and therefore zero specific heat. The reason is of
course that the Coulomb interaction should be shielded
so as to yield a finite limit as p — 0. The work of Gell-
Mann based on a summation of selected terms in a
perturbation series, effectively produced a shielding.
On the other hand, we may also remove the difficulty
by retaining in the commutator (3) not only the usual
RPA terms, but also all the residual terms of the form

Cietp* CrisCy k#0, ®)
as well as the fluctuations,
3 pCr= (Mrip— Crip*Cri-) Oy (6)

about the RPA terms normally retained. Next we form
the commutators of these quantities with A and demand
that they be, respectively, equal to wCitp*CapCx and
wbnrpCh, for reasons to be explained presently. Con-
sider first the commutator

[H,Ck.{.p*C)\.H;Ck].

The kinetic energy portion of this commutator is again
simply proportional to Ciyp*ChrypCr. But the commu-
tator with the potential energy leads to a superposition
of terms of the form C*C*CCC. At this point we make
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what may be termed the ‘“‘second random-phase ap-
proximation” in the following way. Of the quintuple
terms C*C*CCC we retain only two restricted classes:

I. Terms in which the momentum subscript of one of
the C*s coincides with that of one of the C’s, replacing
this C*C combination by its expectation value # in the
true ground state.

II. Terms in which the total momentum (i.e., the
sum of the subscripts) of two C*'s equals the sum of the
subscripts of two C’s. Any such C*C*CC combination
will in general have a nonvanishing expectation value
in the true ground state, since it carries zero net
momentum., -

Procedure I leaves us with triple terms times average
occupation numbers, which product may be regarded as
the “reaction” of the medium. Procedure II leaves us
with a single C' (and because of momentum conservation
it must be Cy), multiplied by an » number; this we re-
gard as a “driving” term. All quintuple terms that do
not conform with I or II are discarded.

Disregarding the fluctuation terms (6) for the mo-
ment, we see that the equations

[H)C)\] = wC)\}

7
[H Cetp *CHka] = ka+p*C>\+ Cr, ( )

form a closed system, quintuple terms having been dis-
carded. We may solve the second of Egs. (7) for the
triples in terms of the “driving” term C,, and substitute
the solution in the first of Egs. (7). We thereby obtain
a new quasi-energy €\’ (or in the general case of a
bounded system, a quasi-Hamiltonian). The new &)’
turns out to incorporate the correct shielding and yields
a density of states in agreement with the series result of
Gell-Mann.

The fluctuation terms turn out to have no effect on
the shielding problem. Should they be needed in more
general cases, they can be included by supplementing
Egs. (7) with

()

and manipulating the commutator according to rules I
and II. Then Egs. (7) and (7’) allow triple and fluctua-
tion terms to be eliminated in favor of the single hole,
again yielding a quasi-energy or Hamiltonian.

Two different types of m values may be distinguished
under rule IT: one in which the subscript of each of the
two C¥s is exactly matched by the subscript of one of
the two C’s, and another (more' numerous) type in
which the restriction is merely to net momentum zero.
The former class is simply the product of two » numbers
(corrected for fluctuation), and m’s of this type will
always be finite even in the limit of vanishing inter-
action. The latter type differs from zero only in the
presence of the interaction. It will be shown that the
series results for the specific heat and the Du Bois result
for the ground state energy follow only if such averages
are neglected. For the superconducting case, on the

CH 6mr5Cr]=wdmrs5C,
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other hand, the inclusion of such averages is of the
essence (see Conclusions), since some of them have the
form (Ck*C_k*Ck'C_k'>.

One may ask what meaning is to be attached to
solving for an operator C*CC in terms of the operator C.
This procedure is purely formal ; what is really meant is
that the Eqgs. (7) and (7’) are to be diagonalized by
forming appropriate linear superpositions of C, C*CC,
and C. The coefficients in the superposition turn out
to satisfy exactly the same Egs. (7), (7'), but with the
matrix of the whole set replaced by the transposed
matrix. Our procedure thus amounts to ‘“‘dressing” the
state Cy ¢ with triples, etc.; in this sense it is a version
of the Tamm-Dancoff method, but a Tamm-Dancoff
method that considers excitations above the true ground
state, not the Fermi state. Beginning with the Fermi
state, in fact, gives results that in the first few orders do
not agree with the series results.

A remark about self-consistency is in order here: We
have spoken of averages (C*C) in the ground state as
though these were known. In actual fact, we take them
to be occupation numbers appropriate to the non-
interacting gas, wherever we expect the result for
physical reasons to be insensitive to deviations from
these numbers. But there exists the possibility of doing
better, at least in principle. We note that (C*C) is the
overlap integral of Cy¢ with itself. Now Cy¢ is not an
eigenstate of the system, but it may be expanded in
terms of the eigenstates (C+2 C*CC)y¢ of set (7)
[supplemented by (7’) if necessary ]. Then (C*C) is just
the sum of the squares of the expansion coefficients.
These, however, are themselves nontrivial functions of
(C*C) and so a set of self-consistent, nonlinear equations
for these averages is obtained. Similar remarks apply to
averages such as (C*C*CC) which are overlap integrals
of CCy ¢. These are expansible in terms of eigenfunctions
made up of two holes, two holes with an electron-hole
pair, etc. No attempt at solving such self-consistent
equations is actually made in this paper.

SPECIFIC HEAT OF THE ELECTRON GAS

As the simplest specific example of the method out-
lined in the previous section, we may calculate the
single-particle excitation energies of a degenerate
Coulomb gas. This spectrum finds application in com-
puting the specific heat of the gas, which is inversely
proportional to the derivative of the separation energy,
or single-particle energy at the Fermi surface. We show
that our method reproduces the well-known results of

wlne—C(k; k) JCy=[H, (nx—C(k; k))Cr]
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Gell-Mann. We also investigate in detail the fluctua-
tions of number operators from their expectation values,
and justify for large systems the contraction of these
operators described above.

It proves convenient at this point to alter the notation
slightly. We write the Hamiltonian for this problem

H=3Y eC(k; k)
-3 X

ki1koksky

v(k1k2k3k4)C(k1k2; k3k4)- (8)

We further adopt the notations

Cpg- ;18- )=Cp*Cq*++-CiCs- - - 9)

ey ;18- )=gphegt —e—gg— -+, (10)
where €, is the kinetic energy p*/2m;

v(pars)=3{v(P—1)—v(P—8) Ppsqrts,  (11)

where o(p) is the Fourier transform of the two-body
potential, which for the Coulomb interaction with
neutralizing positive background is given by

o(p)=4meh2/Qp? if ps%0 (12)
=0 if p=0.
The volume of the system is denoted by Q. Spin indices
have been ignored for notational simplicity.!
We choose to consider the effect of an added hole, of
momentum . The equation of motion (1) for this hole
in our new notation becomes

wCy= I:H,C)\:] =—aC\+ Z 2(AX 1A A3)C (A1 3\'23».3)

AMA2A3

= —[er— ms0(k—2)C»

+ X (M= %3)C (A5 Mads)

A1h2A3

=X v(k—=V)[m—C(k; K)IC\, (13)

where the prime on the summation means A7 dp7 As.

The approach to this equation of the usual RPA, and
its attendant difficulties, were discussed in the previous
section. To extend the RPA we write equations of
motion for the remaining terms in Eq. (13). We first do
this for the last term, which involves the fluctuations of
C(k; k) about its mean value. The equation of motion
reads

= I:nk-—C(k; k)]["‘ 8)‘C)\+ Z W(Q&Q\.llzlg)C(ll, 9\.23\.3)]

AA2A3

L X

‘v(klkzksk4) (5k, k1— 0k, k3)C(k1k2; kak.;)]C)\. (14)

kikoksks

Since we expect the fluctuation to be small, we need only calculate it approximately ; making contractions on the
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right-hand side of Eq. (14) is thus assumed valid. We further discard all remaining terms involving the product of
five creation and destruction operators as being of higher order. The resulting equation becomes

[8)\—}‘60:”:%1{ —-C (k ’ k)]ng— (1 — g 71«)\) Z v (lklzgu:;)C(k 5 3».29»3)
A2A3

F2(ne—m) > v(AMKkX)C (15 kNg)+ 7y (20— 1)o(k—2)Cy.  (15)

Substituting the resulting expression for the fluctuation into Eq. (13), we find

: v(k—X)(2nx—1)"
wCh=—1{ ex—>_ nxv(k— 1)[1————~——~—J }Cx
k extow

2 (’i’l«k—ﬂ)\)'v(lllkls) + (1 - nk—m)v(l— 9»1)

+ T cluma) 1-

A1A2A3

C 3»1;123»3 . 16
- Je@iaa. a0

But since in a cube of side Q}, we have p>%Q, and since

8)\+w:—"__’z nKv (k— 3.) ’\'e2kp/h,
k

therefore

(17

v(p)/ (ext+w) Q¥ /kp~N-1,

Thus for a large number of electrons, N, in the system, the fluctuation terms are negligible. From now on, therefore,
we will feel justified in making contractions whenever possible.

Turning now to the remaining term in Eq. (13), we write an equation of motion for a particle-plus-pair excitation.
Evaluating the commutator, making all possible contractions, and discarding uncontractable products of five

creation and destruction operators, we find

wC(ll, 3\.23\3): I:H, C(?\.l, D\.2}\,,3)]g_{£(3\11, ?\.23\3)—2 7lk['11(k"‘3\.1)'—'0(k— 3\.2)'—'0(]{'—3\3)]— (1—“71)\2“%)\3)7)(3»2—}\.5)}
k

XC(D\‘l ’ 3\.23\,3) — Z/ 7)(7\.29\.31(,31(4)(1 —Nng— m\g)C(ll ; k3k4) —2 Z,, ['[)(3\.21{23&1](4)(%)\1— n)\g)

k3k4

koky

XC(kz N k43»3) — 7’(3»31(29»11{4) (11)\1-' ﬂ)\s)c(kz ’ k43\.2)]

This integral equation for a triple may be substantially
simplified by noting that it occurs in Eq. (13) multiplied
by a Coulomb potential factor. Since that factor is
singular for d;=2%3, to a good approximation we need
only substitute an expression for the triple valid in this
region. Thus, retaining in its kernel only terms singular
as A— 3 — 0, our equation for a triple now reads

Lo Xads) =0 JC (915 dds)
= Z 7)(3»1— 3\.3) (n)q'— %Xs)c(kz H ?vzk,;)

koky

Fo(d— A3) e (a1 —nag) —a (1—mag) JCx. (19)
An additional, somewhat ad koc, justification for the
approximations leading to Eq. (19) comes from noting
that the Hartree-Fock separation energy has an infinite
derivative because of the singularity of the Coulomb
potential in the exchange term; if the potential were
shielded, the specific heat would be finite. In obtaining
the approximate Eq. (19), we have in fact discarded

—29 (3\.13\.9\23\.3) [:1%)\1(1 — Nxg— %)\3) "l"ﬂ)\z’I’L)\g]C)\. (18)

only terms which do not contribute to shielding the ex-
change self-energy. If we further restrict ourselves just
to calculating this shielding, so as to obtain consistently
the lowest order nonzero specific heat, then we must
also discard the terms in Eq. (19) of the form #(1—#).
These latter terms, furthermore, lead in Eq. (13) to one
higher power of the coupling parameter ¢? than the
others., Although the potential factor in them is not
shielded in this order, it is anticipated that retaining
quintuple terms in Eq. (18), at least to lowest approxi-
mation, supplies the desired shielding.

In this event, Eq. (19) can be solved algebraically:

2 C(0; 2ds)

A1X3
= 7”\2“0(3‘-—3»2))((3\'2;3\')/[1_‘7’(3~_ 3»2))((3»2,3*)]; (20)
where
X(lz,l)ExZ; (ma—nng)/[e(d1; 2ds) —w],  (21)



RANDOM-PHASE APPROXIMATIONS IN MANY-BODY PROBLEM

the summation being restricted by the condition A+2;
= 3\.2‘!— }\.3.
Substituting this result into Eq. (13), we find

wCh=—{ea—2_ nmv(k—3%)/
[1—2(k—3)x (k%) J}Cx.

Thus the exchange self-energy is indeed shielded, x
being nonzero for k=2.

In order to match explicitly this expression for w with
that of Gell-Mann’s paper,® we must retain in a con-
sistent manner only the same low orders in the coupling
as is done there. This involves the approximate re-
placements:

(22)

(a) x(k,2) — x(2,2), (shielding term replaced by its
value for vanishing momentum transfer).

(b) w— —e&, in the denominator of x.

(c) m»— its value in the unperturbed Fermi state.

When these are carried out, Eq. (22) corresponds pre-
cisely to the result of Gell-Mann.

THE GROUND STATE VS FERMI STATE

Point (c) requires very careful consideration. An
exact evaluation of x would require a knowledge of the
expectation values #x in the frue ground state. Replacing
them by values appropriate to the Fermi state assumes
that x is not a very sensitive functional of the actual
distribution for #’s. At this point we stress the profound
difference between our present result and what would
have been obtained had we based the excitations on the
Fermi state (instead of the true ground state), simply
diagonalizing the Hamiltonian within the manifold
formed by Cy'r and all states C¥*CCy . In that case, the
formula for x would have read

- X [eQuird)—w]

M>kpA3<kr

(23)

only “half” the present result.

This point becomes particularly striking in the case
of an attractive potential. The equations of motion for
“Cooper pairs” Cy*C_i*, when operating on the true
ground state, lead (in the ordinary RPA) to a charac-
teristic equation for a collective root w. The charac-
teristic equation depends on the distribution of #’s; if

e? \ 2r

et 1 po 1
AE=_Iimf ——Z-—f dw Im—f—-%—NZv(l)-
0 0 5(3\‘, w+“7)
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these are taken to have Fermi values, the possible roots
w are ==in, where 7 is real. This indicates that the Fermi
state is unstable against addition of two particles. On
the other hand, diagonalizing the Hamiltonian within
the manifold of all states Cx*C_x*¢r leads to bound
eigenstates of the kind discovered by Cooper.?

GROUND-STATE ENERGY OF THE ELECTRON GAS

A further example of the application of the extended
RPA to the electron gas problem is the computation of
the ground-state energy. It is well known' that this
quantity may be obtained from the spectrum of single-
particle excitations by a suitable integration with re-
spect to density, but for our purposes it is more in-
structive to investigate ground-state properties by the
equally well-known!® method of calculating the dielectric
constant, in which the ground-state energy, for example,
is related to the response of the system to a given im-
posed change in density. Both approaches are especially
suited to, and in fact necessitated by, the equations of
motion technique we are using, which can only yield the
spectrum of excited states above the correct, but not
directly calculable, ground state.

Specifically, we apply by external means a density
wave a(\) exp[iA1(h-r—wi) ]4cc of wave number \
and frequency w. The interaction of this density wave
with the gas leads to an additional term in the
Hamiltonian

1(MA X Ck—x; k)+-cc, (24)
k
where
A=a(N)eietin, (25)
A dielectric constant €(d,w) is defined by Noziéres and
Pines'® as the ratio of the perturbation to the total
density response with wave number &, and we shall
adhere to this definition:

e(w)=A4/[4 +%: C(V4a;d7)] (26)

The difference in ground-state energies of interacting
and noninteracting systems is then shown!® to depend on
the analytic properties of the dielectric constant through
the equation:

(27)

by

Thus the ground-state energy is obtainable once we have an expression for a density element C(3'+2%; ") ; but
this we calculate approximately using the equation of motion method along with contractions, as outlined in the

131, N. Cooper, Phys. Rev. 104, 1189 (1956).
147, J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
18 P, Nozitres and D. Pines, Nuovo cimento 9, 470 (1958).
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Introduction. Making use of the general formula of the Appendix,
wCQ+2; 3 =[H, CQ/+2, M) ]={e(4+%; M)+ m[v(k—d)—o(k—2—2"]}
k

XC(+2; 2)= X [0 —0(k=3)J0men—m)Clk+2; k)= o(3) (mresn—mx) 4
+> o(k—2)) Z [CV+7 K Rk —C(k+2, k”; VK')]. (28)

After some algebraic manipulations, we find for the quantity of interest in Eq. (26):

G+ oo 3\-3)[

1
8(3»1+3», ll)—w— 8(3\.3‘!‘3\., 9»3)—(.0]

X[(nx3+)\—n>\3)C(?.1+l; 9\1)")% C(?\.l"":}s, 3»2; 3\.314)] }, (29)

where we define

x(l)E%(m'n—m')/[e(l’-kl;l’)—w]- (30)

If the last term in (29) were absent, this would repre-
sent a linear inhomogeneous integral equation for
C(2+%; d) ;anapproximate solution has been shown”'15
to reproduce the results of Gell-Mann and Brueckner,?
and Sawada and Brout,*~® for the ground-state energy.
By taking terms of the form C(XMi+2, dg; X3ds) into
account, however, we obtain the higher-order correc-
tions computed by Du Bois.?

A consistent treatment of the last term is again to
write an equation of motion for it. However, since it is
of higher order, we may treat its motion approximately;
because of the singular nature of the Coulomb potential
at vanishing momentum transfer, the term only con-
tributes strongly for d;—Xs=xs—A=20. Hence in the
equation of motion, we need only retain terms promi-
nent in this region. A further approximation is to discard
terms which couple the quadruple to itself, instead of to
pairs; they lead merely to additional shielding, un-
necessary in the order to which Du Bois has worked. We
then find, again referring to the Appendix,

wC (3»19\.2 ; 3\.33\.4) = [H, C(Q\.llg H 333»4) ]ge(lﬁq H 3\.33»4)0(3\.13&2 5 3.33‘-4) - 1)(3»2 - 9\.4) { [nu(l — NN ﬂ)‘z) +’I’L?\1n)\2]

XC(3»1+3»2—3\.4, 9».3)—I:ﬂ)\g(l—%)\3—1’5)\4)‘*‘%)\3%)\4:]C(?»1; 3»3""3»4- 9\.2)}, (31)
so that
‘1)(3»2_3»4)
2 C(MF, A A3d) =2 {Dan1+x (eag— 1ng) F2ra(1—122) ]
Aghg Na)g 8(11-{-9»., Az Mshg) —w
XC(s+20; Ag)F[rs(mae—nag) —mae(1—nag) JC(M+2; 21}, (32)

The summation is restricted by the condition d;+%s=As+As.

Inserting this result into Eq. (29), we reobtain an integral equation for the density response. However, pair
correlations which shield the potential at small distances have already been included, so that it is legitimate to
provide an iterative solution. Substituting on the right-hand side

7)(3») TN N T\
COV+a; A2 A (33)
1—o(Q)x(Q) eV +2; ) —w
we have
- S Cloia; 2y e { AT <2>(x), (34)
> = X T X ’
~ N 1—v()x () 1=2(Q)x (™)
where ) \
o@R)=3 x—x[ ]n+~n)n +A—172g), 35)
x ( ) ? )qZX3 v( ' 3) 8(3\.1‘1"3\-}3&1)—(» 8(3\.3’*]‘3\.;3\'3)—0) ( e M ( e " (
and
)= T 22l 3‘)[ 1 1 1 HAGFA— NN
a2 M) —w (ot ) —eo Je (23 ) —eo
mar+n (mag—mng) Faas(1—nng)  nag(mag—nng) Frag(1—1n1s)
[ } ]5)\14-)‘2, A3+2Ng. (36)
8(3\.1-{-7\., 3\'2; 3\.33»4)—(.0 8(3»3‘["3\., 3\-4; 3»13.2)—09



RANDOM-PHASE APPROXIMATIONS

Equation (34) now matches Du Bois’ Eq. (C2)? if we
make the identifications

x> =00 x> —Q0, xPe -0, (37)

The first two of these correspondences may be verified in
detail from Du Bois’ Egs. (1.39) and (A4), provided our
occupation numbers # are given their values in the
Fermi state. However, Du Bois does not give an explicit
expression for Q®. As Du Bois points out, for purposes of
calculating the ground-state energy in this approximation,
the effect of Q@ (being additive) may be calculated by
the usual third-order perturbation theory.

Note added in proof. At the suggestion of Dr. DuBois,
we re-examined x ®, and found that we had omitted one
contribution to it. This additional contribution is

O (9

Vo e(V4A ) —w

x{}k:v(k—x)[

N~ Mic ]}2
e(M4+0;0)—w e(k+N k) —w

and arises from the need for iterating the term
C(\1+A; A1) in Eq. (29) to one order higher than that
implied by Eq. (33).

Also we wish to point out a self-consistent set of
misprints in Appendix C of reference 8. The develop-
ment following Eq. (C2) reads correctly provided the
second and third terms within the square brackets of
this equation are interchanged.

M n— M

CONCLUSIONS

It must be emphasized that in spite of its apparent
success in reproducing results previously obtained by
perturbation theory, the present procedure is subject to
the same criticisms as similar ‘“‘truncation” methods
that have been suggested in the past: The “expansion
parameter” is not given. It is not clear what criterion
should be used in the decision to terminate the chain of
equations at a particular stage. Thus the stage to which
the process was carried in this paper was the lowest
which contained the results of perturbation theory, but
it also contained a good deal more. The extra informa-
tion was not needed in the expansion in the first few
powers of the interaction parameter, and at this point it
is not clear in what critical direction the extra informa-
tion improves the result. However, further experimenta-
tion with the method may throw light on these more
fundamental aspects.

The case of superconductivity may prove particularly
interesting. Following the Bardeen-Cooper-Schrieffer!®
theory of superconductivity, one will here retain aver-
ages, not only of C*Cy, but also of Cx*C_i* and C_iC.
The ordinary RPA amended in this way has already
been studied by Anderson.!” For the added particle

16 T, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).
17 P, W. Anderson, Phys. Rev. 112, 1900 (1958).
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problem it yields two coupled equations for C)* and
C_,, with excitation energy equal to the familiar square
root expression. Retention of the terms neglected in
RPA leads to coupled equations linking Ca* and C_x
with terms of the forms C*CC, C*C*C, C*C*C*, and
CCC. Eliminating the latter four terms in favor of the
former two should improve the excitation spectrum. We
may conjecture what this process means physically by
again considering the normal case. There the C*CC
terms were driven by C,, and in solving for C*CC, the
sums were replaced by integrals. Then, as a first ap-
proximation, the energy was replaced by the uncor-
rected energy e, in the solution. The replacement of
summation by integration picks out the collective re-
sponse of the medium to C, (it is easily seen that in the
approximation of section two, the corresponding natural
frequency is the plasma frequency plus a single-particle
frequency) and the replacement of w by &\ means that
the collective response is being driven “off-resonance,”
resulting in the shielding of the exchange terms. In the
same way, in the superconducting case the correction
will stem from an off-resonance excitation of a collective
response to Ch* and C_,, the relevant modes being
combinations of single-particles with the collective
modes considered by Bardasis and Schrieffer.'®

Finally we note that the present method resembles
the Green’s function method of Martin and Schwinger.®
It also is closely related to the density matrix method of
Ehrenreich and Cohen.?® In fact, the results in the pre-

* sent paper can also be derived by writing down the equa-

tions for successive partial traces of the density matrix
in an # representation, stopping at a particular stage
and replacing elements like (mmans -+ |p|mms'ng’ )
by (n1|p|ny) (nans- - - |p|n'ns’- - -). However, these
authors carry their procedures only to the point reached
by the ordinary random phase approximation.
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APPENDIX

General Commutator with Contractions

In this Appendix, we exhibit a general formula for the
commutator with the Hamiltonian of a product of
creation and destruction operators, arbitrary except for
the requirement that all indices shall be distinct (no
contractions possible). In the resulting commutator, we
make all possible contractions, that is, isolate all terms
in which a C* and a C have the same index and replace
the operator product Cyx*Cy by the number #x. With the

18 Bardasis and Schrieffer, International Conference on Many-
Body Problems, Utrecht, 1960 (to be published).

19 P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). -

20 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
J. Goldstone and K. Gottfried, Nuovo cimento 13, 849 (1959).
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commutation and contraction operations performed, we find
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The notation «--(X);--+, and ---( );---, means: Re-
place Cb; by Cy, and by (—1)7 respectively.

It is of interest to note the three types of “reaction”
terms in Eq. (A.1), which have been enclosed in square
brackets. If an iterative solution for the corresponding
integral equation is written down, and the iterations clas-
sified diagramatically, then these three sections of the

kernel lead to three different types of diagrams. The
first, involving the sum ¢<j to M, produces only
particle-particle scattering, the second (i< j to NV) only
hole-hole scattering, and the third only particle-hole
pair scattering. In the case of the Coulomb potential,
we have seen that only the third type of term plays an
important role, since it alone contains the dominant
singularity for small momentum transfers.



