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Time-Ordered Green's Functions and Perturbation Theory*
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A formulation of 6eld theories based on the generalized unitarity condition and parametric dispersion
relations is presented. In the perturbation theory we discuss the connection between the present scheme and
the Lagrangian theory and derive the renormalizability condition in our formulation. Finally we show for
typical processes in the 6rst, second, third, and fourth orders that our theory can reproduce the renormalized
Feynman perturbation theory.

I. INTRODUCTION

' "N the conventional renormalizable 6eld theories we
~ - start from a symbolic Hamiltonian involving diver-
gent counter-terms such as the self-energy to cancel
divergences inherent in the theory, and by the applica-
tion of the renormalization prescription we get con-
vergent expressions for the scattering matrix and expec-
tation values of observable quantities. It is, however,
unavoidable that we meet various divergences in the
course of the calculation. For this reason we reformulate
renormalizable 6eld theories in such a way that one can
reproduce the renormalizable field theories without
encountering any divergences in the course of the calcu-
lation. One possible way to develop this idea is to find
and exhaust all possible relationships among finite
renormalized expressions. The essential part of this pro-
gram has been undertaken in a previous paper by one of
the authors, ' and we shall show in this paper that we can
really reproduce the renormalized Feynman calculation
in our scheme.

Our formulation is, as we shall see later, essentially a
kind of S-matrix approach proposed by Heisenberg. '
When Heisenberg first discussed the properties of the S
matrix, he gave as the fundamental properties of the S
matrix (1) the unitarity and (2) the Lorentz invariance.
Although all the S matrices satisfy these two properties,
they do not exhaust all the properties of the S matrix
that we need. Recently it has been suggested by
Mandelstam' that the combination of the dispersion re-
lations (or the analyticity properties) and unitarity
would determine the dynamical structure of the S-
matrix elements in the lower configurations. This is
indeed a very powerful approach for practical calcula-
tions as stressed by Chem, 4 but we propose here a differ-
ent approach for the following reasons: (1) In order to
6x the Born terms in the dispersion relations we need a
more fundamental theory than the combination of

*This research was supported in part by the joint program of
the Once of Naval Research and the U. S. Atomic Energy
Commission.

K. Nishijima, Phys. Rev. 119, 485 (1960). This paper will be
referred to as A hereafter.' W. Heisenberg, Z. Physik 120, 513, 673 (1943);Z. Naturforsch.
1, 608 (1946).See also C. Mgller, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 23, No. 1 (1945); 24, No. 19 (1946).' S. Mandelstam, Phys. Rev. 112, 1.344 (1958); 115, 1741, 1752
(1959).

4 Q. I'. Chew, to be published),

II. GENERALIZED UNITARITY CONDITION

The unitarity condition is certainly one of the most
important properties of the S matrix in any theory, and
in this paper we try to further generalize the unitarity
condition in order to exhaust all the available properties
of the S matrix.

Put 5=1+T, then the unitarity condition is given by

T+Tt+ TT(=0. (2.1)

To be more precise, let us consider the elastic scattering
of two particles below the threshold energy for other
inelastic channels; then Eq. (2.1) is written more pre-
cisely as

T(p'q': pq)+Tt(p'q': pq)

+ Z T(p'q': p"q")Tt(p"q":p'q') =(), (2 2)
pie rtf I

unitarity and dispersion relations. (2) It is very hard to
exhaust all the dispersion relations that are needed to
determine the complete dynamics.

In order to overcome these difhculties we generalize
the S matrix so as to include the matrix elements off the
mass shell. Then it is possible to find a simple set of
dispersion relations, and the virtues of this approach are
(1) that we need not assume Born terms, and (2) that we
can always write down a dispersion relation for the S
matrix element in an arbitrary con6guration. Further-
more, under certain conditions unitarity and this new
set of dispersion relations seem to exhalst all the possible
relationships among the renormalized S-matrix ele-
ments. This can be verified by reproducing the re-
normalized perturbation theory from our scheme.

We shall first discuss the two fundamental postulates
of our theory on which we base our calculations. First in
Sec. II we introduce the unitarity condition which is
generalized to accommodate those matrix elements
which are off the mass shell. In Sec. III we introduce the
parametric dispersion relations which determine the
dynamics of the system. In Sec. IV we discuss the
physical meaning of the subtractions in the parametric
dispersion relations and the renormalizability condition.
Finally, in Sec. V we shall discuss the reproduction of
the Feynman perturbation theory. It will be shown by a
direct calculation that the conventional perturbation
theory can be reproduced to the fourth order.
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where the four-momenta p's and q's satisfy the mass
shell conditions

P2+m2 —PI2+m2 —p~&2+m2 Q

q2+ ~2 —q~2+ p2 —
q

~ &2+~2 —Q
(2.3)

We can generalize Eq. (2.2) by lifting the mass shell
conditions for four momenta occurring in the initial and
Anal states but still retaining this condition for inter-
mediate states, i.e.,

with respect to Q(xi) Q(x„) and putting Q=O
enables us to get Eq. (2.6).

If we take the vacuum expectation value of Eq. (2.6),
we get

(—i) "(oI TL~(») "v(x.)]lo&

+i "(Ol TL0 (x )".
0 (x-)jl o)

+2' 2 (—i) "i" "(QITL0 (»') "0 (»')]l~&
comb a

P~~2+m2 —q&~2++2 0 (2.4) x(ZITI:p (x~r') "v (x-')) lo&=o, (2.11)

We call this modified condition the generalized uni-
tarity condition. Since the generalized unitarity condi-
tion is one of our fundamental postulates, we shall
brieQy show that it is always satisfied in the con-
ventional theory. '

First, the 5-matrix elements either on the mass shell
or off the mass shell are given by the Fourier transform
of a set of functions of the form

(—i) "Ezi Ez„(OI TL02(xi) y(x„)]l0&, (2.5)

where E is the Klein-Gordon operator for the field q.
We have taken for simplicity the neutral scalar field.

If we define the generalized 5-matrix elements in this
way, we can prove the generalized unitarity condition
from the asymptotic condition. For this proof we start
from an algebraic identity

2 (—i)"i" "TLp (»') 0 (»')]
comb

where T is the antitime-ordered product symbol, and we
sum over all possible combinations to divide e variables
xI, x2, , x„into two groups xI'. xJ,

' and x&+I' . x„'.
For the sake of completeness we shall give the

derivation of Eq. (2.6). We first define a functional U by

where P' denotes summation over all possible combi-
nations excluding k=0 and k=e. Next we use the
asymptotic condition in order to express the vacuum —n
element of T products in terms of the vacuum expecta-
tion values. Namely we make use of

(oI TL0 (») 0 (x-)ll pi, p2, , p-, +)

= (—i)" "d'» "d's-(OI 0 (sr) IPi& (oI 2 (s-) IP-&

XEzr ' ' 'Ez (Ol T[p(») '

&«(x„)p(»)" 0(s„)jlo&. (2.12)

A similar relation for T products is obtained by taking
the complex conjugate of the above equation.

We now define the w functions by

r (xi, ,x.)
= (—i) "Ezr ~ ~ Ez„(ol TL02(xi) ~ ~ p(x„)]l0); (2.13)

then the Fourier transform of a ~ function expresses an
S-matrix element. Now, inserting Eq. (2.12) into Eq.
(2.11),we find a set of coupled equations f'or r functions:

r(xi x„)+r*(xi x„)

U=T expl i~~ q(x—)Q(x)d4x I, (2.7)
i'

+ Q' P —~(dg)(dry)r(x, ' xs'Nr Mr)
comb i OI! J=

where Q is a real c-number source. Then U is a
generating functional of the T products and we get

5"U

LBQ(xr) 8Q(x„)) q 0

=(—')"TL ( ) . ( -)j (28)

U is unitary and its Hermitian conjugate U~ is given by

XA+ (Ni 'Ur) ' 'Df+ (24i —'vi)

Xr*(x,+,' x„'2, e,) =O, (2.14)

where (dl) =d424r . d4ui, (dp)=d4pr d4vi, and r*is the
complex conjugate of 7., and

iA"'(~—0) = E(0 I 0 (I) IP&(P I 0 (e) I o&

f'
Ut=Texpl i ~ 02(x)Q(x)d4x l. (2.9) (2x)2 ~

f
d'P e'"'" "'f)(pp)&(p'+m') (2 15)

Differentiating the unitarity equation,

Vvt=t, (2.10)
5 A similar condition was discussed by Cutkosky based on the

graphical technique, R. E. Cutkosky, J. Math. Phys. (to be
puhhshed); Phys. Rev. Letters 4, 624 i1960).

Equation (2.14) stands precisely for the generalized
unitarity condition. If we take its Fourier transform and
put all the four-momenta on the mass shell we find the
ordinary unitarity condition, but if this mass shell con-

' K. Nishijirna, Phys. Rev. 111,995 (1958). See also reference 1.
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dition is lifted we obtain the generalized unitarity
condition.

The generalization of this condition to systems con-
sisting of many kinds of particles is obvious. In such a
case we give a field operator to each stable particle no
matter whether that particle is elementary or composite.
In the latter case we understand the field operator in the
sense of Zimmermann, " Haag, ' and one of the authors. '

III. PARAMETRIC DISPERSION RELATIONS

The generalized unitarity condition is certainly useful
and fundamental, but it is kinematical in nature and
does not allow one to determine the dynamical structure
of the 5 matrix if there were no other conditions. As a
matter of fact, if we know the S matrix up to a certain
order in the coupling constant, the unitarity condition
would allow one to determine the absorptive part of the
5 matrix in the next order. In order to determine the
dispersive part of the 5 matrix in this order, however,
we need another condition, i.e., dispersion relations. We
study here what kind of dispersion relations would be
su%.cient for this purpose. A universal kind of dispersion
relations is obtained by extending the 5 matrix to those
values of four-rnomenta which are off the mass shell.

In the previous paper A, an auxiliary set of functions
was introduced in addition to the 7. functions. Namely,
the Feynman diagrams contributing to a 7 function are
in general disconnected, and we call the contributions
from connected Feynman diagrams the p function.

The relation between two sets is given by

r(xxl x ) =p(xxl. x,)
+ Q p($$1' $2')r($2~1' x„'), (3.1)

comb

where the summation is extended over all possible ways
to divide x1 x„ into two groups excluding k=n. This
formula enables us to express v in terms of p's and vice

versa. Thus it is possible to write down the generalized
unitarity condition in terms of p functions as discussed
in A. In the case of a free field, p's are given by

p($1$2) r($1$2) ( 2) Es'iX&26 P($1 $2)
= —iKvlb (xl —x2), (3.2)

p($1$2 $~) =0, for 22) 2.
The unitarity condition in terms of the p's looks like

p(xl x„)+p*(xl x„)
iL

+ P Q —I (du)(dv)Lr($1' $2'ul ul)
comb l=1 )!

X~'+'(ul Vl) 6'+'(ul 1 1)

Xr ($2+1 ' ' ' x &1' ' ' pl)) o 0 (3.3)

where the subscript "conn" means to omit all the contri-

7%'. Zimmermann, Nuovo cimento 10, 597 (j.958).' R. Haag, Phys. Rev. 112, 669 (1958).

"'Pl d'P ~(P1+. .+P )
(2~)4(n—1) Q

Xps(vis&+ . +4sss)g(pl. . .p ) (3 4)

Then in general g is a function of scalar products of p's
and has the following integral representation:

a(c p,M')dc pdM'
B(P-Pp) =

(Q c pp Pp+M' ip)—
(3.5)

where cr is a real weight function of real variables c's and
a positive variable 3P. From this integral representation
one can derive

P " p' d$'
R S(P-Pp &)=— I —~, & e(P-Pp &'), (3.6)

0

where ] is a common scaling parameter to be multiplied
into all the scalar products. We call this equation the
parametric dispersion relation. The integral representa-
tion (3.5), however, is not the most general form and one
has to add a polynomial of scalar products to (3.5). In
such a case we have to make subtractions, i.e.,

(d)s
l

—
I «B(P-Pp 5)

Ed()

P I" d$'»-. (&'-&)'
& S(P-Pp &') (37)

As we shall see in the next section, the number of sub-
tractions in each dispersion relation fixes the dynamics
of the system under consideration.

We have shown that the two conditions, (1) gener-
alized unitarity and (2) parametric dispersion relations,
are the consequences of the present field theory, but
from now on let us take these conditions as the funda-
mental postulates; that is we shall not try to establish
these conditions based on another set of axioms. Then
what we have to do is to show that these two postulates
under certain conditions exhaust all possible relation-
ships among finite renorrnalized expressions. This will be

9 From this de6nition the Fourier transform of Imp (or Rep) is
given by Ref (or Im8).

butions to the vacuum expectation value arising from.

disconnected Feynman diagrams. Now let us study how
one can solve this equation in the perturbat, ion theory.
If we know the p functions up to a certain order in the
perturbation expansion one can immediately calculate
p+p* to the next order. So the determination of p in this
order can be gotten by giving a prescription of how to
calculate Imp when Rep is known. The solution of this
problem was studied in a previous paper A. First, intro-
duce the Fourier transform of p by'

p(xl. x„)
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illustrated by reproducing the renormalized perturba-
tion theory from these two postulates.

Finally, let us briefly discuss the connection between
the present postulates and the others. First, the gener-
alized unitarity condition is the substitute for the
asymptotic condition as is clear from its derivation.
Next the Lorentz invariance and microscopic causality
condition are alrea, dy assumed implicitly in the assump-
tion that g is a function of scalar products of p's, since

p or v- would be an invariant function of the x's only
when the T product can be defined independently of the
choice of time axis. Therefore, in the derivation of our
basic postulates we have already assumed the current
postulates in the conventional axiomatic field theory.
Once these two postulates are employed, however, one
can forget the definition of the r functions (2.13),
through which our approach is related to the con-
ventional field theory. If we do so, our theory turns out
to be an 5-matrix theory and we no longer have field
operators.

Repi(xi. x )=0, (4.1)

IV. SIGNIFICANCE OF SUBTRACTIONS

The subtractions in the parametric dispersion rela-
tions are necessary in order to introduce interactions. In
this section we shall discuss the correspondence between
the subtractions and the Lagrangian theory. This
problem has already been discussed in the previous
paper A, but for the sake of completeness we shall
recapitulate the results.

We first pick out terms linear in the coupling constant
from the p equations. Then the generalized unitarity
condition assures us of the equation

The solution of this equation is given by

Re/i (p p~. ()= g, const,

and consequently
s.(p-p~) =g

There is another possible set of solutions like

(4.5)

(g/~ ) y(~)" (4 &)

whereas the solution (4.6) can never be reproduced by
the conventional local field theory. This means that the
solution (4.6) certainly violates the microscopic causality
condition and gives rise to certain unphysical singu-
larities in the scattering amplitude. For this reason we

employ only the simplest solution (4.5).
Thus we have introduced interactions through sub-

tractions. In general, when higher order corrections are
taken into account we determine this constant of
integration by an appropriate boundary condition. For
the three-point function, for instance, we use the
boundary condition

eg (p12 — A)2 p 2 — ~2 p
2 A(2) —

g (4.8)

which defines the conventional renormalized coupling
constant.

Next let us examine two subtractions, then we get
from the equation

Res (P-p'()= - p-p (/d- p-P 6 (4.6)

which is certainly independent of f and hence satisfies
(4.4). We exclude, however, solutions like (4.6) for the
reason to be stated below.

We get the same result as (4.5) from the conventional
theory if we take an interaction of the form

since the nonlinear terms va,nish in this order due to the
relation Ref (p„p $) =0,

/$2
(4.9)

d4N po(x, 44)A&+&(N —i) = —iE.d &+&(x—v) =0.

In the momentum representation we get

Imbi(pi p„)=0.

The nonsubtracted dispersion relation leads to

(4.2)

the general solution

RO.(p-» ~)=g+h 2 p-» ~+h. EP-'~ (4»)

This solution corresponds, apart from trivial nu-
merical factors, to the following interactions in the
conventional field theory:

Re84(pi P-) = o (4.3) gy", hiy" '(4Iy/4Ix„)', hgy" 'C3y. (4.11)

—ReBi(p-Ps 5) =o
d$

(44)

and we cannot introduce interactions as far as perturba-
tion theory is concerned.

In order to introduce interactions we have to use
subtracted parametric dispersion relations for certain g
functions. If we make one subtraction for the r4-point g
function, we get from Eqs. (3.7) and (4.2) the equation

From these results we draw the conclusion that the
subtractions in the parametric dispersion relations serve
to introduce interactions and that the number of sub-
tractions determines the type of interactions in the
corresponding conventional field theory.

In particular, for two-point functions it is clear that
we have to make two subtractions since the free
Lagrangian is quadratic and involves second order
derivatives. This is seen from (4.11) with m=2. This
sa,me conclusin~ is drawn from the Kallen-Lehmann
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representation. "The boundary condition in this case is

o(p')
lim

p'+m' ~ 0 ps+ms
(4.12)

+i7,o„„p,(xys). (4.14)
~pp~~v

Now introduce the Fourier transforms of p functions,

g, gb, and g, . If we make one subtraction for c&, and
fix the constant of integration by

So far we treated only scalar theory and it would be
instructive to give a, simple example of interacting fields
with spin. For this purpose let us take a nucleon
interacting with a neutral pseudoscalar field.

We first introduce the three-point p function by

p(x,y,s)= (—i)K .iD„
(—;)D.(0

~
T(,(.-g (y)y(.)j ~

O),

where D„=y8„+m,D.=y~B, m, a—nd m is the nucleon
mass. The first thing we do is to expand p into a sum of
all possible invariants":

8
p(xys) =i&sp. (xys)+i&sr. ps(xys)

Bxlj,

When we proceed to higher order calculations we
combine the generalized unitarity condition with the
parametric dispersion relations. In the former equa, tion
there occur no divergences, but in the latter the dis-
persion integrals do not converge sometimes and imply
subtractions in order to make the integrals converge.
This subtraction procedure corresponds to the renormal-
ization procedure in the conventional field theory. If we
need more subtra, ctions than are assumed in the be-
ginning, the theory is called unrenormalizable, other-
wise the theory is renormalizable. In what follows we
shall study this condition in the perturbation theory,
and for the sake of simplicity we take the neutral scalar
theory here.

First we can readily notice that the function p(x&xs) is
decoupled from all others. Namely the unitarity condi-
tion for three- or more-point functions do not involve
the two-point function. Once all other p functions are
known, one can calculate p(x&xs) from the unitarity.
Therefore in this scheme, unlike in the conventional
theory, it is not necessary to know p(x&xs) to solve all
other functions.

In order to verify this sta, tement, we shall refer to the
following formula:

~K,K„h&'(x u) 6&+& (u——tY)d4u=O,

g (q2 — u2 p 2 — m2 p 2 — m2) —f (4 15) or (4.17)

this corresponds to the pseudoscalar coupling if &Pyslf 9&.

On the other hand, one subtraction for gs with the
boundary condition

gs(q2 —
&a2 p&2 — m2 ps2 m2) g (4 16)

will introduce the pseudovector coupling ig&Posy„g c&„q.
In this way we can distinguish between different types

of interactions through the subtracted parametric dis-
persion relations. " This result refines the conclusion
drawn above.

We have clarified the correspondence between the
present approach and the Lagrangian theory a,nd are
going to push forward this program. In the Lagrangian
theory we have a criterion as to whether a theory is
renormalizable or not, so that we shall try to find out a
corresponding criterion in the present scheme. For this
purpose we first have to study the roles played by the
subtractions. As we have seen, the subtractions serve to
introduce interactions on one hand, and once interac-
tions are introduced they serve to eliminate divergences
on the other hand.

'o G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehn&ann,
Nuovo cimento 11, 342 (1954); M. Gell-Mann and F. E. Low,
Phys. Rev. 95, 1300 (1954).

"Due to the translational invariances, i.e., (8/Bx„+S/&y„
~s/es„)p(xys) =0, only two of the derivatives are linearly
independent.

"In the 5-matrix approach in which only matrix elements on
the mass shell are considered, one cannot distinguish between
pseudoscalar and pseudovector couplings. On the mass shell, two
invariants are no longer independent.

p (x—u) Al+& (u —t&)d'u= 0.

For this reason we shall not be worried about the two-
point function and study only three- or more-point
functions. The problem now is concerned with the
convergence of the dispersion integrals in the perturba-
tion theory. Take the &s-point function g& "&(p p»). We
are interested in the behavior of g& "& for large values of
the p's. As far as the parametric dispersion relations are
concerned, we need not distinguish between different p's.

We assume that the singularity of g& "& at p= ~ is
simply given by a certain power of p, i.e.,

8'"&(p-ps)-p (p ~ ") (4.1g)

(4.19)

+4(ts+2l 2)5 61, —(&s)—2).

The singularity lnp is counted as p'. This assumption
is valid in every order of the perturbation expansion. We
denote this power n as c(e) since this power depends on
the number of variables g. When we need subtractions
the power of the dispersive part wouM in general be
higher than that pf the absorptive part. In order to de-
termine the powers we utilize the unitarity condition.
Take Eq. (3.3) and expand r's into p's, then the non-
linear part wouM consist of bilinear terms in p, trilinear
terms and so on. We first retain only bilinear terms and
compare the powers of the equation.

c(u)+4(ts —1)) Max [c(k+i)+c(u fs+l)—
k+l )2

97, —k+l )2
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d(22) = c(n)+22 —4, (4.20)

The inequality sign & is the consequence of the fact that
the power of the absorptive part given by the unitarity
is in general lower than the dispersive part which is
involved in the 22-point Green's function &2& "&. 4(22 —1)
comes from the definition of && from p, Eq. (3.4). "Max"
means that we have to pick up the highest power from
the sum over the various 0's, excluding k+3= 2, 22 —0+3
=2. 6l comes from du, d&& and 6&+&(I—2&).

If we take trilinear terms, we get another inequality
involving three c's on the right-hand side, but this
inequality is always satisfied provided that (4.19) is
satisfied. Therefore we shall discuss only (4.19).

Put

za&+&(x,~,) za&+&(*,~,)

(42r)' ~ &mi+m, &2

dKsih&+&(X, K)

(2&22+2222) 2
(2&22—2&22) '

&& 1-I
I

1-I
I , (52)

K i ( K i
we find

ReE,I&. „(0i
T[«2(x) &o(y)] ( 0)

where we have assumed the simplest coupling gC*C q in
the sense discussed in the previous section. '4 3f denotes
the nucleon rest mass. If we utilize the formula

then (4.19) is transformed into

d(22)&Max[d(4+1)+d(&2 —k+&)]. (4.21)

The solution is easily obtained as

c(3)&1, c(4)&0, c(5)&—1, , (4.22)

g t'
dK Re($6&+& (x y) K))

(4&r)' "4lim

2M' '~
(5 3)&K)

This means that one subtraction for either one of /&2&

and /&4& or both is sufhcient to eliminate divergences if
there is a consistent solution in perturbation theory.
This also means that one cannot introduce additional
interactions through subtractions for five- or more-point
functions. Furthermore if such a solution exists one can
prove c(2)=2 and consequently two subtractions for
Ii& & are sufTicient. This result is consistent with the con-
clusion of the conventional theory that only p3 and &4

interactions are renormalizable. The theorem proved
here is essentially equivalent to Dyson's power counting
theorem. "

V. PERTURBATION THEORY

In this section we shall show how the Feynman per-
turbation theory can be reproduced based on the two
fundamental postulates: (1) generalized unitarity con-
dition, and (2) parametric dispersion relations. We
understand that the Lorentz invariance and local com-
mutativity are implicitly involved in the latter. The
purpose of this section is to show that these two
postulates really exhaust all possible relationships among
the finite renormalized expressions under the assumed
expandability of the 5-matrix elements in powers of the
coupling constant. In this section we shall discuss a,

simplified model of the meson-nucleon system. Ke as-
sume the nucleon is a charged scalar particle and the
meson is a neutral scalar particle, and they are denoted

by C and q, respectively.
Ke start from a nontrivia1. order.

Meson Propagator

From the unitarity condition we 6nd in the second
order

Re%,K„(0
~
T[&o(x)K&(y)] ~

0)
=g' Re[i'll&&+& ( yM) id&+& (—x—y, 3f)], (5.1)

'2 P. J. Dyson, Phys. Rev. 75, t736 (1949).

The proof of Eq. (5.2) is given in Appendix A. By the
formula

2A&+& (X)= -', [L&'& (X)+ia(X)], (5.4)

the right-hand side of Eq. (5.3) turns out to be

dK2-,'i1& &(x-y, K) 1-
~ ~

. (5.5)
(42l') 4ilP ( K )

Now we assume the Kallen-I. ehmann representation,

(oI T[& (*)& (y)]lo)

=~F(2' y, 2&2)+ "—dK2 &F(*—y, K)o.(K'). (5.6)
~4~

From this representation we find

Reit T&. (P~ T[&t&(g) p(y)] ~P)

dK2 26 1 (z y K) (K2 2222)2&T(K2) (5 7)

where m is the meson rest mass entering in E and E„.
By comparing Eq. (5.5) with Eq. (5.7), we find

g' [1—(2M/K)2]l
o (K') = e("—ms).

(4~)2 (K2 2&22)2
(5.8)

(—z) Ii, Ii„&,™(P
l
7'Le(*)C'*b) 2 (2)3lP&

= —~gs(x —s)a(y —s).

Thus the propagation function is determined. Of course,
we could use the subtracted parametric dispersion rela-
tions, but the above method yields the same result
somewhat simpler. The two subtractions in the para-
metric dispersion relations correspond to mass and
charge (or Z) renormalizations.
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Finally if we transform the integral (5.6) by

&42= Ml/n (1 —n), (5.9)

we find the Feynman expression for this propagator if
n denotes the Feynman parameter to unify the de-

nominators.
We can calculate the nucleon propagator in a similar

way.

FIG. 1. Feynman diagram for
the third order vertex function.
The straight lines represent
nucleon lines; the wavy line is a
meson line.

where D") refers to the contraction function for the
exchanged meson. In the derivation of the above equa-
tion, use has been made of

i[D&+& (x)+D&+& (—x)]=D "&(x), (5.12)

as well as our previous result for the first-order three-

point p function.
Introducing the Fourier transform of p& by means of

Eq. (3.4), we get after inserting the momentum
representation of D&'& into Eq. (5.11)

Imgz= g zpr2(—(pl+pz)'+mz)
+5((Pl+P4)2+zzzz)]. (5.13)

Then using the pa, rametric dispersion relation

I' t" r' d$'
ReB2(p-P~ 5) = — — ImB (P-P~ 5')

J 1!

we find

Second Order Scattering

As the simplest example of the use of the non-

subtracted parametric dispersion relation let us discuss
the Green's function for nucleon-nucleon scattering

p (xlxzxzx4) = ( z)'K*&MK—2MK*2MK*4M

X«I T[e (xl)C *(xz)C (xz)C*(x4)]
I
0),.„„, (5.10)

where the subscript "conn" means to omit all the
contributions to the vacuum expectation value arising
from disconnected Feynman diagrams.

By picking up the second-order terms from the
unitarity condition for p(xlxzxzx4), we find

p(xlxzxzx4)+p*(xlxzxzx4)
= —g2D&'& (xl—xz) [6(xl —x2)5 (xz—x4)

+b(xl —x4)5(xz —xz) 7, (5.11)

Third-Order Vertex Function

The next Green's function we are interested in is

p(xys) = ( z)'K.MK—„MK."
X«I T[C (x)C'*(y)!p(s)]I

0). (5.18)

The first-order expression for p is trivial and can be
written down immediately by using the prescription
given in the previous section. Here we try to find out the
third-order expression of this function. In particular, we
shall study the contribution of the Feynman graph
given by Fig. 1. This contribution will be denoted by
p, (xys). If we know all the p functions up to second
order, we can immediately write down an equation for
the absorptive part of p, (xys) by just picking up terms
corresponding to this graph from the unitarity condition.
The explicit form of this equation is given by

p, (xys)+p, *(xys)+ (ig' p D&(x—y)4I1&+& (x—s)
cycl

or
Xh'+&(y —s)+comp. conj.) =0,

(5.19)

Rep, (xys)

=g' Im Q Dp(x —y)D&+&(x—s)Z&+&(y —2),
cycl

where D refers to the meson field and 3 to the nucleon
field. The Green's functions are defined and related to
each other by

nucleon sca,ttering in the second order

( z)4KxlM—Kz MK~ "Kz "
x«I T[c(»)c"(x2)z (»)~(x4)]IO)--

= —g26 p(xl —x2) p(xl —xz)b(x, —x4

+ t'&(xl x4)f&(—x2 xz)] —(5.1.7)

ol

g
2

(Pl+P2) +224 Z2 (Pl+P-4) +2&Z Z2

. (5.15)

Regz ———g' +, (5.14)
. (p, +P2)2+2&22 (pl+P4)2+2&z2

(*)=-' '"( ) — (*)
zh+ (x)=—'p!o&(x)+id(x)],

Z(*)= ——,'4 (xo)~(x).

From the above relations we find

(5.20)

Next going back to the position space, we get

p2 (xlx2xzx4), g D F (xl x3) [~(xl x2)I& (xz x4)

+b(xl —x4)|&(xz—x2)]. (5.16)

In a similar way we obtain the p function for meson-

Im[D2 (x—y) 5&+& (x—s)6'+& (y —s)]
=-'[D(x—y)A!'& (x—s)h"& (y —s)]

—4[D(x—y)~(x —s)~(y —&)]
—4[~"'(x—s) -'D"'(x—y)~(y —s)]
—4[6~'& (y —2) —,'Do& (x—y)A(x —2)]. (5.21)
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Fn. 2. A typical fourth-
order Feynman diagram for
the nucleon-nucleon scattering.
The straight lines represent
nucleon lines; the wavy lines
are meson lines.

Therefore we find for the sum the expression

P ImDp(x —y)h&+&(x —s)A'+&(y —s)
cycl

=-,' P D(x—y)A"'(x —s)Af'&(y —s)
cycl

——,
' Q D(x—y)141(x—s)A(y —s). (5.22)

cycl

The last two terms in Eq. (5.21) cancel each other when
summed over the cyclic permutations. Furthermore,
Eq. (5.22) can be written as

cycl

XZ(x—s)Z(y —z) P c(xo—so)e(yo —zo). (5 23)
cycl

If we use the relation

3 (go —so) e(yo —so)+e (yo —xo) e (so—xo)

+e(so—yo)e(go —yo)=1, (5.24)

it is easy to show that the expression (5.23) is equal to

Im(Dp(g —y)A p(y s)—A p(s x))—. —

Thus we have proved

Rep (xys)
= —g' Im[D p(x —y)6 p(y —s)6p(s —$)7. (5.25)

T his means that our method gives the same absorptive
part of p, (xys) as that given by Feynman's method.
Since in both theories the Fourier transform of p,
sat isfied the same parametric dispersion relation with
one subtraction, we have verified the equivalence be-
tween two theories in this case.

Th ere is one interesting remark in order, namely, if
w e carry out this calculation in momentum space we run
in to a complication. The vertex function in momentum

sp ace is a many-valued function of p12, p22, qs and we

ha ve to find the correct Riemann sheet. This is due to
the occurrence of anomalous thresholds in this prob-

le m." The calculation in the position space as done
h ere, however, shows that the result is unique and that
the complication in the momentum space is not es-
sen tial, and there certainly would be a correct way of
han dling this problem in momentum space.

"We have to study the vertex function for all possible real
values of P12, PP, q2. For certain values we encounter anomalous
thresholds. See in this connection S. Mandelstam, Phys. Rev.
Letters 4, 84 (1960);R. Blankenbecler and L. F. Cook, Jr., Phys.
Rev. 119, 1745 (1960); Y. Nambu and R. Blankenbecler, Nuovo
cimento (t o be published).

Thus we have verified the equivalence of our scheme
to that of Feynman for typical processes up to the third
order. The result here also shows the significance of the
position space in some problems. In the Appendix 8 we
shall discuss some properties of p function in the position
space.

Fourth Order Scattering

As a representative of the class of diagrams associated
with p(xixsxsx4) defined by Eq. (5.10) in the fourth
order, we consider the diagram shown in Fig. 2. I.et us
denote the contribution of this diagram to p(xixsxsx4) by
pb(xixsxox4). Using the generalized unitarity condition
we can immediately write down an equation for the
absorptive part of the function p b($]$2$3$4):

Rep b(xixsxsx4)
=g' Re[Dp($1 $2)A'+'($—2 $3)A&+'($—1 $4)Dp*($—3 $4)—

+A p (xi $4)D'+' (x4 xs)D'+' —(x1 $2)A p*—(x3 $2)

Dp($1 $2)+ p( $1 $4)D ($4 $3)A ($2 $3)
—Dp ($1—$2)3,p ($2—$3)D'+' ($3—$4)A'+' ($1—$4)

Dp($3 $4)h—p($4 x—1)D'+'(xi ——$2)6 +'(xs —x,)
Dp(xo —$4)hp(xs —x2)D'"'($9 $1)A ($4 $1)

—6'+' (xi $4)d '+' (xs—x2)

XD'+'(xs —x4)D'+' (xi—x2)7. (5.26)

The first two terms arise from that part of the unitarity
equation which is of the form p2p2*. The next four terms
arise from p~p3* and p3p~*," and the last term has its
origin in four disconnected first-order diagrams, i.e., the
term of the form p~p~p~*p~* as shown in Fig. 3.

We can show by a straightforward calculation that
Repb is given by

Rep b($1$2$3$4) =g' Re[Dp ($1—x2)Dp(xs —x4)

X&» ($2—x3)A p(x4 —xi)7, (5.27)

when use is made of identities (5.20) and

Xl +2 6 $2 Sg 6 $3 $4t.'g4 —gi

+3 ($1 $4)e ($2 $3)+3 ($1 $2) e ($4 $3)

+e($4 $3)e ($2 $3)+ 3 ($4—$1)3 ($4—$3)

+3 ($1 $2) e (»—*4)+ 3 (X2—X3)E($2 $1)= 1, (5.28)

which is an analog of Eq. (5.24). e(x) here denotes e(xo).
It must be stressed that the last term on the right-

hand side of Eq. (5.26) as well as other four terms—
except for the first two terms —can hardly be included
in the ordinary unitarity condition on the mass shell and
that these terms play an important role in the presence
of an anomalous threshold. "In our method these terms

'6 In evaluating the third-order five-point function, we use the
Feynman result. Here again the Feynman method and our
methods can be shown to give identical results although we do not
go into details about this point.' Y. Nambu, Nuovo cimento 9, 610 (1958); R. Karplus, C. M.
Sommerfield, and E. H. Wichmann, Phys. Rev. 111, 1187 (1958);
114, 376 (1959);L. D. Landau, Nuclear Phys. 13, 181 (1959);N.
Nakanishi, Progr. Theoret. Phys. (Kyoto) 22, 128 (1959);23, 284
(1960). See also reference 15.
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I'zo. 3. The Feyn-
man diagram for the
last term in Eq.
(5.26). The straight
lines represent nucle-
on contraction 6&+);
the wavy lines repre-
sent meson contrac-
tion D&+); the dashed
line indicates the in-
termediate state.

can be included in the unitarity condition in a natural
way.

Finally it will be clear that the combination of Eq.
(5.27) with the nonsubtracted dispersion relation yields

Apart from the 0 factors, the integral I is given by

1 t (k'+mP —mp' y
'

q~ g' —
I I

ympp
2kp & l 2kp )

(kp+m & —mop)'+4mppk'
4pr q'dq ~ q'+

2(—k')'* ~
o 4k'

where q= I'll This integral is readily carried out to
yield

{Lk'+ (mi+mp)'] Lk'+ (mi —mp)') }'*.

2(—ko)

{!k'+(mi+mp) ]I k'y(m] —mp)']}&
2(—k')
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pb(xixpxpx4) g Dp(xi x2)DF(xp x4) Hence we finally get

X+7(x2 xo)+F( x4 xi). (5.29)

Thus we have reproduced the Feynman result in this
exa,mple. 7r
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Laboratory. We would like to express our tha, nks to the
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APPENDIX A. PROOF OF EQ. (5.2}

The 6{+& function is defined by (2.15) and we get

in{+~ (x,m, ) iS{+&(x,m, )

e'"*d'k d4q 8(ko —qo)0(qo)
(2~)P &

X$! (k—q)P+mP]$(q + m).po

We first carry out the q integration, i.e., we evaluate

I= d'q 0(kp —qp)0(qp)b(k' —2kq+mi' —m, ')8(q'+mP).

tr
=—e(kp) dK'b(k'+K')

2 ~ (mI+m2)2

(mi+mp) (mi mph
x ) l K )

in{+'(x,mi) .in{+~ (x,mp)

(4tl) ~ {mi+mm)'

(mi+mp)

).
(mi —mpy '

x 1—
I l K )

~

d4k e'"'8(ko)5(k'+K')
(2tr)P ~

Inserting this result into the original expression, one
finds

Since the integrand survives only for time-like k with
ko&0, we choose the direction of k as the time axis;
then from the first 8 function we 6nd

1

(4tr) ~ {ms+md'

dK' iA{+~ (x)K)

qo
———(k'+mP —moo)/2ko,

where k'= —ko'. Consequently we get

( k+mP —mp )
0(kp —qp)=8! kp+

2ko

=8(2koo+k'+mP —mP)

=e(—k'+mP —mP)

8(qo) =9(—k' —mP+mP).

(mi+mp$ (mi —mp )x 1—
I ! 1—

I

K ) — K

APPENDIX B. PARAMETRIC DISPERSION
RELATIONS IN POSITION SPACE

Vfe start from the study of the integral

( m)
F(P)=i ~ exp iI nX+—

! dn. —
o l 4n)

Therefore we find an expression for 00 independent of q, This integral has the following interesting property:

0(ko qp)e(qp) =0(ko)e( k' ImP mPI). — ImF (X)=0, for }i(0.
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Next let us observe the function F(X$) as a function of $ Feynman propagator in the position space:
and denote it as f($) T.hen we clearly get

z f' t' zzz )
exp i~ nx' ——

~

dn
4zr' 4p E 4n)

Dp(x) =—
Imf(P) =0, for Kg&0.

As a function of $, f($) is analytic in the lower half If we insert this representation into the Feynman
plane when A)0, and we get formula and use the integral formula,

i%2
2 4

p(xg x„)= z dc„dM'o (c„„M')

exp(z|zx )d x

then it is not dificult to show that the p functions obey
~hen X&0, f(P) is analytic in the upper half plane and an integral representation of the following form':
we get

We can write these two equations in a united manner as

Now take the imaginary part of this equation; then we

get
P t "Ref($')d$'

«(X) Imf(g) =—
~~

zr 4

From the property of Imf(() discussed above, the left-
hand side now may be written as «(g) Imf ($), or we may
write

This is the basis for the parametric dispersion relations
for the p functions. The same argument can apply to a
slightly more general class of functions defined by

dn ( Bz )
f(t) =i — exp i

(
ning—+

~p (zn)" 4 4n) .

Next we shall recall the integral representation of the

dn ' ( M')
&&, exp —i/ nA+

(in)~ ( 4n &

where A. = —P„&.c„,(x„—x,)', c„,)0, and o. is a real
weight function. S is an integer which depends on the
structure of the Feynman diagram under consideration.

Comparison of this integral representation with f„($)
yields immediately the dispersion relation

P t" Rep(x xp g')
Imp(x x& ()=«(P)— dg'.

p is a function of scalar products x xa alone, and $ is a
common parameter to be multiplied into all the scalar
products. In general one needs subtractions in the above
dispersion integrals, but it is yet an unsettled question
how to make the proper subtractions.

From the above integral representation, one can
recognize that if all the z points lie on a space-like
surface, then A(0 holds, and therefore we get

Imp(xg x„)=0.

The dispersive part of a p function vanishes when all the
e points are separated from each other by space-like
distances. This is a manifestation of the microscopic
causality condition.

"Y.Nambu, Nuovo cimento 9, 610 (1958).


