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It is proved that fourth-order diagrams provide necessary and sufhcient conditions for the Mandelstam
representation to be valid for every 6nite order in perturbation theory.
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E have previously shown' ' that a sufhcient con-
dition for the validity of the Mandelstam repre-

sentation in every order of perturbation theory is the
absence of anomalous thresholds. In this paper we prove
that the representation is valid in every order if it is
valid for the lowest order diagrams. This includes some
processes which have anomalous thresholds. These
conditions are both necessary and sufhcient for the
Mandelstam representation to apply within the frame-
work of renormalized perturbation theory.

From our result, in conjunction with the known prop-
erties of the fourth order, ' it follows that the Mandel-
stam representation applies, for example, to the scatter-
ing processes4

where X can be a A, Z, or ™particle. It also applies for
the processes

sr+&~ E+p, or s. +Z, or E+
n.+Z —& K+p, or E+
sr+ —+ %+It, or E+Z,
sr+d —+ p+st.

All the above processes have anomalous thresholds but
they do not lead to complex singularities on the physical
sheet. Examples of scattering processes which do lead
to complex singularities and for which the Mandelstam
representation does not apply are given by

Z++Z- ~ Z++Z —,

d+d —+ d+d,
* Now at: Department of Applied Mathematics and Theoretical

Physics, University of Cambridge, Cambridge, England.
' R. J. Eden (to be published); and Phys. Rev. Letters 5, 213

(1960).' P. V. Landsho8, J. C. Polkinghorne, and J. C. Taylor (to be
published).

3 J.Tarski, J.Math. Phys. 1, 154 (1960);S. Mandelstam, Phys.
Rev. 115, 1741 (1959); and R. Karplus, C. M. Sommerfield, and
E. H. Wichmann, Phys. Rev. 114, 376 (1959).

4 A table of the numerical values of angles required to decide
whether a given process satisles the Mandelstam representation
has been given by L. B.Okun and A. P. Rudik, Nuclear Phys. 15,
261 (1960).

or the scattering of any pair of compound particles.
For each reaction, when drawing the perturbation dia-
grams, one must of course take account of conservation
laws.

The method in this paper is based on analytic con-
tinuation in the external masses from values for which
there are no anomalous thresholds. We show firstly
that no complex singularities can appear in the physical
sheet until a Landau curve of singularities has a point
at which it is degenerate. This point will in general be
a double point of the Landau curve in the real (s,t)
plane. The second step is to prove using dual diagrams
that, as the external masses are increased a double
point will arise in a diagram of low order before it
arises in higher orders. This completes the proof.

2. FOURTH-ORDER DIAGRAM

The physical sheet for a scattering amplitude A (s&,s&)

consists of a product of cut planes in the complex vari-
ables s1, 2'2, s3 that correspond to the real Mandelstam
variables s, t, u. The physical sheet is defined so that
in a suitable limit on its boundary in a physical scatter-
ing region the amplitude A (s,t) is the Feynman ampli-
tude. Ke shall use the general term Landau curve' for
the manifold in the complex (s&,ss) space given by a
solution of the equations,

either

or

ctD (n, sr, ss)/Bn;= 0,

n, =0,

(2.1)

(2.2)

for each i, where D is the denominator of the Feynman
parametrization of the amplitude,

rt (cr)b (1 ger;)—
A (st~st) = cr der�' ' 'dQ~ (2.3)

4p D(n, st, ss) &

The function D is homogeneous in the o. variables so
Eqs. (2.1) and (2.2) imply also that D is zero.

These equations define the two-dimensional mani-
folds in complex (sr, ss) space on which the amplitude
may have singularities in the physical sheet and on
which the amplitude is indeed singular on many other

' L. D. Landau, Nuclear Phys. 13, 181 (1959).
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and y' illustrated in Fig. 1(a). I The leading Landau
curve for any diagram is that for which Eq. (2.1) rather
than (2.2) is satisfied for each i.j There are no anoma-
lous thresholds when the external masses are sufficiently
small. The two arcs y and y' lie in the real s, t plane.
The curve p is on the boundary of the physical sheet
and represents points at which the amplitude A(sr, s,)
is singular in each of the following limits taken from
its continuation on the physical sheet,

sr=s+ie ~ s,

S].=$—Z6 ~ S)

ss=t+ Ze ~ t,

sq=t —ie —+ $.

(2.4a)

(2.4b)

The curve p' is not singular in any limit from the
physical sheet.

The real arcs p and p' are joined by a complex surface
in (si,ss) space. By considering the intersection of this
connecting surface with a real searchline it can be seen
that on the surface si and s2 have imaginary parts of
opposite sign. The limit onto the real section of the
Landau curve that is defined by giving s&, s2 small
imaginary parts whose relative sign is the same as that
which they take on the attached surface will be called the
appropriate limit When th. eir relative sign is opposite
to that taken on the attached surface, it will be called
the inappropriate limit If the .complex surface is not
singular on the physical sheet, then the appropriate
limit cannot be singular. For the arc y in Fig. 1(a), the
limits (2.4) are inappropriate limits. The surface
joined to p, p' is singular on the unphysical sheet
reached from the physical sheet by going through a
branch cut either in s~ or in s2.

The lines 1V in Fig. 1(a) denote normal thresholds at
which the amplitude is singular on the physical sheet,
and are the Landau curves for the reduced diagrams
which represent self-energy parts. The lines L arise
from vertex parts corresponding to reduction of one
line in the fourth-order diagram. These are assumed in
Fig. 1(a) not to give singularities on, the physical
sheet, but are singular when reached by taking s~ or s~

through the branch cut that starts at a normal thresh-
old. Thus there are no anomalous thresholds, and also
there are no complex singularities on the physical sheet.

Now increase the external masses continuously, and
at each set of values consider the form of the Landau
curve shown in Fig. 1(a). The lines Li "& and Li&'& move
towards E(') and. X& ).When 1.~~'& meets S&') it becomes
singular on the physical sheet and as the external masses
are further increased it moves back again, remaining sin-
gular on the physical sheet. lt is then an anomalous
threshold. When Li&') coincides with E&') the arc y
touches both lines at infinity. As L&&'& moves away the
curve y continues to touch 1.~&" and the point of contact

, moves in from infinity to 6nite values as shown in
Fig. 1(b).The part of y between 8 and C is singular in
the inappropriate limit taken on the boundary of the
physical sheet, and the parts AB, CD are singular in their
inappropriate limit on the physical sheet. The part of the
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Riemann sheets. ' The points of these manifolds for
which the variables s and t are real de6ne real curves
and lines but again these are not necessarily singularities
of the amplitude on the physical sheet. The remaining
points of the manifolds are complex surfaces that join
these real curves.

The key question is not where the Landau curves are
located, but in what circumstances they give complex
singularities on the physical sheet. We shall show that
as the external masses are increased the transition point
beyond which part of the complex surface of the
Landau curve becomes singular on the physical sheet
can be related to the occurrence of a double point in
the real section of the Landau curve lying on the bound-

ary of the physical sheet. We shall illustrate this by
first considering the fourth-order diagram as the ex-
ternal masses are varied. This discussion of the fourth-
order term is contained entirely in the work of previous
authors, ' but we repeat it here in order to note those
aspects that we are able to consider in the general term
in the next section.

When there is no anomalous threshold, part of the
real section of the leading Landau curve has the form y

6 J. C. Polkinghorne and G. R. Screaton, Nuovo cimento 1S,
289 and 925 (1960).

FIG. 1. Part of the real section of the Landau curve for various
external masses: (a) no anomalous thresholds; (b) anomalous
thresholds but no complex singularities; (c) the "transition point"
at which the Landau curve has a double point; (d) Landau curve
with complex singularities. (The parts drawn in broken lines are
not singular on the boundary of the physical sheet. ) Note In Fig. .
1(a), the right-hand side, the bottom notation should read Is&'&.
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surface connecting y' to the part BC of y is still singular
only in unphysical sheets, but now it can be reached by
going through the cut attached to L~&" or through the
cut attached to L~&'&. Similarly the parts of the complex
surface connected to the other parts of y are not singular
on the physical sheet.

When the external masses are further increased, there
comes a point where Li&" coincides with I.20& and 1.~("
simultaneously coincides with L2"'. Although geo-
metrically coincident with I ~&" the line I,~&" will still
not be singular in the physical sheet. At the point of
coincidence the curve has a point of degeneracy at the
intersection of the anomalous thresholds, as shown in
Fig. 1(c).

A further increase in the external masses leads to the
situation shown in. Fig. 1(d). Now the arc y is singular
on the physical sheet from any limit. It is attached to a
complex surface which is singular in the physical sheet
and which connects it to the part AB of y in Fig. 1(d).
This complex surface leads to a breakdown of the
Mandelstam representation.

The significant point is that in changing from a sur-
face that is nonsingular in the physical sheet to a
surface that is singular in the physical sheet the part
of the complex surface in question must shrink to zero.
This requires that the Landau curve be degenerate at
the transition. Further, the point of degeneracy occurs
at the intersection of two anomalous threshold lines.
We shall show in the next section that this is true also
for a general diagram.

The condition on the masses for the degeneracy to
occur in fourth order has been given. ' Labeling the
masses as in Fig. 2, angles 0; are dehned by

I

m,'+m~P 3fP—
cos8;=- SS5—m] e

2tÃ&%5&+ y

Degeneracy occurs when

3. GENERAL CASE

In considering the general Feynman diagram it is
supposed that all lower order diagrams satisfy the
Mandelstam representa'tion. If this were not so, then
it would be necessary to consider instead how one of
these lower order diagrams had come to have complex
singularities in the physical sheet. YVe consider the
manner in which Landau curves change as the squares
of the external masses are increased through real values
from an initial set of values for which the Mandelstam
representation is known to hold. Such a set could be
any that ensured there were no anomalous thresholds. "

As the external masses are increased, anomalous
thresholds will appear in the physical sheet. The first
of these appears when part of the Landau curve for a

FIG. 2. Notation for the fourth-order diagram.

single loop vertex diagram moves up towards a singular
normal threshold and emerges through the branch point
at the normal threshold onto the boundary of the
physical sheet. It is then "rejected" from the normal
threshold as the external masses are further increased
and is a singular anomalous threshold. Other anomalous
thresholds may arise in the same way or by lines corre-
sponding to more complicated vertex diagrams being
reAected off lower order anomalous thresholds that are
already singular on the boundary of the physical sheet.
The point through which a new singularity appears is
always a singularity ot a simpler (reduced) diagram.
This is the theorem on continuity of singular curves
that was used in previous papers. ' '

The appearance of anomalous threshold singularities
on the physical sheet can give rise to two eGects. The
first concerns the curves of virtual singularities. A vir-
tual singularity is an arc of the real part of a Landau
curve that lies in a region of. the real plane where cuts
corresponding to two variables overlap, and that is
singular when approached from the physical sheet in
the inappropriate limit. It has been shown" that in the
absence of anomalous threshold singularities these
curves are arcs ot negative slope (taking as variables
the two variables that correspond to the two over-
lapping cuts), and they have the normal thresholds
that generate the cuts as their asymptotes. In the pres-
ence of anomalous thresholds but in the continued
absence of complex singularities, this behavior is
modified. The curves can have parts of positive slope
but their turning points can only occur where the
Landau curve touches an anomalous threshold singu-
larity in such a way that the point of contact corre-
sponds to the same critical values of the Feynman
parameters for both the Landau curve and line. This
follows from the fact that the behavior in the inappro-
priate limit on one side of a turning point is the same
as the behavior in the appropriate limit on the other
side of the turning point unless a singularity generating
one of the cuts occurs at the turning point. Except in
this latter case it is possible to move along the complex
surface of the Landau curve from the complex neighbor-
hood of one side of the turning point to the complex
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neighborhood of the other side of the turning point so
that the path followed changes from one Riemann
sheet to another in a way that just corresponds to the
difference between appropriate and inappropriate limits.
Since all appropriate limits are nonsingular when there
are no complex singularities, the turning points of
curves of virtual singularities must be at contacts with
anomalous threshold singularities.

The second possible effect of the appearance of
anomalous threshold singularities on the physical sheet
is the development of complex singularities. The com-
plex surface of the Landau curve is divided into a
number of primitive sections' by its intersection with
the cuts bounding the physical sheet. It is known that
if a point of any primitive section is singular on the
physical sheet then the whole primitive section is
singular. "However, as the external masses are in-
creased, the complex singularities must appear in the
physical sheet in a continuous way. This gradual ap-
pearance can only be achieved by the gradual shrinking
to a point of one of the initially nonsingular primitive
sections which then re-emerges as a primitive section
that is singular in the physical sheet.

A primitive section is the complex surface spanning
two real arcs of the Landau curve whose end points are
turning points. "When the primitive section shrinks to a,

point and re-emerges in the physical sheet, these arcs
must also shrink to the same point and then expand.
The process must follow exactly the same pattern that
is illustrated for the fourth order in Fig. 1(a)—(d). lt
follows that the critical situation, past which complex
singularities appear, occurs when the real Landau curve
has a double point in a manner similar to that already
described for the fourth order case.

The complex singularities have entered the physical
sheet from neighboring Riemann sheets. The curves of
virtual singularities on the boundaries of the physical
sheet represent the presence of complex singularities in
neighboring Riemann sheets. Therefore one of the two
coalescing arcs must be part of a curve of virtual singu-
larities and hence the two tangents at the double point
must always be singular anomalous threshold lines, as
is the case in fourth order. This is confirmed by con-
sidering the arcs of positive slope that are joined to AB
in Fig. 1(d).These arcs are singular in the inappropriate
limit when AB bounds a complex surface in the physical
sheet. If they were not singular in the same limit before
the double point was reached, the whole of these curves
would suddenly become singular when the double point
appeared. This would contradict the fact that analytic
properties change continuously. as a continuation is
made in the external masses.

The foregoing argument establishes that if the

'Note added in proof. This statement requires modi6cation if
cusps or double points appear. This is found to happen in a par-
ticular sixth order contraction but only for values of the external
masses well above the fourth order limit. This will be discussed
in a further paper. .

Mandelstam representation is valid for certain values
of the squares of the external masses, it remains valid
as these squares of masses are varied through real
values until one or more curves of virtual singularities
acquire a double point. Since a double point can occur
only when there are anomalous thresholds in two direc-
tions (at lea, st), this discussion enables us to deduce the
validity of the Mandelstam representation for all
values of the external masses in the absence of anoma-
lous thresholds provided it holds for some range of these
variables. We use here the fact that any range of the
external masses not giving anomalous thresholds is
accessible from any other such range by continuous
variation without passing through a region in which
there are anomalous thresholds.

In the next section we show that the onset of complex
singularities in the physical sheet, which is heralded by
a double point in the relevant Landau curve, normally
occurs first in the fourth-order diagram as the external
masses are increased. In cases where selection rules
prohibit the fourth-order diagram it may be necessary
to consider more than one of the lowest order diagrams.

4. APPEARANCE OF A DOUBLE POINT

In this section we show that there will be a double
point on the relevant Landau curve in lowest order for
values of the external mass that are never larger than
those that are required to give a double point in higher
orders. There are, of course, many diferent values of
the external masses at which a double point will appear.
Our method of increasing the external masses is to vary
them one at a time up to the values in which we are
interested. Our terms "smaller" and "greater" apply to
the single external mass that is being varied when the
transition through a double point takes place.

The method is based on the dual diagram analysis' '
of the singularities of a Feynman amplitude. The dual
diagram is essentially the vector diagram for the inter-
nal and external four-momenta of the corresponding
Feynman diagram, each momentum being on the mass
shell. It may conveniently be drawn in a complex Eu-
clidean space. We consider erst the occurrence of anom-
alous thresholds for the vertex parts given by reduc-
ing scattering diagrams. (Anomalous thresholds do not
arise from reduction to generalized self-energy parts. ') A
vertex dual diagram must be drawn in a plane in order
to give an anomalous threshold, ' (or, more accurately,
dual diagrams not in a plane do not give any new
anomalous threshold). lt follows' that for fixed masses
the anomalous threshold (if any) from the lowest order
vertex occurs at a smaller value of the appropriate
variable (s, t, or u) than any such threshold from a
higher order vertex part. This result comes from the
fact that for an anomalous threshold the dual diagram
must be real and all its internal lines must lie inside the

r J. C. Taylor, Phys. Rev. 117, 261 (1960).
s P. V. Laudshoff, Nuclear Phys. 20, 129 (1960).
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triangle formed by the external momenta. If the lowest-
order diagram does not yield an anomalous threshold
nor does any other. '

The dual diagram for a general scattering diagram
is drawn in three dimensions. It gives the relation be-
tween s and t which is the equation of the Landau curve.
The external momenta together with gs and Qt form
the framework of a tetrahedron. Within this tetra-
hedron are four parts each consisting of one triangular
face and connected internal lines that will also appear
in a similar manner in the dual diagram for the vertex
part formed by reducing lines in the scattering diagram.
However, for the scattering dual diagram each of these
parts does not in general lie in a plane as it would for a
vertex part. Exceptionally for particular values of s
and t one of these parts may lie in a plane. This means
that for these values of s and t the Landau curve for
the scattering diagram touches the Landau curve for
the corresponding vertex part, giving the same values
of the parameters o. on each curve. Examples of such
points of contact are given in Fig. 1(b) by the points
B and C.

For the Landau curve simultaneously to have such
contact with two perpendicular anomalous thresholds
as in Fig. 1(c), the corresponding two parts of the dual
diagram must be simultaneously coplanar. Further,
these two parts share at least one external line and one
internal point so that in fact they must lie in the same
plane. This situation is illustrated for the fourth order
(Fig. 2) by the dual diagram drawn in Fig. 3. Here AB,
BC, CD, DA represent the external lines of the Feynman
graph, while the lines converging at 0 represent the
internal lines. The values of s and t are given by the
squares of the lengths AC, BD. The point (s,t) at which
the Landau curve has contact with the Landau curve
for the vertex diagram obtained by reducing the line
corresponding to OD in the scattering diagram is ob-
tained by requiring OABC to be coplanar. If also OBCD
is coplanar the whole dual diagram will lie in a plane.
The two vertex diagrams in question are actually
singular if 0 lies within the triangles ABC, BCD. The
condition for this is that the sum of the angles at 0 is
2m, which is just the known condition LEq. (2.6)j for
the Mandelstam representation to be about to break
down.

Now consider the addition of internal lines to the
scattering diagram, beginning from a fourth-order dia-
gram which has just reached this critical point, as
indicated by taking Fig. 3 to lie in a plane. We keep
the external masses M~, M2, M3 fixed; this means
AB, BC, CD are of fixed length. Then the addition of
internal lines such that ABC and the related internal
lines still correspond to an anomalous threshold cannot
shorten the length AC. Similarly, if on adding internal
lines BD is still to give an anomalous threshold with
dual diagram BCD, this length also will not be de-
creased. If, in addition, we require the more compli-
cated diagram to lead to a Landau curve with a double

FIG. 3. The dual diagram for fourth-order scattering, drawn in a
plane when a double point occurs in the Landau curve.

point, ABCD must lie in the same plane. An increase of
AC and an increase of BD with given AB, BC, CD can
only increase the length of AD. This length defines the
mass M4 and the increase is what we set out to prove.
Thus only by an increase of an external mass beyond
the degeneracy for the lowest order diagram can we
obtain a degeneracy for a higher order diagram.

S. REPRESENTATION WITH ANOMALOUS
THRESHOLD S

Ke have seen that under the condition obtained from
Eq. (2.6) there is cut-plane analyticity for every term
in the perturbation series for the scattering amplitude.
Thus a repeated application of Cauchy's theorem gives
the Mandelstam representation. The weight functions
pi, p2, ps appearing in it have the form,

p, = Lim ((A (s+ie, t+ie') —A (s—ie, t+ie')]
e, e ~0

—(A (s i e& t+i e'—) A(s —ie, t—ie') j),—(5.1)

with two analogous expressions for p2, p3.
The region in which p~ is nonzero must be bounded

by a curve on which the right-hand side of Eq. (5.1)
is singular, and therefore must be composed of portions
of Landau curves that represent singularities on the
boundaries of the physical sheet in one of the limits
shown in Eq. (2.4) or in the other limits. In fact, since
each of the square brackets in Eq. (5.1) contains the
difference between the two types of limit the boundary
of the region must be singular in only one type of limit.
It is therefore composed of pieces of Landau curves
which are singular in the inappropriate limit, that is by
arcs of virtual singularity. (At the normal and the
anomalous thresholds, in s for example, the value of s2
does not aBect the singularity. Thus normal and
anomalous thresholds are singular in all limits and
cannot form part of the boundary of the region in which
the spectral function is nonzero. )

We have remarked in Sec. 3 that, when there are no
anomalous thresholds, the arcs of virtual singularity
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can have no turning points. However, when anomalous
thresholds are present turning points may occur at con-
tacts with the anomalous thresholds. Thus, for example,
when there are anomalous thresholds in two directions
(but no complex singularities on the physical sheet)
the boundary of the region for p1 for the fourth-order

contribution is the arc y, which includes parts of posi-
tive slope as well as of negative slope (Fig. 1(b)j.
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A previous calculation of the physical nucleon wave function in static source pion theory is extended by
including the pseudoscalar E-meson interactions, the motivation being that this should increase the scalar
part of the nucleon anomalous magnetic moment, thus improving the result of previous calculations. In
constructing a trial function for the physical nucleon, the method of moments was used and terms containing
up to three mesons were included. Calculation shows that a too strong E-meson coupling is detrimental to
the vector part, and that the scalar part can be increased approximately by 10'%%u~ if the E-meson interaction
is made moderately low.

INTRODUCTION

'N a recent paper' (hereafter referred to as I), the
~ ~ method of moments was applied to the problem of
the physical nucleon in pion theory, using the Chew-
I.ow-Wick static source Hamiltonian. An approximate
ground-state nucleon wave function was constructed,
with terms containing as many as five virtual pions. One
of the important results was that the average number of
pions in the cloud is more than might be suggested by
the success of the one-meson approximation. When the
electromagnetic properties of the nucleon were calcu-
lated from the wave functions, however, hardly any
significant improvement was achieved over the results
obtained by the one-meson approximation.

On the other hand, we are aware of the possible con-
tributions of the strange particles to the physical nucleon
state, since these particles are known to interact
strongly with nucleons and mesons. In particular, con-
servation of strangeness allows nucleons to emit a
virtual E+ but not E . Thus the inclusion of interactions
involving pseudoscalar E mesons should have the
consequence of increasing p, g, the scalar part of the
nucleon anomalous magnetic moment. ' This implies an
improvement because pseudoscalar pion theories in-
variably give too large a negative value for pz. This
motivates us to extend the work of I by including
strange particle interactions, even though a axed-source
approximation is less justified for E mesons than for
PlOIls.

' F. R. Halpern, L. Sartori, K. Nishimura, and R. Spitzer, Ann.
Phys. 7, 154 (1959).

s G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956);G. C.
%'ick, Revs. Modern Phys. 27, 339 (1955).

s G. Sandri, Phys. Rev. 101, 1616 (1956).

Another difBculty involved here is that we still do not
know definitely the relative parities or intrinsic spins of
these particles. In this paper we assume that diGerent
baryons are different states of the same fermion, all
having spin —, and the same intrinsic parity, and that the
E mesons are pseudoscalar with respect to the baryons.
The static version of the relativistic interactions4 con-
sistent with the Gell-Mann-Nishijima isospin assign-
ments will be used. ' In this scheme, the interaction
Hamiltonian Hg contains eight coupling constants and
as many cutoG functions. Even though there is no good
reason to keep these parameters from changing for
different processes, simplicity is of great importance in
the present work since the number of terms contributing
to the wave function increases quite rapidly as the order
of approximation increases. In this spirit, the same cutoff
function will be used uniformly for the pionic and E-
mesonic contributions for all the baryons. Throughout
this paper, we employ a square cutoff at K= 6 (A= c= tt
= 1, where tt is the pion mass) so that comparison with
I will be possible. In the same spirit, the square of the
unrationalized, unrenormalized EÃx coupling constant
will take the values 0.2, 0.4, and 0.6. The other coupling
constants are assumed to satisfy the following relations;

(f ')'=(f ')'=(f ')'=(f== ')'=(f ')' ( )

and

(frrsx')'= (frrzx')'= (fs-tr')'= (fz-rc')'=—(ftr')' ( b)

One of the consequences of these simplifications is
that invariance under rotations in this representation

4 M. Gell-Mann, Phys. Rev. 106, 1296 (195/).' W. G. Holladay, Phys. Rev, 115, 1331 (1959).


