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The possibility of covariantly describing a system of a Gxed number of particles interacting directly is
explored by attempting a direct "integration" of the commutation relations for the inhomogeneous Lorentz
group under restrictions appropriate to the term "system of a Gxed number of particles. "By direct inter-
action is meant the fact that interaction between the particles is expressed directly in terms of coordinates,
momenta, and spins for the particles rather than through the agency of a mediating Geld. The integration
is carried out in considerable generality with the assumption that the inGnitesimal generators of the group
have expansions in inverse powers of the square of the velocity of light. The result coincides with that ob-
tained earlier by Bakamjian and Thomas, but the method employed yields greater insight into the generality
of the result, as well as into how further conditions beyond covariance, such as the property which is here
called "separability of the interaction, "can be incorporated in the result. The relationship of the result to the
complete reducibility of a representation of the inhomogeneous Lorentz group is pointed out. Possible gen-
eralizations and applications of the procedures here employed are discussed.

I. INTRODUCTION

HERE appears to exist a common misconception
to the eGect that it is not possible to construct a

relativistically covariant description of a system of
interacting particles where the interactions are direct
rather than mediated through a 6eld. By a direct
interaction we mean one in which the interaction term
in the Hamiltonian is expressed explicitly in terms of
the dynamical variables of the particles (their positions,
momenta, and spin vectors). This misconception has
currency in spite of the fact that Bakamjian and
Thomas' have presented such a description, but may
in part be owing to the fact that the approach of
Bakamjian and Thomas is a somewhat unfamiliar, if
not an unorthodox one; and hence, its relationship to
the main stream of development of elementary particle
physics is somewhat obscured. Playing an important
role in perpetuating this misconception is no doubt the
further fact that the term relativistic comriunce often
has diferent meanings to diBerent workers and in
different contexts. It is therefore important that we
clarify exactly what is meant in the present context by
relativistic covariance. We here take a point of view
which has been expounded by Dirac, ' among others,
and particularly emphasized by Wigner. ' We feel that
this is the only viewpoint properly deserving of this
title, and we attempt to expound it below.

We wish particularly to emphasize that we are
speaking here of the requirement of relativity (com-
bined with what one ordinarBy considers a system of
particles) and not with further extraneous conditions
which may nevertheless be necessary to yield a theory
which is physically satisfactory, or (if there is any
distinction) which describes nature. No doubt, much

*This work was supported in part by the U. S. Atomic Energy
Commission.' B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).' P. A. M. Dirac, Revs. Modern Phys. 21, 392 (1949).' E. P. Wigner, Nuovo cimento 3, 517 (1956), and references
listed in footnote 6; also the reference to Newton and Wigner in
footnote 4.

confusion has also arisen from the fact that the require-
ments of covariance have often been simultaneously
applied with other requirements (often unstated or
only implied) in order to set up specific theories. We
have no quarrel with such procedures, of course, though
it would be better if the tacit assumptions or require-
ments, beyond covariance, were clearly stated; but it
still remains an important question as to what are the
requirements of covariance apart from such other
considerations. It is to this question that the present
paper is primarily addressed.

To begin our discussion of relativistic covariance, we
would like 6rst to make clear that we are not in the
least concerned with appropriate tensor or spinor
equations, or with "manifest covariance" or with any
other mathematical apparatus which is intended to
exploit the space-time symmetry of relativity, useful
as such may be. We are instead concerned with the
group of inhomogeneous Lorentz transformations as
expressing the inter-relationship of physical phenomena
as viewed by different equivalent observers in un-
accelerated reference frames. That this group has its
basis in the symmetry properties of an underlying
space-time continuum is interesting, important, but
not directly relevant to the considerations we have in
mind. We feel that the direct application of the Lorentz
transformation equations for space and time coordinates
to the coordinates of a particle at a particular time
instant, while relevant in classical mechanics, cannot be
naively carried over into quantum mechanics where the
concept of position of a particle at a given time instant
is obscured by its probabilistic character, the uncer-
tainty relation, and, perhaps most important, by the
internal kinematic structure of relativistic particles ex-
hibited in such phenomena as zitterbewegung. ' It

4 For the ambiguity in the concept of particle position arising
in this last connection, see in particular, L. L. Foldy and S. A.
Wouthuysen, Phys. Rev. 78, 29 (1950). The question of the
deGnition of position (and its relativistic transformation proper-
ties) in irreducible representations of the inhomogeneous Lorentz
group has been studied in detail by T. D. Newton and E. P.
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is not that we wish to reject out-of-hand approaches
based on such ideas as a source of valid information,
but our viewpoint is simply that if we wish to examine
the basic implications or demands of relativistic co-
variance stripped of all extraneous ideas and free of
all preconceptions, we stand on more secure ground in
retreating to the position that the Lorentz group
expresses the relationship between physical phenomena
viewed by diferent observers; for this consideration
must be valid whether or not further conditions
supposedly stemming from relativistic covariance can
be justified.

We now consider what the above viewpoint implies
for quantum mechanics. We deal here with a particular
physical system, and in particular with the totality of
its possible quantum states. We may for convenience
label the possible abstract states by symbols P, g
A particular abstract state will be described by each
equivalent observer by a vector in a pnvaie linear
vector space. Thus the abstract state P will be described

by observer 2 as a vector tpz in his private space {A),
by the observer 8 as a vector fz in his private space

{8),etc. Thus, there is a one-to-one correspondence
between the state vectors of the private space of one
observer with the state vectors of the private space of
every other observer, the correspondence being fixed

by the fact that the same abstract state of the physical
system is being described by corresponding vectors.
Actually, this statement is not quite correct, since
states of the physical system are represented by each
observer not as a vector in his private vector space,
but by a ray, since the normalization and phase of the
vector is not pertinent to the description of the state.
Thus, w'hat one has, in fact, is a correspondence between
rays rather than between vectors. That this is of im-

portance has been emphasized by Wigner, ' but in the
interests of simplicity of the present argument, we
ignore this fact for the present and discuss briefly its
consequences in modifying our argument at a later
point.

At this point we must now introduce an assumption,
which we prefer to do explicitly, although it is often
tacitly assumed. Namely, we assume that the corre-
spondence between vectors described above is in fact
an isomorphisrn; that is, the correspondence is such
that the state vector which is a particular linear com-
bination of state vectors for one observer is in corre-
spondence with the state vector which is the same linear
combination of the corresponding state vectors for
every other observer. The necessity for this assumption
arises from the usual physical interpretation given to
the mathematical formalism of quantum mechanics.

Specifically, if a physical system is in the state P and
the observer 2 makes a measurement to determine
whether the system is in the state P, then the probability

Wigner, Revs. Modern Phys. 21, 400 (1949), and adds substantial
weight to the argument presented in the text. Further discussion
of this point may be found in reference 7.

of an afhrmative result (for normalized state vectors)
is given by

~ (P~pPg) ~', while for a second observer j3,
the probability will be given by

~ (PepPe) ~'. For these
probabilities to be the same for all observers, the
isomorphism is necessary. Again, this last statement is
not quite correct, since there is another possibility,
namely that for some pairs of observers one could have
a particular linear combination of state vectors for one
observer in correspondence with the complex conjugate
linear combination (that is, the linear combination with
complex conjugate coeKcients) of the corresponding
state vectors of the other observer. So long as we deal
with purely continuous groups such as the proper
Lorentz group, however, we need not concern ourselves
with this possibility if we impose the continuity con-
dition described below. For our present purposes, we
therefore omit consideration of such a possibility.

So far we have placed no limitations on the particular
type of vector space representation employed by each
observer, whether it is, for example, a Heisenberg
momentum representation or a SchrOdinger coordinate
representation, etc. But the relativistic equivalence of
the various observers must allow them to employ the
same descriptions within their private spaces, if they
so choose, and we now assume that this is done but
without regard for the particular choice. Then in con-
sequence of the isomorphisrn of the various private
spaces, there may be constructed a single puNic linear
vector space (which may be either a new space or the
private space of a particular observer) in which all of
the abstract physical states of the system can be
displayed as vectors. In this public space, however, a
particular abstract state of the physical system is
associated with a diGerent vector by each diGerent
observer, and the correspondence which was previously
manifested as an isomorphism between the private
spaces of two observers becomes an automorphism of
the public space. In other words, the correspondence
between a vector in the private space of observer A
and a vector in the private space of observer 8, arising
from the fact that the two vectors represent the same
abstract physical state, appears now as a correspond-
ence between two vectors in the public space. Thus the
relationship between vectors describing corresponding
states associated with any pair of observers becomes a
mapping of the public space onto itself. Since the
relationship between two observers is itself described
by a particular transformation belonging to the Lorentz
group, this means that associated with each trans-
formation of the Lorentz group, one has a mapping of
the public space onto itself.

The essential requirement which these mappings
must possess is the following: If the Lorentz trans-
formation connecting observers A and C is the resultant
(product) of the Lorentz transformation connecting
observers A and 8 followed by that connecting ob-
servers 8 and C, then the mapping associated with the
pair of observers 2 and 8 when followed by the mapping
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associated with the pair of observers 8 and C must be
the mapping associated with the pair of observers A
and C. This consistency requirement then means that
to every transformation of the Lorentz group there is
associated a mapping of the public space onto itself
such that the mappings have the same composition
structure as the abstract group. Combined with the
linearity (isomorphism) assumption made earlier, this
amounts to the fact that the public space must be a
representation space for the Lorentz group, the repre-
sentation being by linear mappings. Finally, since the
public space may be taken to be the private space of
any one observer, one can deal with the description of
states as practiced in any particular Lorentz frame in
establishing the group representation.

Insofar as a particular observer wishes to describe
the totality of states of a system, not directly by the
state vectors themselves, but by an equation (Schrod-
inger equation) the totality of whose solutions form the
linear vector space, one can translate the essential
requirement as follows: One must associate with every
Lorentz transformation a mapping of every solution of
the equation on to another solution such that the
composition properties of the group are preserved.
This approach has the advantage that the fact that a
solution of the equation is carried into another solution
by a mapping can be verified in many cases without the
necessity of having explicitly the general solution of the
equation. This is the approach that will be followed in
the body of the present paper.

It is necessary, for completeness, to add one further
restriction which is not obviously connected with any
physical consideration. Namely, as is customary in any
case in the discussion of group representations for
continuous groups, we shall be restricted to repre-
sentations which are continuous. Roughly put, this
means simply that if we have two transformations L
and L' of the Lorentz group which are in6nitesimally
close (that is, the set of continuous parameters which
label them differ by infinitesimals), then the mapping
associated with L 'L' shall diGer infinitesimally from
the identity.

It remains only to remark on the eGect of the obser-
vation that in quantum mechanics one is working in
reality with ray rather than vector spaces. This implies
that for physical consistency, if L" is the Lorentz
transformation which is the product LL' of the Lorentz
transformations L and L', then the mapping associated
with L" need not be precisely the product of the
mappings associated with L and L' individually. It
need only be a mapping such that its effect on every
vector of the space is to yield a vector which diGers by
a multiplicative constant from that yielded by the
product of the two mappings. So long as one deals with
unitary mappings (which are all that will be considered
below), this multiplier can only be a number of modulus
unity and so effects only a change in phase of the
resultant vector. The practical consequence of this for

what follows is that the Lie-Koenig relations for the
commutators of representatives of infinitesimal gen-
erators of the group is weakened. The commutator need
not be simply a linear combination of the represen-
tatives of infinitesimal generators of the group but may
contain an additional additive term which is a multiple
of the identity. For the Lorentz group itself, Wigner
has shown that this is of no practical consequence.
However, for the Galilean group associated with the
nonrelativistic limit of the Lorentz group, there do
exist ray representations which are not the equivalent
of vector representations, and in fact, the irreducible
vector representations of the Lorentz group go over in
the nonrelativistic limit to ray representations of the
Galilean group. ' This poses no grave problems, however,
and what minor difhculties do arise are disposed of in
heuristic fashion, since it is not felt justified to present
at length a more careful treatment in the context of
the present problem.

The author apologizes for the somewhat overextended
and perhaps unnecessarily elementary discussion pre-
sented above of the meaning of Lorentz covariance. It
is included in the hope that it may prevent any mis-
understanding of the scope and implications of the
results which are derived below.

The above considerations apply to any relativistic
physical system. The present paper is concerned with
their application to a system of a fixed number of
particles. To de6ne this more precisely, we mean here
such systems where all observable quantities are
represented by operators which are functions of a basic
set of operators; namely, the familiar operators repre-
senting the position coordinates, the momentum com-
ponents, and the spin operators of the e particles
constituting the system. We shall define what we mean
by free and by interacting particles more precisely at a
later point and remain content at this point with simply
remarking that the intent, at least, is that these terms
have their simple familiar meaning.

The problem to be solved is now clear; namely, to
construct a Schrodinger equation describing what we
mean by a system of interacting particles such that the
solutions give rise to a representation space for the
inhomogeneous Lorentz group. With the restriction to
the proper (isochronous) group, this inay be carried
out by ending appropriate operator representatives
for the ten infinitesimal generators of the group (satis-
fying well-known commutation relations), but subject
to certain restrictions, as was pointed out by Dirac.
These representations are not irreducible; the irre-
ducible representations have been studied and classi6ed
by Wigner and Bargmann'; they are not appropriate

~In this connection see E. Inonu and E. P. signer, Nuovo
cimento 9, 705 (1952); V. Bargmann, Ann. Math. 59, 1 (1954);
and M. Hammermesh, Ann. Phys. 9, 518 (1960).

'i E. P. signer, Ann. Math. 40, 149 (1939);Z. Physik 124, 665
(1947}.V. Bargmann and E. P. VA'gner, Proc. Natl. Acad. Sci.
U. S. 34, 2ii (1948).

7 A discussion of certain of these irreducible representations in
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to the description of what we mean by a system of
particles, but only to a single particle, or to what Wigner
calls an elementary system. Representations of the type
required here were obtained by Bakamjian and Thomas
by a somewhat peculiar heuristic procedure. This con-
sisted in starting from the representation which corre-
sponds to a system of free particles (Sec. III, below)
and performing a canonical transformation to a new
representation. In this representation it is a trivial
matter to modify the operator representatives of the
infinitesimal generators so as to introduce interaction,
without at the same time invalidating the commutation
relations which these generators must satisfy. The
procedure has the shortcoming that the generality of
the result is not at all clear.

The investigation reported in the present paper,
which originated independently of the earlier work, '
follows a diferent path, namely, the direct "inte-
gration" of the commutation relations for the generators
of the inhomogeneous Lorentz group, and attempting
to do this in complete generality. The procedure which
was devised for this purpose consists in making use of
an artificial expansion' of all quantities in powers of
(1/c'), where c represents the velocity of light. With
this method we were able to secure the most general
solution for which such an expansion exists, but we
have no know/edge at this time whether solutions for
which expansibility is not possible may also exist. Our
considerations are limited to a system of particles with
finite rest mass and finite spin, and we conjecture that
our solution is the most general for such a system.
Although our solution is obtained by an expansion
procedure, the 6nal result is obtained in closed form
and coincides with the result of Bakamjian and Thomas.
The generality of their solution is thus more clearly
defined.

The general result which is obtained shows on ex-
amination that without further restrictions it encom-
passes systems which are quite aphysical in a certain
sense in that they fail to possess a property which we
call separability of the interaction Although .defined
more precisely in the text, this term is meant to cover
the characteristic that a system of particles when
broken up into two spatially remote subsystems should
be such that the dynamics of each subsystem are
independent of the other. We are able to exploit the

a notation and representation corresponding to that employed
below will be found in L. L. Foldy, Phys. Rev. 102, 568 (1956).

Most of the substantive content of the present paper was
obtained in 1956 and presented at a seminar at Brookhaven
National Laboratory during the summer of that year. Its con-
nection with the work of Bakamjian and Thomas was pointed out
to the author at that time by Professor N. M. Kroll. A substantial
part of the long delay in submitting this work for publication was
occasioned by an unsuccessful search for a more satisfactory
method of handling the problem of sepurability of the interaction
than that presented later in the paper.' The specific nature of this expansion depends in part on the
form in which the fundamental commutation relations are written.
The particular choice employed was dictated by considerations
discussed in footnote 11.

methods we have developed to form a basis for limiting
the general solution to systems satisfying the separa-
bility condition on the interaction, but unfortunately,
here we have not been able to put the appropriate
requirement in closed form; instead the procedure must
be carried out order by order in powers of (1/c'). Its
utility is thereby somewhat impaired insofar as actual
applications are concerned.

While this work was primarily motivated by the
purely theoretical question as to whether relativistic
descriptions of a system of directly interacting particles
were possible, and in what generality, its usefulness is
not restricted by this consideration. Whi]e the theory
is certainly not in a form where one can employ it
immediately to set up a completely relativistic descrip-
tion, say of even so simple a system as a hydrogen
atom, except perhaps approximately, nevertheless it
does separate out the essential restrictions of relativity
and shows further that these alone do not sufficiently
circumscribe reasonable physical systems. Hence, it
can yield some insight into the further requirements
which systems must possess to be what we call "physi-
cally reasonable. "Separability of the interaction is here
a case in point, but other requirements such as causality
and nonpropagation of physical e8ects with velocities
exceeding the velocity of light still require exploration.
Furthermore, within the scope of the present result
there is established a framework within which any
relativistic description of a system of the type con-
sidered here, whether exact or approximate, must fall.
Thus, eGective Hamiltonians for the interaction of
particles as derived from a field-theoretical description.
should be encompassed by the results here obtained.
Finally, the results obtained can serve in a most
practical fashion to set up equations which are rela-
tivistic to some particular order in (1/c') starting from
a knowledge of the nonrelativistic interaction (as we
will show in a future publication).

II. INHOMOGENEOUS LORENTZ AND
GALILEAN GROUPS'0

We take as the ten infinitesimal generators of the
proper inhomogeneous Lorentz group the generators
of the infinitesimal space translations (Pi,P2,P3) =P,
the generator of the infinitesimal time translation H,
the generators of infinitesimal rotations (Ji,J2,J3)=J,
and the generators of infinitesimal Lorentz transfor-
mations (Ei,E2,E3)=K. These satisfy the well-known
commutation relations":

' The discussion of the irreducible representations of the
inhomogeneous Lorentz group follows that contained in reference
7.

"The specilc form of the constant coefficients appearing in
these relations depends of course on the "normalization" of the
in6nitesimal generators, which are unde6ned to within a constant
which may be dimensional. The particular choice here used corre-
sponds to appropriate "physical dimensions" for the various
generators such that, for example, P has the dimensions of a
momentum, EI an energy, J an angular momentum, and K a
reciprocal velocity in units in which A= 1.. The occurrence of the
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P';,P;]=0,
fP;,H]=0,
fJ;,H]=0,
[J;,J;]=is;)sJ)„
P;,I';]'= zee),I')„
fJ;,K;]=is;;sKk,

fa,K,]= iI, ,
—

LK;,K;]= —ie;, ),J),/c',

P';,K;]=—ia;,H/c'.

Here 8;; is the Kronecker symbol, e;;A, the Levi-Civita
three-index symbol, c represents the velocity of light,
and the summation convention on repeated indices is
assumed.

By an appropriate transition" to the limit c —+ ~:
P ~ P('),

H —+ 3IIcs+H(o)

J~ J(o)

K~ K«),

one obtains the infinitesimal generators of the Galilean
group which satisfy the same commutation relations
(1) with the exception of the last two relations which

velocity of light c in special positions in (1) is then conditioned by
this choice. One could equally well have employed cP as the
generator of infinitesimal space translations, and cK as the gen-
erator of in6nitesimal Lorentz transformations, in which case no
c's would appear. While such a choice has the advantage that the
commutation relations are free of dimensional constants, it would
have precluded our using the limit c ~ ~ as the characteristic
nonrelativistic limit leading to the Galilean group. An alternative
approach which could have some advantages is to employ cP/v'a
as the generator of space translations and cK/Qn as the generator
of Lorentz transformations, where n is a positive dimensionless
number. The commutation relations would then still have the
form (1) except for the replacement of 1/c' by n on the right sides
of the last two relations. The nonrelativistic limit would then be
given by n —+ 0, but with some care taken about the rest-energy
term in II. The expansions which we later use would be expansions
in the abstract parameter o, rather than in a physical quantity
(with dimensions), namely 1/c', this might have some conceptual
advantage but in no way really affects the arguments that we
employ. We choose, however, to retain the form of (1) as written
and to think of the nonrelativistic limit as the limit c —+ ~.

"The rest energy term in H is the source of some difBculty in
going to the nonrelativistic limit. In actuality the correct form of
the commutation relations of the Galilean group has zero on the
right side of the second equation of (3). In the representations of
the Lorentz group we shall later be considering, the limit actually
takes the form of (3), and hence the Lie-Koenig relations for the
infinitesimal generators of the Galilean group are not obtained,
since the right side of the second equation of (3) is not a linear
combination of the in6nitesimal generators of the group. The
reason for this is the fact noted in the introduction, that the
nonrelativistic limit of the representations of the Lorentz group
which we employ (and which are vector representations) yield
ray representations of the Galilean group. For such represen-
tations, the occurrence of such a term on the right side is perfectly
allowable insofar as the commutation relations are applied to
operator representatives of the in6nitesimal generators of the
group. Since this is the only application we make of the com-
mutation relations, we have no cause for concern.

are replaced by

fK(o) . K(o) .]=()
LP(o) .K(o) .] i—8;;M,

with units chosen so that A=1. The scalar product in
the representation space is given by

('P lt'&)
J

'P (r t)A(r t)dr (6)

A representation of the Lorentz group is provided by
the following identifications of the inhnitesimal
generators:

II =Go)

J=rXp+s,
K= (ro)+(cr)/2c' —LsX p]/ (mc'+ o))—tp.

The symbols (s),ss,ss)=s represent three irreducible
(2s+1)-dimensional matrices satisfying the commu-
tation relations

Si)$& = Z6»A:SIfc)

where M is a constant which we shall call the intrinsic
mass. Both the Lorentz and Galilean groups may be
extended to include space-inversion and time-inversion
transformations, but since this generalization leads to
only minor modifications of the discussion which fol-
lows, we shall not discuss these in any detail. (See
Sec. XI.)

A quantum mechanical system whose state vectors
form a representation space for the Lorentz group we
shall call a Lorerrtz or relativistic system; one whose
state vectors (more properly, rays) form a represen-
tation space for the Galilean group we shall call a
Galilearl, or eomrelativistic system.

The irreducible representations of the commutation
relations (1) have been studied by Wigner and
Bargmann. '~ Restricting the present discussion to
representations suitable for describing a particle of
finite mass and noninfinite spin, each irreducible rep-
resentation, to within a unitary or antiunitary equi-
valence, can be designated by two numbers: m, taking
any positive value, which we shall call the mass, and

s, taking positive integral or half-integral values or
zero, which we shall call the spir4. A description of the
irreducible representation (r)s,s) in the language of a
Schrodinger coordinate representation can be sum-

marized as follows: The vectors of the unitary repre-
sentation space as (2s+1)-component wave functions

lt(r, t) which are square-integrable (on r) solutions of
the equation

i ()Q (r, t)/()t =o))p(r, t),

where &c is the integral (nonlocal) operator

o)= (m'c4+ c'p') '*
p = —i&,
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and hence constitute an irreducible representation of
the three-dimensional rotation group. One can easily
verify that (7) satisfies the fundamental relations (1)
and that the transformations induced by these in-
finitesimal generators carry any solution of (4) into
another solution. The above representation may be
identi6ed with the description of a free relativistic
particle of mass m and spin s; in the conventional
interpretation, r represents its position, p its mo-
rnentum, co its energy, s its spin angular momentum,
and r)&p its orbital angular momentum.

Taking the limit c —+ ~ yields a representation of
the Galilean group" which may be identified with the
description of a free nonrelativistic particle. The
Schrodinger equation (4) becomes in this limit (after
dropping the rest-energy term),

i B&(r,t)/Bt = (p'/2m) P(r, t), (9)

and the second and fourth equations of (7) become

H'+ =p'/2m,
(1o)

K&'& =mr tp, —

while the other generators are the same as in the
Lorentz case.

where

Js = rvXpv+ svy (14)

H=Q, (o.+U. (16)

Its solutions are still to constitute a representation
space for the Lorentz group but with (16) replacing
the second equation of (13). The generators P and J
can be allowed to stand unchanged (by an appropriate
choice of representation), but one can no longer retain
the identification of K as given in (13), since in view of
(16) such an identification would be in convict with the
last commutation relation of the set (1). Thus it is
necessary to assume an interaction term in E as well:

k„=(r„&o„+or„r„)/2c'—Ls„Xp,j/(m, c'+co„)—tp„. (15)

The corresponding representation of a noninteracting
Galilean particle system can obviously be obtained in
an analogous way.

The introduction of interaction into the system of
particles is to be accomplished by retaining the
Schrodinger equation (11) but with H modified by the
introduction of an interaction term U, a function of
the dynamical variables of the system:

III. PARTICLE SYSTEMS K=+„k„+V, (17)

(4"A ~) =
~

"f.Vi«i «~ (12)

In accordance with the direct product character of the
representation, the inhnitesimal generators of the
Lorentz group are identified as

P=Z. p.,
v &vp

(13)

K=+.k„
'3 With intrinsic mass m.' See any book on the theory of groups and group represen-

tations.

The direct product" of E irreducible representations
of the Lorentz (Galilean) groups leads to a reducible
representation which is identifi. ed with a relativistic
(nonrelativistic) system of iV noninteracting particles.
Explicitly, we associate with the vth particle a rest
mass m„,a spin s„,a position vector r„,a momentum
p„=—iV'„, an energy co„=(m„2c'+c'pP),and a spin
angular momentum s„.The vectors of the representation
space are functions with g, P (2s,+1) components,
each component being a function of all the r„,but of
only one time variable t. These state vectors are the
square-integrable (on all r„)solutions of the Schrodinger
equation

i 8$(ri. rg, t)/Bt=HiP(ri rg, t), (11)

where the operator H is given in (13) below, and the
scalar product is defined by

where V is another function of the dynamical variables
of the system. The problem of describing an interacting
system of Lorentz particles then consists of determining
functions U and V such that the fundamental com-
mutation relations (1) are still satisfied. '

While it would be our hope to obtain a general
solution of the commutation relations for U and V
and thus to derive a description of every possible
relativistic system of particles with finite mass and
noninfinite spin, the methods applied in the present
paper are not sufficiently powerful for this purpose.
These methods, while lacking in rigor, do yield quite a
general solution, which we believe in fact to be the most
general solution within the context of the present prob-
lem, but this last conjecture has not been established.
It should also be remarked that while every U and V
such that the commutation relations are satisfied will

yield a description of a relativistically invariant system,
these systems need not have any resemblance to familiar
physical systems unless U and V satisfy other conditions
as well. We shall give some discussion of this point
briefly later in the paper.

The problem of establishing a description of inter-
acting Galilean particles can be formulated in close
analogy to that for Lorentz systems. Since this problem
represents a prelude to the Lorentz problem, we consider
it first in the following section.

IV. INTERACTION IN GALILEAN SYSTEMS

In the interest of a simplified appearance for our
equations, we shall, ie the present sectiort owly, drop the
superscript (0) which we have so far employed in
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H=g„p,2/2m, +U,
J=P, fr„xp„+s,),
K=P„(m„r„—lp,)+V.

(20)

(21)

(22)

It is convenient for our present discussion, as well as
for the succeeding discussion of the Lorentz group, to
introduce conventional center-of-mass and relative
coordinates":

M=+„m„,
R=g„m,r,/M,

P=Z. p„
p„=r,—R,

m, =p,—m„P/3f.

(23)

distinguishing the generators of the Galilean group
from those of the Lorentz group. In accordance, then,
with the discussion of the last section, we assume for
the generators of the Galilean group the forms:

(19)

LI';,H]= LJ;,H)=0, (31)

provided U is translationally invariant (and hence
independent of R) and rotationally invariant. Further-
more, (22) satisfies the fundamental relations

p', ,E:,]= i~,pr,—
PJ;,E,]= —ie;;ized„

(32)

provided V is also translationally invariant (and hence
independent of E) and transforms as a vector under
rotations. Hence, U must be a scalar and V a vector
formed from P and the internal variables. The re-
maining two fundamental relations:

U and V may now be regarded as functions of R, P,
and the internal variables. An explicit time dependence
of U and V is excluded by the requirement that the
Schrodinger equation (11) be left invariant under the
transformations induced by the infinitesimal generators.

It is seen immediately that (19) satisfies the funda-
mental commutation relations:

P and R are, of course, canonically conjugate, but the
p„and ~„arenot independent (and hence not canoni-
cally conjugate) since they satisfy the relations: then yield the two more complicated conditions:

(33)

P„m„p„=0,
„~„=0, (24) MfR;, V;)—MPR;, V~]+LV,, V;]=0,

M(U, Rg+ PU, V]+)T,V]=0.
(3,4)

(35)
and the commutation relations:

where

J=RXP+S,

S=P, Lp, Xm,+s,],

(26)

(27)

is theielermal angular momentum (spin) of the system;

H =P'/23I+ T+ U (28)
where

T=P. m. ,2/2m, (29)

is the internal kinetic energy of the system; and

K=uR —lP+V. (3o)

"Actually, any transformation of coordinates which yields a
coordinate R, canonically conjugate to P, and internal coordinates
commuting with R and P are satisfactory for the purpose of what
follows. The particular choice above is made only because of its
familiarity, not because it has some deep-seated significance. Qf
course, the ordinary center of mass is significant in the non-
relativistic case, but much of its significance is lost when one
considers the relativistic situation, and actually we shall continue
to use the same variables in this latter situation.

L(p )' (p") 7= 5( )' ( ")J]=0
L(-.);,(u, );7= -'L~., -m, /~7~;;.

Actually, we shall require only the fact that P and R
commute with all the g„, ~„,and s„.These latter
variables we shall call imtereal variables. In terms of
these variables, we have

LU, R)=0, (36)

which states that U is independent of P as weil as g
and hence is an arbitrary rotationally invariant (scalar)
function of internal variables only.

Our establishment of the quoted result is conditional
on the assumption that V may be regarded as a function
of a parameter A. , vanishing when X=O, which has a
regular power series expansion about this point, and
that the commutation relations are satisfied for all
values of A, within a nonzero radius of convergence of
this power series. In this case we may write

V=&- P .&-in-,
n=0

(37)

where o. is a positive integer. If this expansion is sub-
stituted in (34), then the terms of order ei yield

LE;,it ious,)—LR;,n &'&;)=0. (38)

It will be noted that, in contrast to the Lorentz case,
these relations can be satisfied with V=O even if UWO.
To make this assumption, ab initio, however, would
shed some doubt on the generality of the solution. We
shall instead proceed without this assumption and show
that, in fact, V=O can always be achieved, without
loss of generality, by an appropriate choice of repre-
sentation. Once this has been demonstrated, (35) re-
duces simply to
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But in a momentum representation, this equation
simply states that

curlpv(o) =0,

and hence that there exists a function C such that

v "&= —gradpC =i[R 4].

(39)

(40)

P'=wPw-'= P
J'=wJw-'= J (42)

Employing an expansion in powers of X, we have further

K'= +K'-&=&[MR—tP+ V)w-i
=MR —tP+V', (43)

where V' is of order X +' by virtue of (40). Hence
formally, at least, we can by repetition of this process
eliminate terms of higher and higher order in X, and
thus finally achieve a representation in which P and J
retain their standard forms and V=O so that

K=MR —tP.

Having disposed of V by a proper choice of represen-
tation, we have by our earlier argument that the general
solution for U is a rotationally invariant function of
the internal variables of the system.

In all that follows, we shall assume that the repre-
sentation of a Lorentz system is so chosen that in the
nonrelativistic limit V=O and K assumes the form
(44). Representations of the Lorentz group in which

(44) holds in the nonrelativistic limit and in which P
and J have the forms (19) and (21), respectively, will
be called standard representations. It is of interest to
note that by virtue of the zero choice of V in the
Galilean representation, the transformation of r„and
y„under Galilean transformations is the same in the
presence as in the absence of interaction:

Furthermore, it is easy to see that C can be so chosen
that it is Hermitian, translationally invariant, and
rotationally invariant, so that it commutes with P
and J. If we now subject our representation to the
unitary transformation

%,=exp(iX C/M), (41)

we have, by virtue of the commutativity of C with P
and J, that

K=K&'&+ K&'&+ (47)

with superscripts designating the order of the term in
powers of (1/c'). Here HN& is identical with the H
given in (28) of the previous section with fJ an arbitrary
rotationally invariant function of the internal variables,
while Ki'& is given by Eq. (44) of the previous section.
On substituting (46) and (47) into those of the funda-
mental commutation relations (1) which involve H and
K and collecting terms of first order, one obtains

[J';,H&'& j=0, (48)

V. INTERACTION IN LORENTZ SYSTEMS
(ORDER c~)

We now turn to the problem of integrating the
commutation relations for the Lorentz group in the
presence of interaction. The method we shall employ
will consist in expanding all quantities of interest in
powers of the parameter (1/c') and then attempting
to integrate the commutation relations order by order.
To zeroth order, the Lorentz group reduces to the
Galilean group so that this problem has been solved
in the preceding section. The assumption of expansi-
bility of this type is lacking in elegance and may per-
haps pose grave questions of rigor about which we are
able to say little. Even on the physical side the meaning
of such an assumption is obscure since it is beyond our
powers to vary the velocity of light. "Our justification
for this procedure is thus largely pragmatic in that
we are able to secure definite and reasonable results.

In actuality, we shall not quite carry out the full
program outlined. We shall instead obtain the results
for Lorentz systems valid to order (1/c') and use these
to infer the result correct to all orders. We are then
able to show that the latter is the most general solution
in the form of a, power series in (1/c'). Considerable
confidence in the generality of our final result is sup-
ported by another argument, which we shall give later,
drawing on the reducibility of representations of the
Lorentz group. The results thus obtained are equivalent
to those of Bakamjian and Thomas referred to in the
introduction, but our methods suggest a much greater
generality than is clear from the work of these authors.

We begin then with the expansibility assumption

H= Mc'+H&" +H&'&+ (46)

r.'=exp(i( K)r„exp(—iF„K)=r„—)&',

p„'=exp(ig K)y„exp(—ig K)=p„—m„g,
(45)

[J;,H"&(=0, (49)

[J,,K"&;]= i e,;i K"&i„(50)
and in agreement with the classical concept of Galilean
kinematics. This may be considered a justification in
part for the identification of r, and y, with the co-
ordinate and momentum vectors of the vth particle. '"
No analogous result is valid in the Lorentz case.

»'Note added in proof. It may be appropriate to remark here
that p„is the momentum canonically conjugate to x„;since U
contains the p„,p„is not necessarily equal to m„x„.The same remark
is applicable in the relativistic case considered later.

[H&'& K"&~]+[Ho&,K&";]=0, (51)

[K&'& Ko& $—[K&" K"' $= ie,,i J&/c—' (52)

[I'; K"' $= —i c;iH'"/c'. (53)

The first two of these simply assert that H"& is trans-
lationally and rotationally invariant, while the third
asserts that K"' transforms as a vector under rotations.
"See, however, the remarks made in footnote 11.
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LR K"' I."' ) [R E"' I.'» ]'=0 (55)

where use has been made again of the fact that K"& is
of the form given in Eq. (44) and of our preceding
result that the difference between K(" and L&'& com-
mutes with P. Now (55) is again of the same form as
Eq. (38) which allows us to conclude that the general
solution for K&'& consists of L&'& plus the P gradient of
an arbitrary function:

The last three relations are more complicated and
require detailed consideration.

To obtain a general solution of these, we note that a
particular solution of (52) and (53) is given by

L(» (RH(o)+H(0)R)/2c' —[S&&P)/2Mc' (54)

where use is made of the solutions for II(') and E(0)

obtained in the previous section. It is further clear that
the general solution of (53) can be obtained by adding
to L"' an arbitrary function which commutes with P
and hence is independent of R. On the other hand, Eq.
(52) can now be rewritten as

P'U"& (T+U&'&)' 1
+p

2~2c2 ~ Sm,2Mc2

2(0r. P) ' i
&( + ——[C &" H('))+ W") (62)

ns c Mc M

RU(0) 1 1
V(» = ——P {p,(00, P)+(00„P)p.

c' c' ~ 4M

+00,(y, P)+(9. P)or,}+ {p,ir,s+ir,oy„
2m.

The rotational and translational invariance of H"' as
expressed in (48) and (49), then imply that W"& must
be a rotationally invariant function of internal variables
only.

Thus our problem has been solved to order 1/c'. It
is now a straightforward matter to obtain the inter-
action terms U and V to first order using (16) and (17).
The calculation is a little lengthy, and we simply quote
the results:

K'"=L"'+i[RC'"'). (56) —[Sp)&00„]}+i[R C(»]. (63)

L('&]= [{H(o)}'R)/2c' (57)

where use is made of the fact that H('& commutes with
P and with S, the latter following in turn from the fact
that J and RXP commute with H(". We have further,
by use of the Jacobi identity,

The previously noted conditions allow us to restrict
4") to an arbitrary rotationally and translationally
invariant function.

Ke turn now to the final equation to be satisfied,
namely (51). We note first that

Some simplificatioris in the expressions (62) and (63)
can be achieved by noting that the terms —(T+U&'&)'/

2Mc'+p ir '/8m 'c in U") are functions of internal
variables only and can therefore be incorporated into
gO)

U('& = P' U("/2M'—c'

+-,' Qp [(oo, P)'/m„M'c'+m (oop P)/m, 'Mc']
—i[C &",U(') )/M+ W&'). (64)

Furthermore V&') can be written as

[H(,i[R,C,(»)]= i[C,(i) [H(o) R)]
—i[R,[C(» H(o)]] [;[C,&i& H&o&],R], (58)

where

P'(') =RU&0&/c +i[R C ( &+C &'&'] (65)

where we have employed the fact that the commutator
af H&" with R is iP/M which commu—tes with C(').
Finally, we note that

[H('&,K&'&)= [MH&'&,R), (59)

by using the farm (44) for E( & and the fact that H("
commutes with P by (48). Now substituting (56), (57),
(58), and (59) into Eq. (51), we 6nd that it can be
written

[{H(0)}2/2c'+ i[&&» H(0))+MH(», R]=P, (6P)

which simply asserts that the first factor of the com-
mutator brackets is independent of P and hence must
be a function, which we call MW", of the internal
coordinates and of R. Thus the general solution of
(51) for H&') is

H"& = —{H&'&}'/2Mc' —i[C "),H('))/M+ W&'&. (61)

1
{(. P)( . P)+ ( . P)( . P)}

2c' . 2

1
+ {(~,P)~0+~0(~, P)—S,&&~, P} . (66)

2m.

It is of some practical interest that the results of this
section allow one to generalize any nonrelativistic
Hamiltonian to one which is relativistically invariant
to order 1/cs, but that in view of the arbitrary functions
C (') and 8'('&, the generalization is by no means unique.
Conversely, a Hamiltonian which is purported to corre-
spond to a theory which is relativistically invariant to
terms of order 1/c' should be subsumed in our result
if it is, in fact, as general as we believe. In particular,
one can verify that the reduction of the Sreit Hamil-
tonian" for two interacting charged particles in positive

'r G. Breit, Phys. Rev. Sl, 248 (1937).
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energy states is comprehended by the expressions
obtained here, and presumably the same is true (though
we have not attempted a check) of similar reductions
of two-particle Dirac Hamiltonians obtained by
Chraplevy et al."

'LL =exp (iC "'/M). (67)
'8 F.N. Glover and Z. V. Chraplevy, Phys. Rev. 103, 821 (1956),

and further references contained therein.

VI. A UNITARY TRANSFORMATION

Clearly the next step in our program would consist
in attempting to repeat the procedure just employed
in order to obtain the terms of order 1/c'. Eventually,
one would have to justify by induction the successive
steps and show that the commutation relations at each
order can indeed be integrated. In view of the com-
plications encountered already in order 1/&,", such a
procedure is bound to be extremely invol'ved, though
we have no doubts it could be successful. In the present
paper, however, we turn to a slightly modified
procedure.

The representation obtained to order 1/c' is a st&Jnd&&rd

representation in the sense this term was defined. It is
not thereby unique, however, as can be seen from the
following argument. One can obtain a new represen-
tation through the agency of a unitary transformation.
If this unitary transformation commutes with P and
with J, it does not disturb the standard form of these
generators. If, furthermore, the unitary transformation
differs from the identity by terms of order 1/c' or higher,
it will not disturb the standard form of the nonrelati-
vistic limit of K. Thus, since the infinitesimal generator
of a unitary transformation can be selected in an
in6nite number of ways and still be translationally and
rotationally invariant and of order 1/c', there are an
infinite number of unitary transformations which
preserve the standard form but modify the generators
H and K (even to order 1/c') profoundly. In view of the
complicated forms already obtained for H and E in
second order, there would clearly be advantages in
exploiting the freedom thus overed of simplifying these
expressions. %'e will show presently that indeed we
may eliminate the term in C&'& from Eq. (56) by a
unitary transformation with a corresponding simpli6-
cation of the expression for H('). Before doing this,
however, we remark that such a procedure also has
certain disadvantages. These stem from the fact that
any such unitary transformation at the same time
modifies the operator representatives of physical ob

senables. Thus the price of the simplification achieved
lies in an obscuration of the direct physical interpre-
tation of the operators which appear in the expressions
for the generators of the Iorentz group. We shall
discuss this point at greater length in a later section.

We consider now the elimination of the arbitrary
function 4('& from the expressions of the previous
section through the unitary transformation

'LLE&'&'LL '= K&'&+ (terms of order c '), (6»)

H&0&~ '= H(o&+i[C "&,H&0& j/M
+ (terms of order c '), (70)

'lLH"'lL '=H&'&+(terms of order c ').
We thus obtain

eKe-'=K&'&+L&'&+(terms of order c '),

(71)

'LLH'LL '= Mc'+H& & —fH&0& }'/2Mc'+W"&
+(terms of order c 4), (73)

with 8"&'&, an arbitrary rotationally invariant function
of internal variables only, now remaining as the only
arbitrary term of second order.

VII. THE "GENERAL" SOLUTION

The results expressed by Eqs. (72) and (73) allow
one to make a reasonable inference of what we would
have obtained had we continued our procedure to all
orders in 1/c'. To see this we need only rewrite these
equations in another form, equivalent to the original
to order 1/c'. This form is

H = [h'+c'E']l (74)

K= (RH+HR)/2c' [SXPj/(h+—H) —tP, (75)

where k is a rotationally invariant function of internal
variables only and explicitly is

with
h =Mc'+h&0&+h"'+

h"' =P, ~,'/2m, +U"&,

h&'& = —(h&'& }'/2Mc'+W&'&.

(76)

(77)

(7g)

The addition of the row of dots in (76) is purely
gratuitous at this stage but is meant to suggest that
had the problem been carried out to still higher order
in 1/c' the result would still be of the form of (74) and
(75) except for the addition of higher order terms to h.
But the remarkable feature of Eqs. (74) and (75) is
their close analogy in structure to the irreducible
representation of the I.orentz group given in Eq. (7)
if, we identify h with nz, P with p, and S with s.

With the strong suggestion that (74) and (75) are
the general solution to our problem, it is now a simple
matter to substitute these directly into the fundamental
commutation relations given in Eq. (1). One finds
indeed that these are satisfied provided only that A'

commutes with P, R, and J which simply asserts that
h is a rotationally invariant function of internal
variables only. The only question which then remains
is whether we have lost any generality in the leap from
our general second-order result to our final result

Since C&'& commutes with P and J, these generators are
left unchanged. On the other hand, we have

'LLK&"'LL ' =K"&—i[R,C "'j+ (terms of order &; '), (68)
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expressed in (74) and (75). We now give an argument
which shows that in fact no generality is lost provided
K and H have power series expansions in 1/c' as pre-
scribed earlier. We need only assume that a more
general solution is of the form,

K'= K+az,
H'= H+AH,

(79)

(8o)

Since the deviation hE of K' from K must be of some
definite order (not zero) in 1/c', say of nth order, we
have for the terms of nth order in Eq. (82) simply

M [R;,AE;j M[R, ,AE—,)=0, '(83)
which by an argument now familiar implies that AK
has the form i[R,C &"&$ and hence that the term of nth
order in hK can be eliminated by a unitary trans-
formation %,'"&=exp[iC&"&/Mj. It then follows from
(81) with i=j that DH is zero in the order n —1. By
repetition of the argument we may show that by a
series of unitary transformations of this type hK and
AH may be made zero to any order. While these unitary
transformations do not leave H and K invariant, these
are modified at most in order n and n+1, respectively,
so that the resultant changes can be incorporated into
AH and AK of these orders, respectively. Thus we have
established that (74) and (75) constitute indeed the
most general solution which has a power series expansion
in 1/c'. If there exist solutions to our original problem
which are not so expansible, we can say nothing about
them.

VIII. DISCUSSION OF THE GENERAL SOLUTION

At first sight it may seem remarkable that we were
able to obtain so general a solution to our problem. We
shall now show that in a way the result is trivial and
might have been anticipated from other considerations.
We remark first that any representation of a relativistic
system consisting of more than one particle is reducible,
whether or not there is interaction. Since any unitary
reducible representation of the inhomogeneous Lorentz
group is completely reducible, in an appropriate sense,
it must be equivalent to the direct sum of irreducible
representations. But this is exactly the nature of the
result which we have in Eqs. (74) and (75). To see this,
we note that since h commutes with P, R, and J, it
also commutes with S and hence with S'. Furthermore,
S' commutes with all the generators of the inhomo-

with H and K given by (74) and (75). On substituting
these into the last equation of (1), we have

[P;,8 K;]= ib;,AH—/c',

showing that whatever the order of AK in powers of
1/c', AH is of one lower order. We now substitute (79)
and (80) into the second-last equation of (1) and obtain

IX. SEPARABILITY OF THE INTERACTION

To illuminate the final remark made in the preceding
section, let us assume that we had indeed followed the
procedure outlined and had argued from the general
reducibility of the representation of a Lorentz system
that the general solution was indeed that found above
and, in particular, that H was of the form

H = [h'+c'P'j', (84)

geneous Lorentz group. The complete representation
space can then be decomposed into subspaces each
associated with a definite eigenvalue h' of h and a
definite eigenvalue S'(S'+1) of S', with S' a positive
integer, half-integer, or zero. Each such subspace is
left invariant under all the transformations of the
inhomogeneous Lorentz group and is therefore a repre-
sentation space itself. The representation in each of
these subspaces is then equivalent to a direct sum of
irreducible representations belonging to the mass h'

and the spin S'. The further decomposition (relative to
any remaining degeneracy) can be effected by 6nding
further observables constructed from the internal
variables of the system alone, which commute with h,
5', and the generators of the Lorentz group until one
has a complete set which decomposes the subspace into
invariant and irreducible subspaces.

The eigenvalues h' of h are nothing more than the
internal energies of the system, and the numbers 5'
associated with the eigenvalue S'(S'+1) of S2 are the
associated internal angular momentum (spin) of the
system in these internal energy states. Neither the

spectrum of h, nor of S', nor the nature of the other

quantum numbers reqzured to label a particular irreducible
representation occurring in the general representation has
anything fundamentally to do with the I.orenta coaariance

of the system as a whole. The lack of any restrictions on
h other than those already noted is thus made clear. lt
should be obvious now that had we approached our
problem originally from this point of view, we could
well have written down the answer immediately. One
may then well ask whether the lengthy calculation
presented earlier is anything more than an overly
circuitous route to a trivial result that could have been
anticipated from the beginning.

We believe that this is not the case and that our
detailed derivation has real intrinsic value in under-
standing the physical content of the final result ex-
pressed in Eqs. (74) and (75). The usefulness of our
procedure, however, lies in an area which transcends
the problem of relativistic covariance alone (this being
fully comprehended in the solution) but is more directly
concerned with the important question of the identi6-
cation of operator representatives of physical observ-
ables and with further restrictions on the character of
inter-particle interactions. We now consider these
questions.
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with h an arbitrary function of the internal variables

g„,~„ands„.Recognizing in fact that h is the internal
energy of the system, we might then assume for h a
seemingly reasonable form, namely,

h =P, fm„2c'+c'n..2$-:+u, (85)

and this is not separable. To see this, we simply remark
that if we effect the separation of the two subsystems
I and II, then in the center-of-mass frame, this requires
that u=ur+uii. If, however, we substitute this via
(85) in (86), we obtain a result which is certainly not
the sum of two terms Uq and Vip of the required char-

where u is a function of the internal variables only and
represents the "interaction in the center-of-mass co-
ordinate frame. " It would then seem reasonable to
choose u so that interaction between a pair of particles
vanished as their separation approached infinity. We
then pose the question whether the resultant repre-
sentation of the inhomogeneous Lorentz group would
describe a physically reasonable system. )It should be
remembered that what we are implicitly assuming here
is that the internal variables g„,~„,and s„ortheir
equivalents in terms of r„,p„and s„,as given through
the relations (23) are indeed the operator represen-
tatives of the physical position coordinates, physical
momenta, and physical spin angular momenta in the
usual sense of these terms as physical observables. f
Our answer to this query would then be no, because
the system lacks an important physical property which
we shall call separability of the interaction.

We define a system to have a separable interaction if
it has the following property: in every frame of refer-
ence, and for every division of the system into two
subsystems I and II, and for all configurations of the
particles such that every particle belonging to sub-
system I is infinitely separated from every particle
belonging to subsystem II, the interaction potential
U assumes the separated form Ui+Uii, where Ui
involves dynamical variables referring to particles
belonging to subsystem I only, and U» involves
dynamical variables referring to particles belonging to
subsystem II only.

Obviously, the property of separability is essential
in order that the idealization of isolating a system from
its physical surroundings should have any meaning.
(We believe that this is a necessary property of a
physical system in every area of physics except in the
case of the general theory of relativity applied in
integral fashion to the universe. as a whole so as to
incorporate the ideas of Mach. )

Now the mere fact that the interaction u of Eq. (85)
in the center-of-mass frame is separable does not at all
guarantee that the interaction is separable in another
frame. In a general frame, the interaction is, according
to our definition (16) with H given by (84),

U = [h'+ c'P' j'—Q „Pm'c4+c'p, 21*

aeter. This is the case even if the interaction u is
identically zero t

This apparent paradox arises, of course, from our
unwarranted assumption that the operators for internal
variables occurring in h can be identified directly with
the usual physical observables. The virtue of our original
derivation lies in the fact that it explicitly exhibits the
change in the identification of the operator represen-
tatives of physical observables consequent on the
unitary transformations we had to perform in order to
bring the representation into the form given in Eqs.
(74) and (75). Since the unitary transformations in-
volved P and internal variables, the connections
between the origi. nal operator representatives and the
final operator representatives of any physical observable
(in particular the internal variables) involve P. The
only operator representatives which are, in general,
left unchanged by the transformations are those for
the total momentum and total angular momentum.
Thus, the usefulness of (84) is very much in question
unless one can reconstruct the unitary transformation
which carries one from a representation in which r„,p„,
and s„arethe operator representatives of the position,
momentum, and spin angular momentum of the par-
ticles of the system (which we shall call the physical
representation) to the representation in which H and
K have the forms given by Eqs. (74) and (75), which
we shall call a reduced rePresentalion. i9 In a physical
representation (16) must be valid with U a separable
interaction in order that the representation which we

have shall be physically acceptable.
Unfortunately, we have not been able to find, nor

is it likely that there exists a simple condition on the
function h in Eq. (84) which corresponds to the inter-
action in the physical representation being separable.
The best that we can do is outline a procedure by which
one can construct those functions h which have this
property. Unfortunately, the procedure is one requiring
an infinite number of steps, in general, and hence its
practical utility is somewhat limited. We outline this
procedure in the following section.

X. CONSTRUCTION OF SEPARABLE INTERACTIONS

In this section we shall employ H' to designate the
generator of infinitesimal time translations (the Hamil-
tonian) in the reduced representation, and H to desig-
nate the corresponding generator in the physical
representation. A corresponding notation with primes
can be used for the operator representatives of other
physical observables in the reduced representation,
though we shall not in general require these symbols.
We do, however, remark that P= P', that is, the oper-
ator representative of the total momentum (generator

"Reduced representations are not unique since any unitary
transformation which involves only internal variables and is
rotationally invariant will leave the form of Eqs. (74) and (75)
unchanged, and will only replace h by a new function of the
internal variables.
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of an infinitesimal space translation) is in fact the same
in both representations, since the unitary transfor-
mation which carries us from one representation to the
other is translationally invariant. If we write this
transformation as

we then have

with

'tt= exp(gC/M),

&
—ie~u~~&ic~~

7

H' = [h'+ c'P'j'*,

H=Q„s).+V.

(87)

(89)

(90)

p2
~(o)~— +/g(0)
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(92)

p2h«)
Ho)' — +/g(i)

8M'c' 23Pc'
(93)

etc. We also expand C in such a power series:

@=@0)+@(g)+.. . (94)

From (88), we then obtain H in a corresponding power
series:

with
H =Mc'+H &')+H &'&+.

P2
H(0) — +/g(0)

2M

(95)

(96)

p4 p2h«) z
H(o = +&'g(n [@(n &&g(o)j (97)

SM'c' 2M'c' M

etc. By expanding H as given by (90) and comparing
with (95), we may obtain explicit expressions for U('),
U", etc. , in terms of h" h" . . and C" C"'
We may now consider the last two sets of quantities
as unknowns which are to be determined in such a
manner that U«), U(", ~ ~ are separable. This requires
in particular that they be independent of P, and this
can be achieved by appropriate conditions on these
unknown quantities remembering always that h is a
function of internal variables only and C is a function
of P as well. The condition that one obtains on U(" is
that it be an arbitrary rotationally invariant function
of internal variables only, which is itself a separable
interaction. The most general choice of ho) and C("
such that U") is separable is a, considerably more
complicated problem.

The procedure above outlined is an arduous one,
even in a relatively low order. We do not discuss it
further here, but defer to a later paper an example

We now assume an expansion for h in powers of
(1/c') of the form given in Eq. P6), from which we

obtain a corresponding expansion of H'.
H'= Mc'+H &') '+H &'&'+ (91)

with

where the most general separable interaction valid to
terms of order (1/&.") between two particles will be
derived in detail. This result will then represent a
substantial generalization of the well-known work of
Wigner and Eisenbud on the most general interaction
between two particles correct to first-order terms in
the momenta of two particles. The usefulness of the
considerations presented in this paper to some problems
of practical interest will thus be established.

XL CONCLUDING REMARKS

We conclude this paper with some general and some
specific remarks concerning its contents.

(1) We may first note that the problem of taking
into account invariance under space and time inversion
can be easily incorporated into our treatment by further
conditions on the function h in a well-known way. Xo
new problems of principle appear to arise here.

(2) While we believe that Lorentz covariance and
the sepa, rability condition are essential to any theory
of interacting particles, it is not at all certain that these
suKciently delineate physically acceptable theories.
There is no place in our treatment where the question
of causality, whether in a local or an extended sense,
makes it appearance. We thus have no guarantee that
all of the theories subsumed under the above conditions
have a property corresponding to the fact that physical
effects are not propagated with a velocity greater than
the velocity of light. It is not even a simple matter to
define clearly what this means mathematically in our
framework. Obviously a means of incorporating a
condition of this character into the formalism developed
would greatly enhance its value as a basis for discussing
the interactions in a, relativistic system independently
of the means by which the interaction is propagated,
the latter being the additional element contained in a
Geld-theoretical description. Even a more succinct
mathematical formulation of the condition of separa-
bility is most desirable.

(3) It may be argued that the condition that the
number of particles in the system remains fixed already
imposes severe limits on the theory which are contra-
dicted by experience. This is certainly true, but there
are no obvious barriers in the way of making an ex-
tension of the theory (complicated though it may be)
to incorporate the creation and annihilation of particles,
by passing to a Fock representation through second
quantization. This requires, of course, the introduction
first of Bose-Einstein or Fermi-Dirac statistics for
identical particles, but it is clear that there is no
apparent bar to incorporating these conditions into
the theory for a fixed number of particles. The limi-
tations which Lorentz covariance (in the sense in which
it is applied in this paper) impose on the creation and
destruction of particles would appear to be a most
intriguing problem.

We would like to emphasize, however, that in spite



of the validity of the objection raised here, the utility
of what has been presented is not thereby impaired in
many problems of practical interest. Just as nonrela-
tivistic quantum theory has an appropriate domain of
validity, the domain of validity of the theory here
presented encompasses those situations in which rela-
tivistic corrections to nonrelativistic quantum theory
are of importance, but where the creation or annihi-
lation of rea/ particles is not important. The fact that
virtual particles may be created and destroyed is
presumably already accounted for in the direct inter-
action between real particles. Thus, for example, the
interpretation of nucleon-nucleon scattering in terms
of an effective interaction, even though energy de-
pendent or nonlocal, should be encompassed within
the framework of the theory given here. Only where
real particle production gives rise to a substantial
non-Hermitian part to the interaction in consequence
of its reactive eGects or where real particle production
occurs, should the type of description envisaged here
fail severely. This would be true at energies sufficiently
above threshold for particle production such that the
inelastic cross section represented a substantial part
of the total cross section in a collision.

(4) A question which has not been more than super-
ficially discussed in the text is that dealing with the
identification of the particular operator representatives
of individual particle observables. We have essentially
satisfied ourselves with postulating a particular rep-
resentation, what we call the physical representation,
where this identification has been made once and for
all. In the type of approach which is employed in this
paper, it would be desirable to lay down abstract
criteria for recognizing the physical representation
(from other representations related to it by unitary

transformations) and thus for making a firm and
unambiguous identi6cation of basic observables, much
along the lines of that employed by Newton and
Wigner. We have not been successful in attempts at
this nor do we know whether it is possible to go beyond
what we have taken above as acceptable. Qf course,
the same deficiency runs through most of quantum
mechanics where one ordinarily starts from a Hamil-
tonian in which the identification of physical observ-
ables is assumed known from the start, even though
they may be somewhat mystical, such as "bare particle"
operators. But the fact that Newton and Wigner were
able to go further than this in one context whets ones
appetite for extending this type of approach to clarify
ones understanding of what is necessary and why in
quantum physics, in contrast to looking only at "what
works. "

From the point of view of application, the question
of identi6cation of at least position of a particle is very
pertinent to the problem of interaction with external
fields. We are not in a position, from what has been
done so far, to extend our considerations to a rela-
tivistic system of particles interacting also with an
external field such as the electromagnetic held. This is
a problem also worthy of study. "

(5) Lastly, it may be remarked that the consider-
ations of this paper can be taken over largely unchanged
into classical theory (for whatever interest there may
be in this) by regarding the infinitesimal generators as
the generators of infinitesimal contact transformations
with the usual analog of Poisson brackets and
commutators.

20 In this connection, see the last section of the paper mentioned
in footnote 7.


