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Nonlinear Electrodynamics in General Relativity*
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General relativistic field equations are derived from a gauge-invariant electromagnetic Lagrangian,
which does not involve derivatives of the field, nor any charge density, but otherwise is completely arbitrary.
These equations are explicitly solved in the static spherically symmetric case, and it is shown that there
are solutions which are everywhere regular and behave, at large distances, like the gravitational and electro-
magnetic fields of a point charge. Some wave-like solutions are also derived.

1. INTRODUCTION

''T is well known that the equations of vacuum
~ - electrodynamics are linear only as a first approxi-
mation. General relativity, for instance, implies a
gravitational coupling between electromagnetic fields, '
and thus some nonlinearity. An.other (much stronger)
nonlinearity is due to vacuum polarization, which is a
quantum field eGect. In the classical limit of weak 6elds
and large wavelengths, vacuum polarization can be
approximated by a suitable modification of the classical
electromagnetic Lagrangian. ' In fact, such modified
Lagrangians have been independently introduced by
several authors, for various purposes. ' ~

There have recently been some attempts' to remove
the classical divergences by introducing general relativ-
istic considerations. (As well known, ' the quantum field
divergences are never worse than the classical ones for
fermions, but they may be worse for bosons. Detailed
considerations on this problem are, however, beyond
the scope of this paper. ) The purpose of the present
paper is to show that this goal can easily be achieved
within the frame of general relativistic nonlinear
vacuum electrodynamics, and furthermore, that the
concept of charge may arise quite naturally as a first
integral of the field equations, and need not be intro-
duced independently.
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where I.is an arbitrary function of I and J. Further let

M = r)L/i)I, N = BL/r)I, (4)
and

T&"= ( g) —fc)Z/f)g
It follows that

These are the well-known algebraic conditions of
Rainich. "" It is seen that their validity is quite
independent of the choice of the electromagnetic
Lagrangian. There are nevertheless two essential differ-
ences between linear and nonlinear electrodynamics:
the curvature scalar,

2. FIELD EQUATIONS"

Only two independent algebraic invariants can be
formed with an antisymmetric tensor F„v and a sym-

(13)R= 8'T= 16rr (L IM JN), — —
may differ from zero, and the generalized electromag-
netic field equations are

(14)e»'Fp~, )=0,

tive. A comma denotes partial differentiation, a semicolon-
covariant differentiation. Natural units are used: c=G=1.
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The last relation is obtained from hZ/8A„=O, where

A„ is defined by F„„=A„,,—A „,„.

+p +1 g2 g3 (17)

Only the first of the above equalities is not trivial, and
it readily leads, together with the Einstein equations

to14
g "——'8 "R=—8+S"

X+v=O.

(18)

(19)

Furthermore, the only nonvanishing component of
F„„is Fsr ——E(r), say, and one has

I=0, J=—2E'.

It then follows from (15) that

E= g/21Vr',

where q is an integration constant.
Furthermore, one has from (6), (7), and (13)

J)V= T '—Tp',

L—J1V= Tss+ Ts'
whence

L= 2T22,

and, by virtue of (20) and (21)

J1P= —q'/2r4.

(20)

(21)

(22)

(23)

(24)

From (22) and (25) it is possible to find J and 1V as
functions of the metric, and one can easily verify that
the relation

N = BL/8J=L'/J' (26)

(where the prime denotes the derivative with respect
to r) follows identically from T„",„=0.

The solution of this problem can now be completed.
If one gives arbitrarily v= v(r), then one obtains
L=L(r) from (24) and J=J(r) from (22) and (25).
One thus obtains L=L(O,J). Notice that the depend-
ence of I on I remains arbitrary.

On the other hand, if L=L(J) is given, then one
knows JV = JV (J), and by virtue of (25), J=J(r). Now,
from (22) and (23) one has"

2',o= JJV+ 'L= (r re")'—/Sm-r'-—
which is easily solved for v.

(27)

'4 R. C. Tolman, see reference 1, pp. 241—242.

3. STATIC SPHERICALLY SYMMETRIC SOLUTIONS

We now take the metric"

ds'= e"dP e"d—r' r'(d—8'+sin'8'')
& (16)

where X and v are functions of r only.
Only the diagonal elements of 5„" do 'not vanish,

and it follows from (11), (12) and from the spherical
symmetry that

S. NONLINEAR ELECTROMAGNETIC WAVES"

Null electromagnetic fields are defined by I=J=O.
It then follows from (13) and (28) that

3I= T=O and g = ~~. (30)

Since any solution for null electromagnetic fields in
general relativity" must satisfy (12) and (30), then it
follows, by virtue of (10), (14), and (15), that it must
also be an admissible solution in the present more
general nonlinear theory.
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4. PHYSICAL INTERPRETATION

We henceforth suppose that

L=—',J+ (small coeKcient)

X (higher powers of I and J). (28)

Thus, for weak fields, our equations diGer very little
from the Maxwell-Einstein equations, and we get the
usual interaction laws between charges. However, the
notion of "charge" is only a makeshift hiding the real
nonlinear structure of the field. Actually, it is possible
to obtain solutions that are everywhere regular, and
behave asymptotically, at large distances, like point
charges. For instance, one can take

g = —(g ) '=1—(2mr '—e'r ') exp( —e'/nz'r'). (29)

For large r, this goes over into the familiar solution for
a point charge, "" and one can show, by standard
methods, '" that one obtains the usual equations of
motion as long as the distance between the "sources"
is much larger than e'/m.

It may be objected, however, that the electric field
E becomes infinite at r=0, by virtue of (21). In fact,
this singularity is only a mathematical, but not a
physical, one. Indeed, the usual definition of the
electric field is formulated in terms of force per unit
charge, while charge has really no meaning in the
present theory (except as a parameter in asymptotic
expansions). Therefore even the electromagnetic field
F„, has no intrinsic meaning, except as a complicated
function of the metric field g„,. The above-mentioned
difficulty therefore does not appear at all if we adopt
the point of view of geometrodynamics, " according to
which the only basic field is the metric one.

Finally, it is likely that the stability of the static
spherically symmetric solution can be proved by a
method similar to the one used by Regge and Wheeler"
in the case of the Schwarzschild singularity, although
an explicit proof seems rather difficult.


