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x' —a' Relative Parity from x" Decay
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In order to establish how e, the Z' —A' relative parity, can be measured from actual bubble chamber
experiments featuring polarized Z' production and decay, followed by 4' decay and p-pair production or
Dalitz pair in the Zo decay, we constructed a correlation function depending on &, another unknown pa-
rameter to be measured in the same experiment, and the energy and momenta of the diferent particles
involved. Our study is Lorentz covariant, but the link with the usual "nonrelativistic ' formalism is ex-
hibited. In an Appendix it is shown that the polarization of Z' produced in vr +p+ reactions is expected
to be large.

INTRODUCTION

S INCE the Z decay is not due to weak coupling,
it very likely conserves parity and it can be a tool

to measure the Z' —A' relative parity. This has been
proposed by several authors' ' who have shown the
existence of two different relations between the three
particle polarizations depending on the sign of e, the
Z' —A' relative parity.

The aim of this work is to show how e can effectively
be measured from an actual bubble-chamber experi-
ment. For this we shall construct a correlation function
whose variables are: e, another unknown parameter
denoted by nr) (such that —1&~nr)&~1) which is to be
determined by the same experiment, and the energy
and momenta of the different involved particles.

Our study will be entirely Lorentz covariant. Indeed
this is certainly the simplest way to compute the
necessary corrections from a nonrelativistic treatment.
However, since such a "nonrelativistic" treatment of
polarization seems still to occur more frequently in the
published literature, at every step of our computation
we shall explicitly exhibit the link between the two
formalisms.

1. Type of Required Experiment

In the experiment, the Zs must be Polarized. Since it
is produced by couplings assumed to preserve P and T
invariance, the production reaction. (on an unpolarized
target at rest) must contain at least two linearly
independent particle momenta. This excludes, for
instance, Z' production by E mesons stopped in
hydrogen, but admits the col/ision

E +p+ —& Z'+e'. (1)
Other examples of possible reactions for the production
of polarized Z' are:

~ +p+ —+ z'+E', (2)
* On leave of absence from the University of Teheran, Teheran,

Iran.
' G. Feldman and T. Fulton, Nuclear Phys. 8, 106 (1958}.
2 We recently learned of two papers, one by J. Sucher and G.

A. Snow )Nuovo cimento (to be published)g; the other by N.
Byers and H. Burkhardt )Phys. Rev. (to be published) j on the
same subject, mainly based on the study of the Dalitz pair
decay of the Z'.' See also R. Gatto, Phys. Rev. 109, 610 (1958).

stopped E:
lt +d+~ &'+p++~ (3)

relative to
&'~ A.'+e++e,

Z' —+ A'+y,

is not large (it has been computed' ' and found to be
4 D. Glaser, Ninth Annual International Conference on High-

Energy Physics, Kiev, 1959.
5 L. Alvarez, Ninth Annual International Conference on High-

Energy Physi:cs, Kiev, 1959.'F. S. Crawford, Jr. , R. L. Douglass, M. L. Good, G. R.
Kalb6eisch, M. L. Stevenson, and H. K. Ticho, Phys. IZev.
Letters 3, 394 (1959).

r G. Feinberg, Phys. Rev. 109, 1019 (1958).

ol
It +d+ ~&'+tr+m' (difficult to analyze).

Due to the large asymmetry in Z+ —+ p++s-s decay, 4

it is known that the Z+ produced in reactions similar to
that of Eq. (3) are unpolarized, ' but those produced in
the reaction ~++p+ —+Z++E+, which corresponds to
Eq. (2) by charge independence, with a one-Gev
m+-beam, have a degree of polarization'

~
r)~

~
)0.7&0.3.

We shall show in the Appendix that the present
experimental data on cross sections for Z+' —pro-
duction' in reactions similar to that of Eq. (2) imply
a similar high degree of polarization for the 2' produced
in the reaction of Eq. (2) with a one-Gev s= beam.
This favors the choice of reaction (2) for the proposed
experiment. On the other hand, we shall see in Sec. 9
that a measure of a lower bound of ~rt ~, the degree of
polarization of 2', will be a necessary by-product of
the measurement of e.

In the decay of a polarized Z' into A.'+y both final
particles are polarized, but only the correlation between
the photon transverse polarization and the A' polar-
ization depends on e. The only possible way to measure
such a correlation by present day experimental tech-
niques is to observe in the sante decay, the products of
the As disitstegration and an eteetrots Pair produced by
the photon. A schematic diagram of the corresponding
bubble-chamber picture is drawn in Fig. 1(a) (for the
case of reaction 2). The electron pair can be produced
directly by Z'-+A'+ a++ e . It is then called a Dalitz
pair; the virtual photon producing it is quasi-real.
Although the branching ratio
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1/182 for c= 1 and 1/161 for c= —1), the Dalitz pairs
are somewhat more convenient for the measurement of
the polarization correlation. So we establish the corre-
lation function for both cases: ordinary electron pairs
and Dalitz pairs. In the latter case the schematic
diagram of the corresponding bubble-chamber picture
is drawn in Fig. 1(b).

2. Method of Theoretical Analysis

(See Bernstein and MicheP for a somewhat similar
analysis. )

The polarization state of the Z' is represented by a
2 by 2 density matrix pz. The S matrix for the decay
is computed up to a factor. Then E=Sp~S~ is the 4 by
4 density matrix which describes the polarization of
the p —A. system. The Ao decay as a A'-polarization
analyzer, and pair production as analyzer for plane
polarization of the photon, are represented by 2 by 2

Hermitian matrices, denoted, respectively, by 2& and
8„.Then F(e) =TrR(B~Aq) is the correlation func-
tion we want to compute, where means the direct
product of the two matrices.

More than eight particles are involved in the schemes
of Fig. 1(a) or 1(b). In order to avoid for each physical
quantity the use of an index indicating to which
particle it belongs, we have to use many di6'erent
letters. Table I is a complete summary of our notation.

3. Covariant Description of Spin —,
'

Particle Polarization

K
~ ~

~ ~
~ ~

~ 0
~ ~

~0

'. p'~ JLf gg'

yO

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

', A

:P=Afu

K
~ ~ ~

~ ~
~I

~ ~
~ 0

~ ~
~ ~

~ 0

'. peQQgd;

'. A
i p=M4

w'

For a given energy momentum li we can choose two
orthogonal states of polarization represented by the
normed kets +) and —) denoted by X) with (X,ii) =8i„..
An arbitrary pure polarization state is represented by
the normalized ket $)= )AX), where ($~ $)= ( $+ ('+

( f
=Trg)()= 1. One can also represent it by the projector
into $), i.e., $)($=-,'(1+(.~), where r"& are the three
Pauli matrices, (.~ is a shorthand for P, f;r"& and
(=($~$)=Tr~g)($ is the mean value of ~ for the state
$). The normalization yields P;f',2=1. The projector
$)($ is called the density matrix of the state.

If we do not consider pure states only but include
partially polarized states, the density matrix for the
polarization of the particle is still

but then

for ((~ is the degree of polarization. The set of three i;.,
i.e., (=Trp~ is called the "Stokes vector. " For a
particle at rest, ~ represents the spin operator (actually
it is twice the infinitesimal rotation operator) and (,
its mean value, is a, genuine pseudovector in the
three-dimensional space.

For a spin —', particle of energy-momentum li, it is

' J. Bernstein and L. Michel, Phys. Rev. 118, 871 (1960).

(b)

Fio. 1. (a) Schematic diagram of bubble chamber picture of
Z' —+ Ao+y decay. The notation for energy-momenta is indicated.
(b) Schematic diagram of bubble chamber picture of Zo —+AD

+f +6

known' " that the polarization can be described by a
pseudo four-vector 5 such that

li 5=0 and (—5')'= ~5~ =degree of polarization. (6)

The relation between 5 and ( is the following. A
right-handed orthonormal basis in space-time is a set
of 4 vectors It( ' such that

(7)

(here we choose + ———for the space-time metric),
and

—q~P&P~) (~x)~ (P)g (y)yg (~) — get/'y~
P

4I

where e"&'P is the completely antisymmetrical tensor

' L. Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955).
'0 C. Bouchiat and L. Michel, Nuclear Phys. 5, 416 (1958)."L. Michel, Suppl. Nuovo cimento 14, 95 (1959).
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TABLE I. Complete summary of notations.

Particle

Mass
Momentum
Energy-momentum four-vectors
Covariant polarization
Polarization Stokes vector

Beam

M'
1

p'=M'u'
5'=qb
q=gQ

0

e

Y

Decay product
of h.'

m p
Q g

q= nzS q'= pS'

Ordinary
pair

~e me

P+ P-
0+

Dalitz
pair

Sge fP2e

P+ P-
0+'

Units time-like vectors used:

t=(1,0), n', n, h), h)'de6ned above.

Units space-like vectors used:

tt&'&, n&s&, tt&'&, n'&@[de6ned in Sec. 5, mainly Eq. (33)g;

b, e, a=K&lo" [see Eq. (43)g;
h de6nedin (50).

In lab, b=(0,6) with'=(p'Xp')/(~pbXp'~).
Numerical constants introduced:

K& (M"+M——')/(M" —M') =15.326.

Kg 2MM'/——(M's Ms) =1—5.294.

+12 +22 1~

Kt=2Myg'(M, m, p)g t1.397;
K4=(M' m'+—p')/2M@=1. 230;

where

a(M, m, p) =(M+m+p)(M+m g)(M —m+p)—(M m g)— —
Parameters p, e, P satisfy —1&&p, n, P ~&1; e= ~1.
Orthogonality relation betw'een four-vectors:

n&') n&') = n&» n& ) = n& ) n&3) = n&» n'& ) = n&') n'&') =0 .
n&». p'=n&». y=n&» f=n&2). y'=n&2). y=n&') ~ $=0-

e f=0=6 f, b t=b p~=b u'=0 a u=0.

Relation between vectors:

De6nition:

+lu +2uj n& = KIu+Z2u j

a=K,e"=K,(m' —K,n).

Conservation of energy and momentum.

ln Z0~ Xo+&..
M'n'=Mn+f implies n n'=K'i/K',

in A' —+ P++x
Mu=mll)+p, O' implies 'e'. u=E4,

in Z0 —+ A.o+c++c .
Mu=Mu+t with g= p+ +p

Furthermore, for that decay
n'&3) =EI'u' —E2'u; n&3) = —KI'u+E2'u',

with

Ki'=(M"+M' —x')[S(M'Mx)g-t; x= ~'~=(~s)».
K'=22MM(~( M', Mx)) t; '(M', M, x) de6ned above;

tl'n =Kt/Ks'; Kt K2 =1'—
6 u'=6 u=5 p+'=6 p '=0

with e' ' ' '= 1. The completeness relation yields

g peg&~)m &@=g) .

For the particle with energy momentum p and mass m,
let n=p/~, and n&" with i= 1, 2, 3, be such a right-
handed orthonormal base that we shall call shortly a
"tetrad. " Then the f; are the components of 6 in this
tetrad:

6=+ gn&'& (10)

hence, from Eq. (7)

g = —6 n&'&

0=('n and (=—6n

We obtain for the square of the degree of polarization,
the equivalent expressions:

Using the square dot . notation for P;, ( for the set
of g;, and n for the set of n&t&, Eqs. (10) and (11) can
be written:

(12)-(13)

2 by 2 density matrix written in Eq. (4), is

p= —,'(1—5 n.e)=—', (1—Q-0 n&'&g&'&)

This is the expression we shall use for the density
matrix of the A'-particle (we assume that both Z and
A hyperons have spin —', ). As we already pointed out,
from I' and T invariance for the production reaction,
only the direction of the Z polarization is known, but
its sign and its degree are not. In the "nonrelativistic"
notation, the direction of the Z'. polarization is given
by the unit vector S=psXp'/pst Xy'~ (see Table I for
notations) and the polarization Stokes vector is g=»,
where —1~&g~&1, g standing for the unknown polar-
ization degree and sign. The corresponding vector
covariant to 6 is the unit space-like vector orthogonal
to P beam, p target, Pz ——p' (and right-handed with
them; i.e., the unit vector obtained by normalizing
e"&"&(Ps)„(p,)„p',].In the laboratory system, the target
is at rest, the 2'polarization is transverse, and b=(0,6)
as written in Table I. So the density matrix for the
polarization of the Z' is

~'~'= -6'= -6 6=~'"='.'='=
~
'~' (14) "=-:(I+»')=-:(I-,b '..)=-;(I-~ '..), (16)

With these notations, the covariant expression for the if we denote by u', p' a tetrad associated with the g .
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4. Covariant Description of Photon
Polarization

Since a photon of given momentum has two linearly
independent states of polarization, its 2 by 2 density
matrix for polarization is similar to that of spin ~

particles. Let us choose for basic states X), with X=&,
the right and left circular polarization. An arbitrary
pure state of polarization is P)=g),X) and the density
matrix is $)Q=P~= sr (1+y.~) with y=($~$) and y'= 1.
Since 7.s is diagonal, ys ——+1 corresponds to pure right
circular polarization, y3 ———1 to pure left circular
polarization, and y3=0 to plane polarization.

For partial polarization, the density matrix has the
same form:

The circular polarization vector,

e~=—(n('& +in('))
W2

satisfies

(ei,e„)=B),„=—e),
* e„and ei*=e ),.

Then, the polarization vector can be expanded:

e= pie&,

where

(),= (ei,e) =—(g,—9 p,) = —e),
* e.

(23)

(24)

(25)

(26)

where
p, =-,'(1+y.g),

0~&~ y~
= (y')'*=degree of polarization&~1. (18)

Although the three numbers y; can never be the
components of a vector, their set y is often called the
"Stokes vector" since (three linear combinations of)
the p; were introduced by Stokes" in 1852. The use
of y, is well spread nowadays. ""

We recall here how the Stokes vector is related to
the covariant formalism, "' since the situation is now
radically diferent from that of spin —,

' particles.
One shows that ys is a pseudoscalar and y„=(7&s

+ps')*'is a scalar for the Lorentz group, so instead, to
use the vocabulary of elliptical polarization we shall
call y, = ~ ys ~

and y~ the degrees of circular and plane
polarization.

Since fs=O there are only two other linearly inde-
pendent four-vectors orthogonal to f; we denote them

by H(') and n") ) they satisfy

2

P=l' n"'=0, —n"'n ' =(),;, k.n"'Xn" )0. (19)

Note that the H.(@ are defined up to an arbitrary
component along f. The photon polarization vector

The $), are also the component of the representative
ket introduced in the beginning of this section. Using
this isomorphism between P) and e, we can construct
the density matrix in terms of a tensor orthogonal to
f. For a pure state,

p = —e e*=—-,'(1+y.~) i„e&,8e„*. (27)

The right-hand side represents also partial polarization
when 0 &~ ( y ( ~& 1.

Indeed, in this isomorphism the unit matrix represents
the tensor

or
p = —p „( ('&) „e (8) e„*

p ~= —p . .(r . .(i))n(own(&')
(29)

depending on which basis (e), or 11('&) is chosen for
polarization vectors. We leave it to the reader to
prove that

Pj=P3', P2=Pg', PI=P2', (30)

and that a photon density matrix can always be
written covariantly as

I= —gi„bi„e~(me„*=—P" 8 "n(') Sn(i), (28)

and the Pauli matrices represent the tensors

e= p,n(')+p, n('), (20) p=-', LI(1—y) —2ye e*j, (31)

(a,b)= —u* b. (22)

"G.G. Stokes, Proc. Cambridge Phil. Soc. 9, 399 l1852l.
'3 U. Fano, J. Opt. Soc. Am. 39, 859 (1949) and Revs. Modern

Phys. 29, 74 (1957).' J. M. Jauch and F. Rohrlich, The Theory of I"hotons and
E/ectrons (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955), p. 42.

which describes pure states of polarization, is a genuine
vector orthogonal to f and defined up to a component
along f Lin the choice e= (O, e), e is proportional to the
photon electric vector) but its length is defined in an
Hermitian metric:

(e,e) =1= Ibis+ J
es)'. (21)

In a real base, such as (19),we can define the complex
conjugated vector: e*=ei*n(i)+$s*n('), and we have
the following identity for vectors orthogonal to f:

where y is the degree of polarization and |.'a unit
complex vector (i.e., —e e*=1) orthogonal to f (it is
defined up to a component along f).

l&'= M'u'= l&+ f=Mu+ f. (32)

We shall choose n'(') =n") and n'(') = It(') in the 2-plane
(i.e., the two-dimensional plane) orthogonal to u', u, f
and such that they satisfy (19). Then 11s' and ns are

S. The (up to a Factor) S Matrix
for X' Decay

To express S explicitly in a chosen basis, we have
first to choose the tetrads associated with Z' and A'.
Let us consider the Z —)A.'+p decay with given
energy-momenta which satisfy
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completely determined; indeed,

ll2'= E,lt' —E2u and n, = —E,tt+E2u', (33)

where E~ and E2 are constants defined in Table I.
We denote by o.), X), y) (with o =X=y= +1) the kets
representing the states of Z', A', p with energy-momen-
tum and polarization: p', oil'&" for Z'; p, All'@ for A;
f, circular polarization e~ for y.

These form a complete base for the polarization
states of the considered decay. Furthermore they are
proper states of all the transformations of the one-
parameter group R2' defined as the set of all transfor-
rnations of the connected I.orentz group which leave
invariant every four-vector of the 2-plane which
contains p', p, and f.. The group R,' is isornorphic to
the two-dimensional rotation group R2. Invariance
under this group implies conservation of one component
of angular momentum and it requires for the S-matrix
elements defined by

A =y(1+n.~), (39)

and the probability of "counting" the particle whose
polarization matrix is p Lwritten in (4)j is

TrAp=x(1+n. (). (40)

This shows that x is the probability (or counting rate
or cross section, etc.) for the observation of unpolarized
particles and that 0&~n'&~1; indeed

~
nt is the eKciency

of the polarization analyzer and the direction of n
corresponds to the "setting" of this apparatus. In the
following we shall use a unit "Stokes vector" 2 for the
description of the setting of the apparatus; then

'7. The A.' Decay as A'-Polarization Analyzer

An observable is described by an Herrnitian operator.
For a polarization analyzer the part of the Hermitian
operator corresponding to the polarization of a spin —,

'
matrix with well-defined momentum is a 2 by 2 Her-
mitian matrix which can be written

&)8~)=S„,.~), (34) 0.=nX with 0P = 1. (41)
that all be equal to 0 except S+ +——p and S +
A mirroring which leaves invariant the 2-plane p', p, f,
exchanges these two S-matrix elements and parity
conservation requires

This is more adapted to the physical situation, because
the sign of o. is not known in A.' decay. The covariant
corresponding to 0 is the unit four-vector defined
)compare to Eq. (12)j by

a= X.m; (42)

Therefore, up to a factor, S is of the form

o. +
+ + ~0 0'
+ — 1 0S=—+ 0 —e

.0 0.

R=SpgS~,

where pz is written in (16). Explicitly

(36)

or

'0 0

R(), 0 1+
0 —

e2I (81+i52).0 0

0 0
—e2I(8,—i82) 0

0
0 0.

R(.) = 4 t 181—~,8 r,+~&2(r281—18~2)

&/{~1(&182 1+&28 &2) ~2(&18&2 &28 2 1)}j. (3g)

The symbol indicates the tensor (or Kronecker)
product. If p, and o.; are the usual Dirac matrices (see
for instance Dirac's book), then p, =r,81, o.;=18',,
and therefore p,a, = v, {3v-;.

The unknown quantities in R are e and g, the sign
and degree of Z' polarization.

6. The Density Matrix R for the Polarization
of the y —A.' System

The density matrix for the polarization of the y —A'

system is

so the covariant form of the matrix A defined in
Eq. (39) is

A=(1—ua n. ~),

and, with p given in (15):
TrAp= (1—nn 5).

(43)

(44)

A = 1—nE38" - n.~= 1—o,Ep)' g.z. (45)

I.et pz be the transverse polarization of the A.-hyperon
particle produced in a given reaction (2I1,)0 if the
polarization ( is along the direction +pq)&p~, and
2lq&0 if ( is along the direction —p~&(pz). Some
asymmetry measurements' for A' decay have yielded
n2Iq=0. 73&0.14; this value is a lower limit on ~n~

I.et us consider a A' with energy momentum p=Mll
and polarization 5 decaying into a proton and a w-

meson with energy-momenta q =mh) and g'= p,h)'.
Spin 2 for the A' implies that the transition probability
is linear in 5 and nonconservation of parity implies that
it is the sum of a scalar and of a pseudoscalar; its most
general form is therefore (1—nE2tn' 5). The choice of
g' and not of 0 is in agreement with general use. 4 Only
In =In —(ll. ln )ll, the component of tn' orthogonal to
u, is significant. The constant E3 is such that E3" is
a unit vector and so —1~&o.~&1. The value of E3 is
given in Table I.

The comparison of the A' decay rate with (44) shows
that the matrix Az representing A -decay as A -polariza-
tion analyzer is proportional to
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(and most physicists believe that ~n~ =1).As we shall

see, we do not need the sign of 0., but the product ng

(we recall that g is the sign and degree of Z' polariza-
tion) will have to be measured in the same experiment.

8. Pair Production as y-Plane
Polarization Analyzer

As Stokes pointed out more than a century ago, a
light polarization analyzer is to be described by a 2 by
2 Hermitian matrix. We can write it as in (39): 8
=x(1+).~) and then, with (17), we find for the
"counting" rate:

»8p =x(1+5.v);

or we can write 8 as in Eq. (31), namely:

8=)tLI(1—P)—2Pb b*j, (47)

where P is the efficiency of the process as polarization
analyzer and the unit vector b is the "setting. " The
transition rate is then

FIG. 2. The efficiency p (y) as plane polarization analyzer for
ordinary electron pair; from Karlson, reference 15.

of (8+ E)/(E++—E ), the repartition of energy in
the pair"

9. Correlation Functions for X' ~ A.'+y Decay
Tr8p =x 1 PV -2P7

If b and/or e are real (as it is in the case of plane
polarization) this can be written:

Tr8p, = (1+$7 cos2&),

where cosg= —e 6.
In the proposed experiment w'e are not interested in

the photon circular polarization since in (38) the
coeKcients of 7.3 matrices, which correspond to y-circular
polarization, do not contain e. Note, however, that if
this circular polarization measurement can be per-
formed, it would give the value of both n and g sepa-
rately (including their sign). This would be a very
important result. However, this experiment cannot be
performed, with present experimental techniques, in a
bubble chamber. For instance, pair production is a
poor analyzer of the circular polarization of high-energy
photons (efliciency P of the order of m,/E~). On the
other hand, Dalitz pairs do not analyze circular
polarization.

The most efficient phenomenon for analyzing high-
energy photon plane polarization seems to be electron
pair production. (Compton scattering has a too low P,
nuclear photoeffects a too low X.) The corresponding P
and fl are complicated functions of f, I7+, I) . We shall
not give them explicitly. However, the angles between
k, p+, p are difficult to measure (they are small and
there is multiple scattering). If the only measured
angle is P„the azimuth around k of the normal (p+X p )
of the plane of the pair, then b=—(O,b), with b the unit
vector of

(k p+) (kX p-) —(k. p-) (kX p+) (50)

and the corresponding P has been computed by Karl-
son."Figure 2 gives P for 66-Mev photons, as a function

E. Karlson, Arkiv Fysik 13, 1 (1957).

and the correlation function yielded by A' decay only
(nonobservation of the y) is then

H= TrE(1Aq) =Tr(Aq Tr~R),

H=1+ qo,EEb ulrl' u&'&,

H=1+nqE, Esb u(E, lu' u' —E,E4).
(54)

This correlation function shows how ng can be
measured. While 0. is a universal constant characterizing
h.' decay, p is expected to be a function of the beam
energy and the angle of production of Z' or, in terms of
four-vectors, a function of pq and u'. (See also the
Appendix. )

' The sign of p has been the subject of some controversy; see,
e.g., T. H. Berlin and L. Madansky, Phys. Rev. 7S, 623 (1950),
G. C. Wick, Phys. Rev. Sl, 467 (1951), and reference 17. It is
true, indeed, that the sign of p is opposite for ordinary pairs
(P(0) and for Dalitz pairs (P)0) as we shall see in Sec. 10.

We have to define a notation for "partial traces. "
Consider a 4 by 4 matrix Z=P; c,F;QA, , where F; and
A; are 2 by 2 matrices. We define

TrrZ=Q; c;(TrF,)A;, Try= Q, c;(TrA, )F,. (51)

We verify that

TrZ= Trr (TrqZ) =Trq(TrrZ) =P, c;(TrI',) (TrA~). (52)

The matrix R, Eq. (37) or (38), contains all possible
information concerning the particle polarizations. For
instance, if we observe the A' by the analyzer repre-
sented by A4, , the photon is in the state Tr&E(1A&).

Conversely, let us suppose that we do not observe
the y-polarization (8~=1). Then the A' polarization
is described by
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(58)G=b u(EIE4 —E2m' u'),

and b is defined in (50) and P drawn in Fig. 2.
For the sake of completeness we also give Ii as a

function of p4. and p although it has no practical value
for the discussed experiment. In the literature, the
cross section for electron pair production by a totally
plane polarized photon is given by (see May, " also
reference 14, p. 374) (up to a factor)

p~= Tr2R(1Ail) =22(1—
ngh282+ (q82 —nX2)r2

enlt[(81XI 82X2)rl+ (81X2+82XI)TS]j. (55)

The terms (2182—nX2)r2 are for partial circular polar-
ization. In this section we are interested only in the
plane polarization and we shall drop these 7-3 terms.

Then Eq. (55) can be written, with I defined in

Eq. (28) and II in Eq. (54): D—(r e)'+(r' e)' (59)

Instead, to compute directly the final correlation where
function F(e), let us proceed by steps. If the A' decay
is observed, what is the polarization state of the yP

p, =-2'[II+enq( —b I a+bsa)], (56) iy
r=2 p + y+ —(f t)f, ,

b I a=b a+(b n'I21)(a n'I2I)

=E2[b ln' —E2b. u(EItn' u' —E2E4)].

The use of Eq. (4'7) for 8 gives us the correlation
function Ii as

( 1
&'=

I
k—P+—11- I (

The corresponding 2 by 2 matrix is

v+ I.
ry,

F(e)=1 E2nrl E—2G+e (b 'tn'+EIG)
2

+pb. bb. m', (57)

8',=DI+r8 r r'Iar'—
The cross section for unpolarized photons is

—' TrB' =-'(2D+r' —r")
and the corresponding correlation function F' is

(61)

(62)

(b ln'+E, G)(D+r2 —r")—(b r)(ln'. r)+(b. r')(tn' r')
F'(e) =1 nriE2 E2G—+e

2D+r2 —r" (63)

where G is given in (58).
We can also write F(e) in a form similar to (49),

w'hich shows better its structure and also its relation
with noncovariant formalism:

i.e. [see (26)]

e= (n&'I cosg+n&2& sing) =—(e '4'e++e*&e )

F(2) = 1 ng[co—s81 cos82+ ep sin81 sin82 cos2$], (64)

where
2&= 2Q,—QI —Q„ (65)

and the quantities 81, 82, Q„QI, and p2 are defined as
follows:

(67)

x)=s'1.~), (68)

where y= ~1.
The S matrix between Z' and A' polarization states

is then [see (34)]S' such that

—b'nI I = 82=cos81,

b 'n~ I = 81=s11181 cospl,
—b nI I = s11181 sin/i&

—E 5'.n&') =X =cosg,
—E343' ~ Il")=X~= sin02 cosp2,

E2fn n = s11182 sin/2,
—b n"I=cosp„—b n&2I=sing, .

(66)

s'&.=p, —e'&~(~s»„,

0 —ee '&)
v2s'=

]( e'4' 0

= r I c sf+orsln2p wllel'l e = —1

(69)

Except for an arbitrary and immaterial parameter
(origin of the azimuth around k) for n"', the vectors
It'" It(" Tt(3), and 7t'(3) have been defined in paragraph 5.

The usual "nonrelativistic" treatment proceeds as
follows: Let us suppose the photon with a plane polar-
ization e corresponding to the azimuth p around k,

( Irp ('
7'j cos — 7'2 sin

2)

when e = 1. (70)
"M. M. May, Phys. Rev. 84, 265 (1951).
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This can be written, up to a factor,

S'= (~ e'), when e= —1, e'=e &i'= (M"+M' —x2)P (M', M, I
gI)]-'',

IC2'= 2MM'ph(M', M,x)]
(77)e'= kXe/I kI. (72)when

and E2 in Eq. (33) which defines ils and ils' (see Table

(71)

where
(=—ri[ii —2e'(e'. 6)]. (74)

In plain words, the A -polarization is obtained from
Z'-polarization by a rotation of z around e'. We obtain
easily F(e) as in (64) if we take Tr~R1/2(1+ y.g) g A2,

with yi ——p cos2$, ys=p sin2p„des=0. We have also
explicitly displayed the relativistic meaning of the three-
component Stokes vectors used in the so-called "non-
relativistic" formalism.

10. Correlation Functions for X' ~ A.'+2++2
Decay

Although they are rare, decays with a Dalitz pair
are much more interesting from the experimental point
of view. Indeed the angle between p'+ and p

' is larger,
on the average, than that for ordinary pairs, so the
direction of the normal to the plane of the pair can be
determined for Dalitz pairs while multiple scattering
make this barely possible for ordinary pairs in a
hydrogen bubble chamber. Also, as we shall see, the
e%ciency P of the Dalitz pair as a plane polarization
analyzer is greater.

A refined theoretical treatment of the Z' —+A.'+e+
+e decay" would require the determination of the
two independent form factors (for each value of e) of
the Z' —A.' current. However, as is seen from Kroll and
Wada's" study of the general problem of Dalitz pairs,
the azimuthal distribution of the plane of the pair is
not sensitive to the detailed structure of the form
factors.

In this section we shall give the value of P as a
function of l)+' and l) '. For this, we define (as in reference
19)

)222.= l)+'+ I1', (75)

Generally, physicists postulate directly these forms
of 8' on parity conservation and "rotational invariance"
grounds. It is very clear how this has to be interpreted.

Using pz in (16), we can compute

pa= S'pzS'"= 2S'(1+2)5 s)S't= 2 (1+(.c), (73)

(This modification can be forgotten in the experi-
mental analysis since (x2)((M2.) Equations (57), (58),
(64), (65), and (66) are valid for Dalitz pairs. In these
equations, b is the unit vector (its sign is irrelevant)
orthogonal to the decay plane.

We de6ne:
S.n'=S. u=b p, '=l1 l1 '=0.

N = (M' —M)/(3II'+3II) =0.03,
X= (M' 3II)/2rt, =—147,
I'= (1—4/x') -**.

(78)

X[1—2iV'(1+iV') '(x/X)']x '

(4
X R&

I
+1+y'

I I
1+y'

I
cos2y

) &x2

+2R (l y2) (1++)2(x/X)2['1+1'(x/X)2] 2 (79)

where R2 and Rr, are defined in Eq. (7) of reference 19.
While the computation of these quantities" is in
progress, their dependence on x' does not greatly aGect
the value of P and the contribution of Rr, is negligible
compared to that of R~. We shall neglect E compared
to 1 (1ll &1/30) and the dependence of Rr on e. Then
(79) reads [in analogy with Eq. (49)]

X pY
C ~ t dx C(x,y) (1+P cos2&),

2 —Y
where

C(x y) = [1—(x/X)']'*x—'[4+x'(1+y')] (81)

and

Then if we do again the computations in reference 19,
without integration over P, the azimuth of the normal
to the plane of the pair, the transition probability, up
to a factor, for the Z —+ A'+e++ e decay is

X Y

dx ~ dy[1 —(x/X)'(1+1P)+1P(x/X)4]'*
J Y

so that g = g js the square of the "virtual photon"
mass (in electron mass units)

x2 (1 y2)
P(x,y) =

x'(1+y') +4
(82)

y= (&-'—&+')/I l+'+ u-'I,

Except for a slight modification of the constants K~

"This is being done by one oi ns (H.R.). This paper is part C d*l 1 (*/X) ]'( 4/x )*x
of a work submitted as his thesis to the University of Paris.

"N. Kroll and W. Wads, Phys. Rev. 98, 1355 (1955). X[1+(2/x') —-'(1—4/x') cos2&]. (83)

(76)
This is the iiultte of p to be used in Eq. (57), (58), or (64),

[in practice y is the energy partition (E '—E+')/ (65) and (66).
(Z '+E+') of the pair). Integration over y yields
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If we define

pX ~Y

(P ) I d~dy C(~,y)P" (*,y)

tIX )F
dxdy C(x,y), (84)

p -Y

then we find (P)=0.44 which is much better than that
for an ordinary pair (see Fig. 1; the corresponding (P) is
about —0.1). If each event is weighted according to its
efficiency, the weighted average of P is then (P')/(P')
=0.8 which is indeed a very promising value.

CONCLUSION

The 2' is the only hyperon which does not decay
via weak couplings. Theoretically, its decay can yield
important information of several kinds. For instance,
only the assumption of angular momentum conservation
implies that the Z' polarization po and the asymmetry
parameter n in the subsequent A' decay could be in
principle determined. But only the product o,go can be
easily measured. However, this is an important item of
information. Let us call a+, n+', 0. , e the asymmetry
in the decays Z+~ p++~', Z+~e+~+, Z—~tp+~,
A —+ P++pr, and q+, qp, q, gz the hyperon polarization,
at a given energy, in the reaction 7r+E ~ V+E, where
V is, respectively, Z+, Z', Z, A'. The present experi-
mental data' ' for the n's and p's are n+q+=0. 7~0.3,
e~'g+. =0, n g =0, o,gg=0. 73&0.17. The measurement
of npp will yield the ratio itp/pz and also a lower limit
of fop f, which, with that of fq+ f

and the values of the
cross sections a+, op, o, for a+p —+ Z+E, will provide
a test for charge independence. If, as is likely, isobaric
spin is a good quantum number in Z, E associated
production, then the same data will predict a rather
limited domain of values for q which can be used to
prove that the observed absence of asymmetry in Z—

decay is genuine and not due to a lack of polarization.
This conclusion seems already pointed out by the

present experimental data. Indeed we show in the
Appendix that g+= go=g for a one-Gev x beam; this
will also yield, with the measurement of o,po, the
relative sign of n~/n. Furthermore, some experiments
are in progress' to measure the sign of n (through the
measurement of the polarization of protons from A

decays). The measurement of mJp, and the relation
(A.13), will determine the sign of the g's and of n+.
Assuming, moreover, parity conservation in Z' decay,
we then showed the feasibility of the measurement of

the 2'—4 relative parity. Should parity be not
conserved, then the parameter e in our paper will
satisfy —1(~(1 and be a measure of parity non-
conservation.

one of us (L.M.) was participating in the Summer
Institute for Theoretical Physics at the University of
Wisconsin, sponsored by the National Science Founda-
tion. He wishes to thank Professor M. L. Good and
Professor R. G. Sachs for very informative discussions.

pr++P+ —+ Z++E+,

+p+ ~ ZP+-EP,

m=+ p+ —+ Z +E+, —

(A.1)

(A.2)

(A.3)
and from the hypothesis of charge independence.

Our argument will be based on the following lemma
about triangular relations. Let a, b, and c be three
positive numbers. The following relations are equiva-
lent:

I. a~&b+c, b&~a+c, c~&a+b,
II. (a—b —c) (a b+c) (—a+b+c) &&0,

or

II'. (Aba, )c= (a+b+c) (a b+c)—
X(a b c)(a+—b —c) &~0, —

III. 2ab &~a'+ —b' c' ~& 2ab—

Note that these relations also imply:

fa—bf &c, fa cf ~&b, fb —c—
f
&a.

These relations are called triangular relations. We
note that A(a, b, c) &~0 when a, b, and c verify a triangular
relation.

Lemma 1. If A(a, ,b, ,c;) &~0 for e sets a, , b, , c,, of
positive numbers, then A((P; aP)l, (P; bP)~, (P; cP)&)
&0.

For the proof, let us write relation III for each i and
add them up; we obtain

—2g; a;b, ~& Q;(aP+bP cP) ~& 2g; a;b, (—A.4).
On the other hand, the following relations are equivalent
and always satisfied:

0& P (a,b; —a,b;)' or P a,b,a,b;& P agb, ',

APPENDIX

Polarization of the X'.Produced in the Reaction
pp +P -+ XP+EP

If the proton is unpolarized, one can conclude from
P and T invariance that the Z polarizetion is orthogonal
to the plane of the reaction. We have represented the
polarization by the pseudovector pb, where b=(0, ti
= (y &&yz)/f y )&yzf) and —1&~g&~1. The parameter
g represents the sign and the degree of the polarization.
Both are unknown. We shall first study in this Appendix
what can be deduced for the value of g from the present
experimental data on the reactions:
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or
P;;a;b,a;b, & P;; a,'b,',

2' a'b'& (2' a'') '(Z~ b,')'. (A.S).
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By transitivity, (A.4) and (A.5) yield

—2(Z'a'')'(2;»')*'&~Z'a"+2, b

—Z. c.'&2(Z;a,')-:(Z, b,'):, (A6)

which proves the lemma.
Lemma Z. If

6 (a;,b;,c;) ~& 0 and (P; c;2) i = (P; a,') i+ (P; bP) '*, (A. 7)

then
c,=a,+b; and a~/a, = b,/b, =c;/c, .

Proof: By squaring (A.7) we obtain the first equality
in (A.6) and from (A.4), (A.5), and (A.6) we obtain

—2(P a)l(Q b')l= —2P;a,b;

=P (a'+ b' —c') (A.S)

g+ —Qp —
Q (A.13)

We will now outline the principle of the easiest
method for obtaining some information on

~
it, ~. Indeed

the E' meson produced in Eq. (A.2) is expected to be
visible in only one third of the bubble-chamber pictures
(one cannot see 82' or Oi' —+2ir'). Hence in most
pictures one can measure only the energy-momentum
Pi, of the beam, that of the target: mt= (m, 0), and that
of the A': Mu. We define a unit time vector u" and a
"mass" 3f" by

l1i,jmt=M"u". (A.14)

Energy-momentum conservation in Eq. (A.2) gives

for a large range of 0, the angle of production in the
center-of-mass system), the cross sections satisfy the
equality in (A.12). Then Lemma 2 tells us that

The first equality of (A.S) is equivalent to M"it"=M'lt'+ p KuK) (A.15)

a; b, a,+by where p,~ is the E' meson mass. We deduce
Q (a,b, —a,b;)'=0 or —=—= . (A.9)
i& j' a, b, a;+b; u" u'= (M'"+M" prr')/2M—'M" = (1+E')' (A.16)

where E= (M" M'+ljtr) —(M" M' tetr)—/2M'—M".
Let u", I, I', I" be a tetrad defined by

The second equality of (A.S) is equivalent to P;c 2

=P, (a~+b;)' which, combined with relation I for each
value of i, yields c,=af+b;. This with (A.9) proves the
lemma.

If one assumes charge independence, the amplitude
for the three reactions (A.1), (A.2), (A.3) for given
states of energy-momenta and polarizations satisfy the
linear relation' V2f0 f+ f; hen——ce a—triangular relation
6((20 0) (0'y)

'
(0' ) ') where 0 with n =+, 0, —,are

the corresponding cross sections.
Lemma 1 shows that this relation is also valid for

cross sections after summation over the proton polar-
ization and/or the Z polarization. Let 0. be the cross
sections for unpolarized particles. They are only func-
tions of the energy of the incoming beam (the target
is at rest) and of the angle of production (angle between

p& and pz); for each value of these variables, they
satisfy

I=(0,1) with l=(y~xu)/Ip~Xul, (A.17)

V= (0,1') with 1'= (yi, XI)/~ yi, ~, (A.18)

and let 0 be the angle of production in the rest-system
of Z, and p the azimuth of p' around pb, i.e.,

tt'= (1+E')alt"+ E sin8 costi
+E sin8 sin &pI'+E costti"

and
b = —I sin t0+ V cos p.

When the Z' is not observed, 0 and p are unknown,
but they must satisfy the following relation:

u 11 =Ei/E~ ——1t 1t (1+E')'+E11 I sin8 cosy
+Ett I" cos8, (A.19)

~((2«) *', (~+) ' (~-) ') ~ o. (A.10)
due to the energy-momentum conservation in Z' —+ A'

+& decay. Note that 0 is an even function of p. When
the Z' is observed, the A' polarization is given by
Eq. (53):

The Z polarizations q+, qp, q are functions of the
same variables. The quantities 0. (1&it ) (where n=+,
0, —) are the cross sections for production of totally
polarized Z" (with polarization &b); they satisfy

f1= —qE&(b u)nt'& = —q(0)E2(b u) (—Eiu+E,u')
=5((p). (A.20)

The quantities already measured (for a beam energy
around 1.1 Bev) are 0+ 0'p 0 and a lower limit for
(it+j, i.e., (it+) &~0.7&0.3 (see references 4, 5, 6). In
these experimental data the relation

1 2

2m~
(A.21)

~(L200(1~no) 3', L~+(1~~+)3', L0-(1~v-) j*')
& 0. (A.11)

If the Z is not observed, the A polarization is then:

(20.,)-:& (0„)'*+(a )l

is barely satisfied and a simplifying hypothesis, sug-
gested in reference 6, is that for all angles (or at least

We leave to the reader to compute:

Q2 r

(5)= VEE22u I— q(8) sin'q d—p. (A.22)
2' ' p
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From argument of invariance under I', T we could
predict that (5) is transverse and orthogonal to the
3-plane t, l1&, pA as if the A' were produced directly by

+p-+~A'+E'. tThe proof of Z production is
given by

The asymmetry in A decay even when the Z' is not
observed is therefore a measure of the function,

ri(8) sin'q d&p,

2x .&0

(M"U"—Mtt)'=M'"+m' —2MM"tt. tt"NpK'] (A.23) of the polarization rl of the Z'.
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Scattering from Complex Nuclei*

R. M. EDELSTEINp W. F. BAKER,t A'ND J. RAINwATER

Columbia Unkers&y, /em York, New Fork

(Received November 29, 1960)

Differential cross sections were measured for m -carbon scattering at 69.5 and 87.5 Mev and ~ -oxygen
scattering at 87.5 Mev from 20' to 125' extending the technique of Baker, Rainwater, and Williams. The
energy resolution was sufhcient to measure pure elastic as well as 5- and 10-Mev inelastic cross sections.
The modi6ed Kisslinger optical-model equation was used to 6t the elastic-cross-section data. A p' analysis
for the 69.5-Mev carbon data gave a nuclear radius parameter r0= 1.05~0.02 fermis and a fall-og parameter
(=1.16~0.07 fermis. These parameters give good its to the other data as well. An energy dependence in
the strength parameters for carbon is observed in qualitative agreement with prediction.

I. INTRODUCTION

' EASUREMENTS have been made, using scintil-
lation counters, of the angular distributions of

x mesons scattered from carbon at 69.5 and 87.5 Mev
and from oxygen at 87.5 Mev. The experimental work
is an extension of that of Baker, Rainwater, and
Williams' (BRW), in which the scattering of 80-Mev ~
mesons from I.i, C, Al, and Cu was measured. In their
experiment, scattered pion energy was determined
from the range of pions stopped in a counter. This
technique afforded considerable improvement in energy
resolution over that obtained previously with coun-
ters' ' and cloud chambers. ' ' The present experiment

employed four such counters in succession, the "multi-
counter, " to increase the data-taking rate. The energy
resolution in either experiment was sufficient to separate
out pure elastic scattering from all inelastic scattering
for carbon and oxygen. In the case of lithium, BRW

*This research is supported by the U. S. Atomic Energy Com-
mission and the Once of Naval Research.

t Present address: Carnegie Institute oi Technology, Pitts-
burgh, Pennsylvania.

f. Present address: Brookhaven National Laboratory, Upton,
New York.
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employ the electron scattering data' to argue that the
contribution of scattering from the first excited state to
the measured elastic scattering is small. No other levels
contribute.

Recent experiments have been performed by Rane, '
~+ scattering from carbon at 31.5 Mev; and Fujii, '0

150-Mev m scattering from C, Al, Cu, and Pb. Kane
measured total pion energy by means of pulse height
in a scintillation counter with an (absolute) energy
resolution comparable to our own. Fujii measured
quasi-elastic scattering into a 15-Mev interval by means
of total energy determination in a Cerenkov counter
but could not separate out pure elastic scattering.

Baker, Byfield, and Rainwater" (BBR) have fitted
optical model calculations to the data of BRW. The
optical potential used was a modihcation of the one of
Kisslinger. 12 It removes a nonphysical divergence in the
unmodified form. The potential includes a term in the
gradient of the nuclear density which arises from the
important p-wave contribution to the elemental Ir-

nucleon scattering in the nucleus. Hence, the predic-
tions are particularly sensitive to the nuclear edge
thickness. The model gives good fits to the data at all
angles and for nuclear radii consistent with the results

' J. F. Streib, Phys. Rev. 100, 1797 (1955).
9 P. P. Kane, Phys. Rev. 112, 1337 (1958).
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1773 (1958). Equations (2), (13a), and (13b) are printed in-
correctly in this paper. The sign of the right side of Eq. (2) should
be reversed. The expressions for C and C' in (13a, b) should be
divided by A. In the present paper C ~ Ci and C' ~ C0.

"L.S. Kisslinger, Phys. Rev. 98, 761 (1955).


