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Statistical Theory of Gamma-Ray Spectra Following Nuclear Reactions*
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A theory predicting p-ray spectra following intermediate or high-energy nuclear reactions is derived on
the basis of the statistical theory. The equations take a particularly simple form if the assumption is made
that all radiative transitions are of the electric dipole type. The theory is applied to two specific reactions:
inelastic neutron scattering and thermal neutron capture. Numerical calculations of spectra arising from
thermal neutron capture by two gadolinium isotopes are shown to compare well with experiments.

I. INTRODUCTION

ET us consider a nuclear reaction leaving a residual
=~ nucleus with an excited state of energy E above

the ground state. Let R'(E)dE be the probability that
levels between E, and I'.'+dE are excited. R'(E) can
be considered as a population density. (See Fig. 1

which illustrates the case of a particular nuclear
reaction: inelastic neutron scattering. ) An excited state
at energy E can be de-excited by emission of a gamma
ray of energy E~ or by some other process like particle
emission. ln the former case the residual nucleus is left
at an energy E'=E E~. Let S(E—,E') be the relative
transition probability such that, given an excited state
at energy E, S(E,Z&')dE' is the probability of radiative
transition to the excited states between E' and E'+dE'.

S(E,E') has the normalization JP S(E,E')dE'= F~(E)/
F(E)=y(E), where F,(E) and I'(E) are the average
radiative and total widths at the energy E. The states
at energy E' can be de-excited again by gamma-ray
emission or by particle emission, the process ending
when the ground state of the nucleus is reached. The
complete de-excitation of the nucleus leads therefore
to a number of cascade gamma rays. We are interested
in the spectrum P(E7) of all these gamma rays, such
that P(Ev)dE~ gives the number of gamma rays of
energy between E~ and Ev+dE~

Let us define a quantity R"(E) such that R"(E)dE
gives the expected number of levels between E and
E+dE that are excited as the result of the rtth gamma
ray following the nuclear reaction. R"(E) satisfies the
obvious recursion formula

= Zo(E)

R.(E)=)t' R. (E)S(E,E)dE—,

where the upper limit e is such that Rv(E) =0 for E) e.
Let us de6ne the population density due to any number
of transitions:

R(E)= P R"(E).

Writing Eq. (1) for st=1, 2 co and adding them up,
we obtain

M
R(E)=R'(E)+ R(E')S(E',E)dE', (2)

En

which is an integral equation for R(E).
The spectrum P(E„) which we seek can be obtained

from the solutions of (2) through

Target
nucleus

Compound
nucleus

P(E,)= R(E)S(E,E E„)dE. —
zv

The problem is formally solved.
It can be shown similarly that the spectrum P(E~)

can be obtained from the solution of:
Fza. 1. Schematic energy diagram for inelastic neutron

scattering followed by p-ray emission.
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P(E,E„)=S(E,E E)+ S(E,E')P(E'—,E )dE', (4)
J~,
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by evaluating the integral

P(E„)= R'(E)P(E,E7)dE.

The Eqs. (2) and (4) are mutually adjoint.
It will follow from the assumption on the level density

p(E) that the use of the set of Eqs. (2) and (3) is much
more convenient than that of the set (4) and (3).

II. GENERAL ASSUMPTIONS ABOUT THE
LEVEL DENSITY

For L')E&i most terms of Eq. (8) vanish because of
the conditions (7). There remains

R(E)= 5t'(E)+ R(E')Si(E')E)dE', (E)E~), (9)

which is an integral equation for R(E), involving only
continuous functions.

For E&E~ the other terms contribute, but let us
first transform the last term of (8). Using the definition
of the function bz', z;, it becomes

R(E')dE' .

R(E')dE' . (10)

I.et us write the nonvanishing terms of Eq. (8) for
Z&Ev, using the expression (10) for the last term:Ro(E) No(E)+ Q rob(E , E )

iM
n p8

R(E)=P S(E—E,) r,'+ I R(E')S'(E')dE'
iMNo(E) being the initial population density in the

continuum and r, being the initial population of the
discrete level i The .transition probability 5(E,E ) can
be broken up into three parts:

n fEj+&

+ Q 5&" lim
j'=i+&

R(E')dE', (E&E~). (11)

Let us now make some general assumptions on the »'+t

level density of the nucleus considered. The level P P 5&'"o(E E,) lim-
,

j=o i=o (~J
spectrum can be considered as composed of a discrete

Changing the order of summation, we obtain
continuous part with a density p(E) such that p(E)dE
gives the number of levels between E and E+dE; n n f@&+f

p(E) =0 for E&E~, E~)E„. P 8(E—E;) g S" lim '

Under these conditions the quantity R'(E) can be a=o i=a+1

written as

S(E,E') =Si+Si+So, (7)

where Si (E,E') is a continuous function for E)E')L'M,
and is 0 otherwise;

So(E,E')=P 5'( )E5( E' —E;)
i=o

S'(E) being a continuous function for E)EM, and
being 0 otherwise;

5,(E,E')=P P S'S~,~,~(E' E;), —
j=o i=o

where 8z,z; is the limit, when (-+0, of a function
which is equal to 1 when E, $(E(E,+$, and —equal
to zero otherwise.

Substituting the above expression of S(E,E') in the
integral equation (2), we obtain

R(E)= N.'(E)+P r,%(E E,)—

It can be shown rigorously that it follows from (11)
that one can write R(E) for E&Ev in the form

Writing
(i= 0, 1, e). (12)

R(E)= (R(E)+P r;o(E E) (any E) (13)—
i=o

the solutions (9) and (11) become

R(E)= Q r;5(E E~), (E&E—~),
i=o

r, being the population of the discrete level i. Sub-
stituting this expression in (11),we obtain

r' n

r,=r o+, I R(E')5'(E')dE'+ g 5"r;,
Js~ g='+i

+ R(E')Si(E',E)dE'. R(E)=OP(E)+ '

N.(E')5,(E',E)dE', (14a)

+P 8(E—E;) R(E')S'(E')dE' r;=r o+ g(E')5'(E')dE'+ P Sr'r;,

(i=0, 1, N). (14b)n j—1

+g P S '~(E—E;) R(E')S, ,dE'. (8)j~ i=o J~ Taking into account (7) and (13), the expression for
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the spectrum F(E~) becomes

I'(E.) = I:61(E)+Zs r~&(E—E~)].j,
XLS,(E, E E,)+—P, S'(E)S(E E„—E,)—

+P, P, S '~(E E,)~(—E E, —E,)]d—E.
Performing the integrations involving 8 functions, the
expression becomes

P(E,)= ~'~ 61(E)sr(E, E, E,)dL—

III. ASSUMPTION ABOUT THE TRANSITION
PROBABILITIES

Ke are now going to make the simple assumption
that all the transitions between levels in the continuum
are of the electric dipole type, that is,

Si (E F-') =f(E)(E—E')'p (E ) (16)

+P i.(E,+E,)s'(E,+E,)
i=1

n j'—1

+P P r,s&""o/E,—(E,—E„)]. (15)
j=o i=0

Once the integral equation (14a) is solved, the system
of linear equations (14b) can also be solved and the
solutions can be used for the calculation of the spectrum
by Eq. (15).

It is easy to recognize that the first term of Eq. (15)
corresponds to transitions between states in the con-
tinuum, the second term to transitions between the
continuum and discrete state, and the last term to
transitions between discrete states.

It is clear that Eq. (14a) can be reduced to a differential
equation of order 2(L+1) if the more general form

is assumed. We are, however, restricting our calculations
to I.=1.

A few words remain to be said about the transition
probabilities S2 and S3. In the numerical work reported
below, we have assumed

S'(E)=f(E) (E @)'.— (19)

This assumption is probably the weakest point of this
calculation.

For E)E&, the normalization of S(E,E') yields

-—1

+ (Li' E')'p(F—')dE' y(E). (20)

No general assumptions have been made on the
transition probabilities S" between discrete levels.
These can usually be derived for each particular case,
either from experimental data or, when the spins and
parities of the levels are known, from theoretical
considerations.

IV. APPLICATION TO INELASTIC
NEUTRON SCATTERING

The application of the theory outlined above to
specific nuclear reactions requires some specific assump-
tions on R'(E'). In the case of inelastic scattering, the
prediction of the statistical theory' gives

f(E) assuring a proper normalization of S(E,E').
We have assumed that the transition probability

depends only on the energies of the initial and fina
states and that the average matrix element is constant.
The form (16) is to be understood as a relative transition
probability, averaged over many initial and many final
states. At high excitation energies there is a great
number of levels of a11 spins and parities, and one can
indeed assume that the predominant transitions are of
the E1 type. In that region the assumption (16) is
probably reasonable, unless R'(E) includes only one,
or only a few levels of definite spins and parities (as,
for instance, in the case of thermal neutron capture).
For lower excitation energies, the validity of the above
assumption becomes questionable.

If one assumes the form (16) for all energies E,
Esr(E(», the integral equation (14a) can readily be
reduced to a fourth-order differential equation.

Making the substitution

o.(c—E,) (e—E,)
iM

@'(E)=~ (e—E) (e—E)p(E)

+ " o, (e E') (e Ei')p(E'—)dE', —(21)

where e has been identified with the incident neutron
energy. o, (E) is the cross section for compound nucleus
formation for neutrons of energy E.

V. APPLICATION TO THERMAL
NEUTRON CAPTURE

In the case of thermal capture, the form assumed for
R'(E) is

R'(E) =6(E—c), (22)

where e is now the neutron binding energy in the residual
nucleus.

It can be shown that in this case R(E) can be written
in the form

e(E)= L61(E)-tR'(E)]/p(E),
one obtains R(E)=8(E—e)+R'(E), (23)

'B. T. Feld et al. , Final Report of the Fast Neutron Data
dg(E)/dE4= 6f(E)p(E)lt (E)+6f(E)6to(E). (17) Project, NYO-636, 1931 (unpublished).
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where R'(E) has no singularity at E= e. It follows from
Eq. (2) that R'(E) satisfies the equation:

R'(E) =S(e,E)+) R'(E')S(E',E)dE', (24)

which is an equation similar to that for R(E), with

R'(E) =S(e,E).
It was mentioned in Sec. III that the assumption

(16) is usually not valid when R'(E) does not include a
large number of states of all spins and parities. In the
case of thermal capture the initial states are of de6nite
parity, and have spins which take only one or two
values. If more accurate knowledge is available on the
first y-ray transitions S'(e, e—E~), the results can be
improved by taking proper account of it, and by
replacing Eq. (24) by

R (E) So(e E)+ R'(E')S(E',E)dE'. (26

EM=2.50

2. 5

Ct
~v

' 1.99 I

1.42

1.26

0.9V

We would also like to mention that, in the case of
capture, one can show that

lrs lrs A lrs lrs
04 Cs

E„P(E„)dE„=e
dp

for any S(E,E'), provided that

pE
S(E,E')dE'= 1.

Jo

(27)
0.$60

O.OV9 o--
0

FIG. 3. The scheme oi low-lying levels of Gd'" (reference 2).
Energies are given in Mev. The assumed branching ratios are
given in percent.

Mev

2,26

2.18
2.14

2.05
EM=2.00

1.95

1.V2

VI. NUMERICAL CALCULATIONS, RESULTS,
AND CONCLUSIONS

It turns out that in both particular cases considered
above, the differential equation (17) can be transformed
to a homogeneous one Lwe assume o.,(E)=const in the
case of inelastic scattering, and are solving Eq. (24)
in the case of thermal capture].

Letting

1.36

1.24

1,1V

we obtain

X(E)=6t(E)/p(E)

d4X(E)/dE'=6f(E) p(E)X(E). (28)

CD lrs 44s ch c)
ER 04 C)

04
The boundary conditions are

0.65
X(e)=0,

0.288

0.089

o
gy X'(e) = —1

(29)

+ " (e E')p(E')dE', —
0

Fro. 2. The scheme of low-lying levels of Gd' (reference 2).
Energies are given in Mev. The assumed branching ratios are
given in percent.

X"(e) =0,

X'"(e)=0,
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for inelastic scattering, and:

X(e)=0,

X'(e) =0,
X"(e) =0,

FIG. 4. The population of levels in Gd"': S„„~—population
density in the continuum, following inelastic neutron scattering
at 8.5 Mev; R ~

—population density in the continuum, following
thermal neutron capture by Gd"'; ri—population of the discrete
level at energy E, following either 8.5-Mev inelastic scattering on
Gd'", or thermal capture on Gd'" (the two sets of r; coincide).

observed ]ust above the neutron binding energy could
not be used directly, as only 1 and 2 levels are
detected by /=0 neutrons on J= 2 targets.

The variation of R(E) in Gd"' is shown on Fig. 4
for two different cases: inelastic neutron scattering at
&=8.5 Mev and thermal neutron capture in Gd'"
(e=8.5 Mev). It is seen that at high energies
E(E)=R'(E). At low energies (E(5 Mev) both
solutions coincide and are therefore independent
(except for normalization) on the boundary conditions
at e. It can be shown in general that Eq. (28) has four
independent solutions: two oscillatory solutions, a
solution X(E)=C/f(E), all three being regular as
E~O, and a solution which is irregular as E—+0.
This is this last solution which governs the behavior
of R(E) at low E.

'The spectra I'(E~) obtained are shown in Figs. 5
and 6. A capture spectrum calculated for Gd'" (e= 7.9
Mev) is given in Fig. 7. In the case of inelastic scattering
(Fig. 5), the different terms of Eq. (15) have been
plotted separately: I', corresponds to transitions be-
tween the levels in the continuum and I'~ corresponds
to transitions between levels in the continuum and
discrete levels. The discontinuous form assumed for
p(E) (a continuum starting abruptly at E=Esr) gives
rise to a discontinuous shape of the I'~ spectrum. The
sharp oscillations in the low-energy end of the composite
spectrum I' should not therefore be taken seriously.

The discrete lines obtained [last term in Eq. (15)]
are given in Tables I and II.

jo

X"'(e)= —6
i=0

0.8

for capture.
A code has been prepared for the NDA Datatron

for the solution of Eq. (28) and the integrations in-
volved in (14b) and (15).The level density law assumed
ls

p(E)=8 exp[2(aE)lj for E)EM. (3o)

Calculations have been performed on two gadolinium
isotopes. The low-energy levels, ' values of E~, and
assumed branching ratios are shown in Figs. 2 and 3.
The parameter a was taken following Igo' (a=0.1 A)
as 16 for both isotopes. The parameter 8 was obtained
by normalizing the level density (30) to the observed'
one in Gd'" around 23!Mev: 8=6)&10 for both
isotopes. It should be noted that the level densities

ho

ot 0.6
O

%04
0
O

0.2

0
0 4

Ey, Mev

2L. V. Groshev, A. M. Demidov, V. N. Lutsenko, and V. I.
Pelekhov, A tlas of Thermal neutron Capture y-Ray Spectra
(Atomizdat, Moscow, 1958), translated by J. H. Sykes, (Per-
gamon Press, London, 1959); and Atomnaya Energ. 4, 5 (1958)
[translation: Soviet J. Atomic Energy 4, 1 (1958)j.' G. Igo and H. E. Wegner, Phys. Rev. 102, 1564 (1958).

FIG. 5. The spectrum of p rays following inelastic scattering
of 8.5-Mev neutrons on Gd"6. P',—part of the spectrum due to
transitions between levels in the continuum; Pq—part of the
spectrum due to transitions from levels in the continuum to
discrete levels. I'=I', +Pd. Additional low-energy discrete lines
are given in Table I.
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TABLE I. Calculated and observed low-energy discrete lines
following thermal neutron capture in Gd'5~. The calculated in-
tensities of low-energy p ray following inelastic scattering of
8.5-Mev neutrons on Gd158 coincide with those given in Column 2.

1,2

E~, Mev
I~, photons/100 captures

Calc Obs

0.089
0.199
0.36
0.48
0.65
0.96
1.06
1.17
1.24

58.3
31.4
5.1
3.6
7.7
2.3
5.7

12.2
3.0

50
34

~ ~ ~

8a
7
6

15
9

' A 0.64-Mev line was observed for natural Gd; Ip =2.
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—Oat.a
———Calculation

In the case of capture, comparison with experiment
is possible. The data'4 are given together with the
calculated spectra in Figs. 6 and 7 and in Tables I and.
II. It should be understood that the comparison is
absolute: there is no normalization involved.

The difference in the spectra of the two isotopes (up
to Er 4 Mev) is mainly accounted for by the difference
in the scheme of the low-lying levels. A correct in-
clusion of these levels seems therefore imperative for a
good prediction of the spectrum. At higher energies,

1.2

0.4

0,2

0
0

E&, Mev

1.0

Ji

E~, Mev
I~, photons/100 captures

Calc Obs References

FIG. 7. The spectrum of y rays following thermal neutron
capture in Gd'". The data are from reference 2. Additional low-
energy discrete lines are given in Table II.

TABLE II. Calculated and observed low-energy discrete lines
following thermal neutron capture in Gd"7.

0.8

f4
cC
D

o 0.6

I
O

0.4

—Data

———Calculation

0.079
0.182
0.26
0.69
0.73
0.90
0.96
1.11
1.185
1.26
1.33

59.7
19.7
1.8
0.7
4.5
3.5
5.4
8.2
8.6
2.9
5.7

53
29

~ ~ ~

1.7a
~ 0 ~

8
13
8
9
3
2

0,2

0
0 4

E&, Mev

FIG. 6. The spectrum of p rays following thermal neutron
capture in Gd15~. The data are from reference 2. Additional low-
energy discrete lines are given in Table I.

4V. V. Sklyarevskiy, E. P. Stepanov, and B. A. Obinyakov,
Atomnaya Energ. 4, 22 (1958) Ltranslation: Soviet J. Atomic
Energy 4, 19 {195g}j.

a A 0.69-Mev line was observed for natural Gd; I~ =1.

the difference between the binding energies is also of
some importance. Some high-energy transitions are
observed experimentally. We could have, but did not
attempt to account for them by using a proper Ss(e,E)
in Eq. (26). Equation (24) was used as is.
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