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Spin-Orbit Splitting in Nuclei Due to Tensor Interaction*
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The eRect of the tensor force in nuclei with closed shells plus one nucleon has been investigated using
second-order perturbation theory. It is found that one can explicitly exhibit the spin-orbit splitting due to
the tensor force using some simple identities. The spin-orbit splitting in He5 is computed, and found to be 3.4
Mev compared with an experimental value of 2.6 Mev.

l. INTRODUCTION

' 'N a previous paper' we have formulated a procedure
~ - for applying the second-order perturbation method
of Bolsterli and I'eenberg2 to doubly magic nuclei, and
applied it to 0".We shall now extend this procedure
to nuclei with closed shells plus a sing1e nucleon.
Particular interest in this calculation will focus on the
spin-orbit splitting to be computed for the last nucleon.
It has long been recognized that one requires an
effective one-body I s interaction" to interpret nuclear
energy levels.

Several authors' " have considered the possibility
that the observed spin-orbit splitting is caused by
second-order effects of the two-body tensor interaction
operator,

12 +1 ' +12&2 ' +12 3+1 ' +21

which is known" to be present in the nucleon-nucleon
interaction. We shall show that the second-order effect
of S» may be factored into two parts, the first part
displacing j=l+s and j=l—sr states by the same
amount, and the second part directly producing the
splitting of the two levels. Ke shall then apply our
procedure to obtain the splitting between the —,'- and
—'-levels of He'.

Throughout the paper we shall use freely the notation
and formulas of reference 1 (hereafter referred to as I).

2. ADDITION OF A SINGLE NUCLEON
TO A CLOSED SHELL

In formulating our theory for doubly magic nuclei,
we started with a single determinant of particle orbitals
for the zero-order wave-function:

We now wish to add one nucleon in a new shell, and
label the new orbital A+1 so that our wave-function
becomes

4'o= L(A+1) lj 'I grtto I&N&+tl ~ (2-2)

Now we expand the determinant in Eq. (2-2) by the
row of the (A+1) orbital:

A=(A+1) ' E (—1)'»+t"'loot (2-3)

where the pot are A-by-A determinants of single-
particle orbitals with quantum numbers running from
1 to A and coordinate labels running from 1 to A+1
with j excluded.

We now proceed to evaluate matrix elements as in I:
f f

( Z V't)oo=-,'A(A+1) . fo V»IPodrrdro. . dr~+t
i& j' J

(2-4a)

(2-4b)

=-'A (A —1)(lbo"+'I V»
I
po'+')+-'A 2 (—1)'+'(~~+t(iN'o'I V» I N~+t( j)At).

i, j 1
(2-4c)
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The first term in (2-4c) represents the mutual interaction of the A particles in the closed shells, which was pre-
viously calculated. The next term clearly represents the interaction of the extra nucleon with the 3 nucleons of
the core. Making use of the density matrices,

(a f p f b) = P Ni'(a) Ni(b), (2-5)

we have:

( Q V, ;)oo= 2A (A —1)(fo"+'
f V» fPo"+')+A(»yi(1)fo'f Vi~ f »yi(1)$0') —A(»+i(1)fo' f Vi2 f »yi(2)fo') (2-6a)

i&7

r
[(1,2[p'Vi. f1,2) —(1,2[p'V»[2, 1)]dridr~+, " »+i*(1)L(2[pV»f2)»+i(1)

One may express the second-order terms in a like manner:

—,'A(A+1)(V e—"~'V )oo=-,'A(A —1)Qo"t'f V e
—"IioV, [go~+')

(2 I p V» I 1)»+i(2)jdridr2. (2-6b)

+2A p (—1)'+'(»+i(&)A'I Vi2e 'V»l»+i(jgo'), (2-7a)
i, 7=1

A(A+1)(A —1)(Vi2e "~'Via)oo ——A(A —1)(A —2)QO"+'f Vi2e " 'Vi3[fo +')

+A (A —1) Q (—1)'+ '(Ig+i(i)$0'f V»e " Vip [Up+i( j)pg ) (2-7b)
i, 7'=1

4A (A+ 1)(A —1)(A —2) (V i2e " ' V34) oo

= ~A (A —1) (A —2) (A —3)(po'+'I V»e ""oV34[go"')

+—',A(A —1)(A —2) g (—1)'+ (»~i(i)go'f V»e-"a Vg4[»+i(j)go). (2-7c)
i, 7'=1

Fach term in Eqs. (2-7) expands into several parts when expressed by means of the density matrices, for example:

A (A —1)(»+1(1)po' f
V12e Vi8 f »+1(1)4'O )

~ ~ ~=e—"co) Nz~i*(1)L(2)3 f
p' exp(PH. „(1)+AH.„(2))Vi2exp( —XH.„(1))Via exp( —XH.„(2))[2)3)

—(2,3 f
p' exp(XH„,(1)+F,H„,(2)) Vim exp( —XH080(1)) Vi3 exp( —XH„,(2) f 3,2)j»~i(1)dridr, dra. (2-8)

As we did in I, we may perform the spin summations,

isobaric spin summations, and space integrations in-

dependently. There is, however, one important diRer-

ence. We are now summing eRectively over incompleted

shells. To illustrate this, consider the sum on isobaric

spin. I,et g~ represent the proton state and g ~ the
neutron state (later we use x~ for spin up and x ~ for

spin down). For closed shells we have isobaric spin

sums of the form:

e ~ 7

now if the A+1 orbital represents a proton we

obtain, for the. interaction of this orbital with the core,
terms of the form

Since

(ri, ~2[ p'I ri, ~2) =g;*(1)(r2f p f r2)g;(1)
+g~*(1)(r2 f p f

r2)i1 &(1), (2-11)

we effectively are dealing with "half-ulled" shells in
isobaric spin space in Eq. (2-10). A similar argument
holds for the spin except that here the A+1 orbital may
be a mixture of X~ and X; states and hence terms of the
sort:

x.*(1)(02f p [02)x;(1) (2-12)

may appear. In the next section we shall consider the
spin sums relevant to the tensor interaction, and display
a simple theorem which directly exhibits the spin-orbit
splitting due to these terms.

3. THE SPIN-ORBIT SPLITTING

The spin sums over the second-order terms involving
(2-10) the tensor operator (Si2——ei.n»02. n» —~ei e2) consist
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of three major types:

x-*(~)(~8lps»s, .2 l~,)x. («)=z.p, p 'L(n12 n12)'-—3]
+~ 8p , (n12'n1'2')(n12Xn1'2') '—, a, f1= 1, 2; n, p= 1, 2 (3-1)

*( )(~8,~. lp'S»S1 8I l, ,) ( )= ..8.0,.""'I ( n» n1 3)'—8]
+A, 8, , 0, "'(n» n1 8)(n12Xn1 3)„, , a, b, c=1, 2, 3; 42, p, y=1, 2, 3 (3-2)

Xm (48) (cr8)0c)crd'I p S12S84
I
crp)crvycr8) ~m' (42)

Za8ccl ap18 [(n12 'n84) 8]++abed, appall™~~(n12 'n34) (n12Xn84)m' —m&

a, fl, C, d= 1, 2, 3, 4; n, P, y, 11=1, 2, 3, 4, (3-3)

It is now possible to exhibit the spin-orbit splitting
in a simpli6ed manner. Let us abbreviate

where we use the spherical components for vectors
so=s, Qyy=ts &ie„.The terms multiplying E '

do
not depend on the orientation (8 '=8 Emm) of the
spin with respect to the orbital angular momentum but
the terms in A

'
do, and therefore provide a spin-orbit

~ splitting. The corresponding spin sums over closed
shell 1 ~

h = (n, ,'n21)2 —-'„ (3-Sa)

OM= (n'1' n21) (n'2Xn11)M, (3-8b)

s are of the form . and consider the 2+1 orbital (angular part only) to be

(01,02I p'S12S1 2 lo,o.s) =E„0L(n12n12 )'——',] (3-4)

(0'1,0'2, 0'8
I p S12S1'3

I era, 00,0~)'
=&-0 t:(n n )'—l] (3-5)

(cr1)cr2)cr3~cr4
I p s12s34 I era)crp&crv~04)

=E 3,3L(n12 n34)' —-',]. (3-6)

Ke see that the A
' terms disappear when we sum

over a complete spin shell. From Eqs. (3-1) to (3-6),
one may deduce

(3-9a)

241+i, = (2t+1)—LX iV11+(2t)'X,F11 1]) (3-9b)

241,;1;——(23+1) iL(2l)lx iF11—x;F'll 1], (3-9c)

where the Y~ are spherical harmonics. Now consider
the energy shift due to a typical term in the j=l+-2',
m= l+-'2, state:

gl 1 ll J

(3-7)

«JJ1+„~,,-IS;;S„lJJ„;,~;s&
=~'*'&'JJ«

I
~

I
'JJ110&+~"('JJ«

I

i2'o
I

'tJ110& (3 10)
gk—k —~kl=o

Needed 8': and A" are displayed in Table I.

TABLE I.The L' ~' and A ~' coeKcients of two-, three-, and four-
particle terms. CoeScients for absent permutations vanish.

The 'JJzM are complex functions of several (ij kl)
particles which carry angular momentum J with
s-component M. Their explicit evaluation is not
pertinent to this derivation, and would only obscure
matters. Obviously one can calculate the same energy
shift in the j=l+—',, m=l ,' state:——

o. P

1 2
2 1

1 2 3 1 3 2
3 1 2 2 1 3
2 1 3 3 1 2
1 2 3 3 1 2
2 1 3 1 3 2
3 1 2 2 3 1

&aS ap, ~&

A f, „p&&

21
2i

2i
2i
2i
2i
2i
2i

=Z"&JJ„.
I hl y, P)+ (2)+1)-'(2l—3)

X&pl; I
Q,.l y, ls&~:i+C,

&'JJ« lhl'JJ«s&=&'JJ« —1 I hl'JJ«-18» (3-12a)

where C is the cross term. Ke have used the fact that 8
is a scalar and 0', a vector in relating the matrix
elements:

1 2
2 1
3 1
4 1
1 2
2 1
3 1
4 1

c d e P

3 4 4 3 2
3 4 3 4 2
2 4 2 4 3
2 3 1 4 3
3 4 4 3
3 4 3 4 1
2 4 1 4 3
2 3 2 4 3

+abed, apub

1 2
1 2
1 2
2 2
2 2
2 2
2 2
1 2

Aat d, p~s&&

2i
2i
2i
2i
2i
2i
2i
2i

&'JJ«
I

42'oI'JJ11 )= &'JJ11—1 I
&ol'JJ11 1), (3-12b)

c= A-::&g„-Io, l y„p&.
2l+1

(3-13)

by the Wigner-Eckart theorem. Comparing (3-10) and
(3-11), we f1nd



The energy shift in the j=3——,
' state is then

hE( Ps=EH("JJ«
I hl 'JJ«s)+A'*l(21+1) ' 2—l

where we have precisely the same cross term C, but
with a negative coeKcient. Eliminating C from (3-14),
we obtain

Comparing (3-15) with (3-10),we see that

f'2l+1P
&Et+', ~ &Et 'P—=

I
— IA"'('JJtt

I Qol 'tj«o), (3-16)

which explicitly exhibits the spin-orbit splitting due to a
typical term in the tensor interaction to second-order.

The splitting due to a conventional one-body 1 o

term:
V. , = V(r)l. e, (3-17a)

4. APPLICATION TO He'

We shall consider here an application of the preceding
discussion to He'. Ke use a force presented in I, which
is a Serber mixture with a repulsive core fitted to the
properties of H', H', He', and He4:

Vgo
——Jg exP (—rgoo/R')

+(1/16)JoL(1—o, o,)(3+~g ~,)
+(3+lry Iro)(1—~y ~o)j exp( —ryo'/ro')

+ (1 &1' &2)JS(r12/ro)'~12

Xexp( —rgo'/ro'), (4-1)
where:

Jt.-= —58.65 Mev, Jq= —107.29 Mev,

JR=+189.75 Mev, ro=1.54(10 ") cm,

R=ro/+8.

We compute, for the fifth nucleon in He~, only the
spin-orbit splitting between the pI and p; states from
Eqs. (2-7). This is the simplest possible example.
Unfortunately it has the drawback that the fifth

is customarily expressed by

hE~; dkE$, = (2l—+1)(R $(r) I V(r) IR $(r)). (3-17b)

One must note that in both (3-16) and (3-17b) there is a
"hidden" dependence on / in the radial part of the
matrix element. This hidden dependence is illustrated
in Appendix I by a simple example.

nucleon is not bound and consequently the size param-
eter is uncertain. We obtain our rough estimate by
fitting the Coulomb energy difference between He' and
Li' (0.95 Mev in the p; state, and 0.85 Mev in the p;
state"). We compute a splitting of 3.4 Mev compared
with an experimental value of 2.6 Mev.

The fact that our estimate is about 30/o too high
may be attributed either to the problem of determining
the size para, meter, the fact that the splitting is certainly
sensitive to the force used, or more likely a combination
of both. One should note here that the wave function
and the potential both have Gaussian radial dependence
and overlap exceedingly well. (The oscillator well
parameter 6u used was 19 Mev. ) This would appear to
strengthen the view that the overestimation of the
doublet I' splitting is due to the radial functions used.

FeingohP has examined the doublet I' splitting in
He', and found that for a tensor force of the Serber
type the splitting vanished. We too found considerable
cancellation among terms with a Serber mixture, in
fact the two-particle terms in Eq. (2-7a), which are of
the type that produce splitting, cancel completely. Ke
are left with three-particle terms from Eq. (2-7b)
however, which would cancel were it not for the rigorous
treatment of the operator (E—Hp) ' by the Bolsterli-
Feenberg method.

Since the two-particle terms in Eq. (3-16) cancel in
He', one does not mix in any states where two particles
are excited out of the ground state. The three-particle
terms,

(4-2)

involve excitations of only one particle. We emphasize
that this cancellation occurs only when oee nucleon
interacts with a closed is-she/l. As one adds on more
particles, the two-body terms may build up. This effect
may be partially responsible for the building up of the
doublet splitting in the erst p shell.

Teresawa" has computed the doublet splitting in
He' and attributes the eBect to the fact that the nucleon
outside the closed shell suppresses configuration inter-
action of the core nucleons due to the Pauli principle
more e6ectively in the j=l—~ state than in the
j=l+-,' state. Although this explanation appears quite
different from the derivation presented here, where the
doublet splitting is directly obtained from a"spin-orbit
term in the expansion of the tensor force in second order,
there is a correlation between the two. Three-particle
terms like that in Eq. (4-2) represent the interaction
between particles 2 and 3 due to their mutual inter-
action with particle 1. Part of this interaction must be
related to the fact that particles 2 and 3 cannot be
excited to an orbital occupied by particle 1. The fact
that terms of this type contribute strongly to the
doublet splitting verihes the effect found by Teresawa.

'6 F. Ajzenberg and L Lauritsen, Revs. Modern Phys. 27, 77
(1955'.
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Ke would emphasize that this is an eGect of the doublet
splitting, however, and not the cause.
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APPENDIX I. THE l DEPENDENCE OF THE
SPIN-ORBIT SPLITTING CONTAINED

IN THE RADIAL INTEGRALS

The radial integrals arising from the interac-
tion of one nucleon in a state of orbital angular
momentum t with the first s shell are all of the
form:

1 4

Ft ' ' ' '
' (21—f3+) (2 12+234:2'12 2'34+) (r12'134) expL Q 7'jr''1 j]drldr2d13dr4,

~6 J j, , j=1

This integral is easily performed by the method of I, obtaining

(A-1)

where

1'1=P(&!)L(722 —712) (744—734)—(724+714) (724+723)1(D &'+'& (2&+3)1'.'-'r, + (l—1)D—&'+l&r. '-2r 3), (A-2)

and

D=det f7,, f,

f a 713(Y22744 724 )+722714734+744723712+724(712784+728714)y

Fb (Y22 712) (744 Y34) (724+728) (724+'Y14) 2724713+2714728)

(A-2a)

(A-2b)

(A-2c)

Fe—718(722 Y12)(744 784)+724(711 712)(788 734) 714(722 712)(738 784) 728(711 712)(744 784)

(713724 723714) (718+ Y24+714+ Y23) (A 2d)

Setting I= 1 in Eq. (A-2) yields the needed space integrations for He'.
We may compare our 1', with the analogous radial integral arising from the 1 42 term in Eq. (3-17) if V (r) has

the dependence exp( —ar2):

r„=2r—& ~ (r r+)' expL —(a+k)r2]dr
J

(A-3)

d'( 1
=(—1)'(+k) '

da' I a+k)

=l!(a+k) "+&',

(A-3a)

(A-3b)

where k is the size parameter for our oscillator wave function.
Comparing (A-3) and (A-2) with (3-16) and (3-17), we see that in this simple case the l dependence of the spin-

orbit splitting is proportional to (2l+1) for both the tensor and the 1 e interaction, insofar as they are comparable.


