
P H YSI CAL R EVI EW VOLUME 122, NUM HER 6 JUNE 15, 1961
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If the recently discovered I'* state is related to the T=$, J=$ resonance in m.p scattering, global symmetry
considerations should become relevant. In this paper, global symmetry is discussed with a view to under-

standing its group structure. Also discussed is a possibility of reconciling the conflict, pointed out by Pais,
between certain experimental results and global symmetry. The partial widths of the P'* state are calculated
and also those of the companion excited states Z* and ™*.A generalization of the quantum number G is
discussed.

l. INTRODUCTION

ECENT experiments' ' have established the exist-
ence of an excited state I'*+ in the A+7r+ system.

The spin and parity of the state are not yet measured.
As discussed in reference 1, the state shows certain re-
semblance to the J=—,', T= —,', p-sta, te resonance S*of
the p+m system, and the resemblance is reminiscent of
the concept of global symmetry.

In this paper we proceed along this line of thinking
and assume that indeed the I'*=A+7r+ resonance is in
the J= ss, P state, and that the resonance is related to
the J=ss, T=ss, P-state resonance X* of the P+w
system by global symmetry. To analyze this relation it
is necessary to know the quantum numbers of various
states with respect to the global symmetry operations.
It is therefore important to know the structure of the
global symmetry group. Now global symmetry' ' means
some symmetry, larger than isotopic spin invariance,
that describes an approximate analogy between the
various baryons. Hut in the literature its group property
has not been fully discussed. We .shall in this paper
formulate in mathematical terms the requirements that
global symmetry must satisfy. It appears that the
simplest group gs satisfying these requirements can be
generated by three independent 2-dimensional unitary
unimodular transformations together with a discrete
transformation. Adopting this group as the global
symmetry group we then try to assign quantum numbers
to the various particles and the resonance states V*, S*.

Certain approximate relations are then written down
between the widths of F* and E*, and also for the
various partial widths of I'*. Companion resonance
states Z* and * are also discussed.
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It has been pointed out by Pais' that any kind of

global symmetry is in convict with certain experimental
facts. We suggest in Sec. 6 that if global symmetry is
needed to understand the resonant state I'*, a way to
resolve Pais' convict is to have the E mesons as a mix-

ture of states which have diGerent quantum numbers

under the global symmetry transformations. The inter-
actions between each of these states and other particles
couM still predominantly satisfy global symmetry. Such

a picture, while not completely satisfactory, does o6er a
possible consistent scheme incorporating global sym-

metry that leads to useful experimental information.
It should be emphasized that much of our results

about widths have already been discussed in the litera-

ture from the viewpoint of symmetry considerations. ' '
Furthermore a detailed calculation using a specific

dynamical model has been performed by Amati,
Stanghellini, and Uitalev for the states I'* and Z*.
Various discussions on the global symmetry group prop-
erties have also existed in the literature. ' ' The present

paper is written not in the spirit of presenting something

entirely new, nor even in that of presenting something

which we believe to be necessarily relevant' to physical
facts. But if a similarity between I'* and E~ exists, an

analysis along the present line would be useful.

For completeness we include in Sec. 8 a discussion of

charge conjugation invariance, together with a generali-

zation of the quantum number G. Also included are

some remarks in Sec. 9 concerning a global symmetry

that does not put and nucleons in the same multiplet.

2. REQUIREMENTS ON THE GLOBAL
SYMMETRY GROUP

The global symmetry group must by definition con-

tain the isotopic spin group and the strangeness group

Ldefined by the operators exp(iS9) or exp(i(S+E)0),
where S=strangeness and /=baryon number; the

strangeness group commutes with the isotopic spin

group]. It has an 8&&8 unitary representation to which

the 8 baryons belong. t Cf. Sec. 9 for the case of a
symmetry between X, Z, and A only. ) In order that the
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8 baryons be analogous to each other under the global and write
symmetry group, the representation must be irreducible.
For the isotopic spin rotation subgroup the 8)(8 repre-
sentation breaks up into two doublets (AT and ), one
triplet (Z), and one singlet (A). For the strangeness
subgroup this breakup must conform with the usual
assignments of S+X=+1,—1, 0, 0 for X, , Z, and A,
respectively.

To state the above requirements explicitly we intro-
duce as usual the states

p'+ —g+

1
F'=—(Z'+A'),

W2

N

8
Z

Mo

p+
Irr 0

Zo

z

(3)

I'=—,, Z= Z, =——-, (2)

Z'= —(Z' —A.'),
K2

It is now useful to introduce (operating on the column

matrix 8) the following three sets of operators, each set
satisfying the commutation relations for angular
momenta:
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0 0 0
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I 0 0 0
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where

and

0 1 0 —i 1 p
1 0' ' i 0 ' p

I 1 0
0 1

ested in unnecessary additional symmetries, we take the
group to be isomorphic with the representation, and shall
identify a group element with its 8&8 representation.
The simplest such possibility, go, is discussed in the
following sections. Other possibilities are discussed in
Appendix A.

—2'(S+1V) =K2, (8)

Q= T2+K2= Z2+5R2+K2. (9)

The 8)&8 representation must (i) contain exp(iT~O~),
exp(iT2O2), exp(iT202), exp(iK2O4). In other words, T~,
T2, T3, X3 are among the infinitesimal generators of the
representation. Furthermore (ii) the 8&(8 representation
is irreducible.

Many possible 8)(8 representations of groups can be
found that satisfy (i) and (ii). Since we are not inter-

Clearly 2;, 5';, , KI, all commute for any i, j, k.
The physical observables, Q= charge, S=strangeness,

N=baryon number, T&, T2, T&=isotopic spin are re-
lated to 2, 5tt;, and X by

T,=2,+5R.;,

3 THE GROUP go

The group contains arbitrary 2 transformations [i.e.,
Ug=expi(lloC1+4Z2+l3aCB), where l&l212 are real num-
bers J, arbitrary 5R transformations [expi(m&5R&+m25R2
+m25R2), which mixes I' and Zj, and arbitrary K
transformations [expi(n ~K~+222K2+222K2), which mixes
1V and ].The product of all these is reducible since no
mixing of N, ™with F, Z has been introduced. To effect
such a mixing we introduce the discrete element"

0 0 I 0
0 0 0 IE I 0 P Q

(10)

0 I 0 0
' This discrete operator has been discussed by various authors.

See reference 5.
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TABLE I. The irreducible representations of the group g0. The quantity xem;(V) is the character of the 2)&2 matrix U
for the irreducible representations of dimension 25K+1.

Representation

(Zmm+1}
(2 5K 5R—1)
(z, mx)

5R&'X

Dimension

(22+1)(25K+ I)'
(22+ 1)(25K+ 1)'
2 (22+1) (25ir+1) (251+1)

Character for
elements (11)

xg (Ug)xslt(U)xmt(U')
x~ (Uz)xstt (U)xslt(U')
xg (Ug) Lxstt (U)xst (U')

+xsg(U')xst(U) j

Character for
elements (12)

xg (Ug)x sit(UU')
—xz (Uz) x sit (UU')

0

and those of the form

Here

0 0
0 0

bI
—b'*I a'*I

aI bI
b QI gQI

0 0
0 0

(12)

a b
—=U= arbitrary 2&(2 unimodular uni-

—b* a* tary matrix,

and

a' b' = U'= arbitrary 2X2 unimodular
—b'* a' unitary matrix.

(13)

This group will be called gs. It has an invariant
subgroup (11)which is the direct product" of three SUs,
and the quotient of the group by this invariant subgroup
is the two-element group. $1t is, however, not the direct
product of the two-element group with the invariant
subgroup. )

In Appendix A we shall give a few other possible
groups satisfying conditions (i) and (ii).

"We use SU~ to denote the group of unitary n)&n matrices
with determinant unity. Strictly speaking, the invariant subgroup
(11) is only locally identical with SU»(SV&)&SV&. If one changes
the signs of Ug and a, b, a', b' at the same time, (11) is unchanged.
Hence (11)has a 1 to 2 homomorphism with SV..XSV2)&SV2. In
other words, SU~XSU2XSU2 is the covering group of (11).
Similarly gt), which is de6ned to be the group of matrices of the
form (11) and (12), has a covering group vhich we shall call
gp . g0 has a 2 to 1 homomorphism with g0. It has an invariant
subgroup SU2&(SU2XSU2. The relationship between g0' and g0 is
entirely similar to the familiar relationship between SU2 and 03,
the group of 3X3 rotations. To simplify matters we shall not dwell
on the difference between g0 and g0' in the text. The irreducible
representations in Table I ale actually representations of gp'.
Those representations (ZOR5RX) with 2+25it =integer, and those
representations (25RK), OR) 5I, with 2+5K+51= integer are also
representations of g0. (The others are not single-valued repre-
sentations of gp.) Since the baryons belong to a representation of
this type, and all known particles have transition elements to a
collection of baryons and antibaryons, only representations of. the
same type (i.e., single-valued representat&ons of g{)) enter &nto tbt„
discussion Of known particles,

and other necessary elements to form a group. The
elements of the group are then the 8)&8 matrices of the
form

aI bI 0 0
—b*I a*I 0 0

0 0 0,'I b'I
0 0 —b'*I a'*I

4. IRREDUCIBLE REPRESENTATION OF gs

For any representation of gs, the infinitesimal opera-
tors 2] oCg oC3 5K] BR2 5K3 5|g K2 %3 form three sets
of commuting angular momenta. One can diagonalize
2', Z3, 5K', 5K3, X', X3 simultaneously. Now

RZ.;R ~=8;,

R5K;R '=K;,
RK;R '=BR;.

Hence pn any representation the set of eigenvalues of 5K'
must be the same as those of 5|,'. One has therefore two
kinds of irreducible representations:

(n) 2', 07P, K' have unique eigenvalues Q(/+1),
K(K+1), K(K+1), respectively. Since R com-
mutes with mIs+Xs, the state with BRs——Ks ——K is an
eigenstate of R. The eigenvalue X can be &1.We denote
this representation by the symbol (BKK)i), where
2P=integer~0, 2K=integer~0, X=&1.

The states of this representation are designated by
Z3, 5K3, K3, each running in integral steps between and
including +9, & K, & K respectively. The operator R
switches the indices 5K3 and K3 for a state:

Riolts ——a, 5I,s——b)=XioI4 ——b) ops ——a). (15)

(P) Z' has a unique eigenvalue 8(9+1).5R' and &'
each has two eigenvalues K(K+1) and g(++1)
where K&+ We deno. te this representation by the
symbol (9K+), where 29, 2K, and 2Q are integers
~0 and K)%.

The states of this representation are states for which

{5)Is=K(K+1), 5)I,= —K, —K+1, " +K,
while 5Is=g(5+1) Ks= —5, —97+1, . +5);

{ZP=R(9t+I), 51is= —5, —%+I, +5,
while ot'= K(K+1), 5I,= —K, —K+1, . +K}.
The operator R switches the states between these two
sets. In a suitable representation, R satisfi. es

&i KKs9tPh)= i%%sKKs).

The dimensions of the irreducible representations are
tabulated in Table I.Also given are the characters of the
representations. From the characters the decomposition
of the direct product of two representations can be easily



SOME CONS I D ERAT IONS ON GLOBAL S YM M ETRY 1957

TABLE I&. Quantum number assignments for particles and excited states. T=Z+BR=isotopic spin. PIf", =parity of E meson. The
quantum number G& is explained in Sec. 8. In this table only the (O, x, -'„Xrr) part is listed for the X mesons.

Particle

Ps 6
MOH H

F'+, FO

Zo, Z

E+
E0
E'
E
gQ

Z*

Repre-
sentation

(2,2,0)

(1,0,0,X )=~1

(0,k, x2,l x)
X+=+1

(!,—:,0) 3
2
3
2
3
2
32.

1
0—1

1
2
1
2

1
2
1
2
1
2
1
2

1
2
1

0
0
0

1
2
1

1
2

1
2
1
2

—&z

—&z

1, 0
1, 0

'Alf,-

E10:XlgP~
E20: —) ~Pg

&z

5. QUANTUM NUMBERS

To assign quantum numbers to the states we erst
notice that Eqs. (7)—(9) give the isotopic spin, the
strangeness, and the charge in terms of these quantum
numbers.

The 8 baryons clearly belong to the representation
(—'„—'„0). It seems natural that the pions should be as-
signed to the 3&&3 representation (1,0,0,X ). The two
possibilities ) =&1 are, of course, physically different,
and differentiable. It seems natural to assign the E
mesons to the representation (0,—',,~„Xrr) with again the
two possibilities ) ~——~1.These assignments are tabu-
lated in Table II.

For the state X~=s-+p we notice that n.+p always
belongs to either (-s„~~,0) T= '„or (—'„~s,0) T=—'s. But S*
has a total T= ', . Henceitbelon-gsto (—,',-'„0).The natural
assumption is therefore that Y* is in the same multiplet
structure (—,', —,',0), as indicated in Table II Since I'.* can
go into A+a., its isotopic spin T=1. The multiplet
(-,',-'„0) also contains a T= 2 state" r which will be called
Z*. In addition to the 3 Y* states and 5 Z* states there
should also be 4 ™*states with T=~.

6. BREAKDOWN OF GLOBAL SYMMETRY

Even if global symmetry has any valid basis, there
must be relatively strong interactions that violate it.
One manifestation of this violation lies in the mass
difference between the hyperons. Another manifestation
was first pointed out by Pais, ' who showed that the
following reactions

~++p ~ g++Q+

K++m ~ K"+p,
(16)

(17)

found in the standard way. (Except for the quantum
number ~, it can also be found by the usual vector sum
rule for 2, 5K, and K separately. )

and many others violate global symmetry. For the
group ge discussed above, the conservation of Zs is
violated by both (16) and (17).

In face of these difhculties, does global symmetry
have any validity at all? And if it has, does it ever pro-
duce useful physical informationP

It would be dificult to answer these questions. But if
the answers to the above questions are afhrmative, pre-
sumably the baryons and the states lV*, Y~ allow more
directly the application of global symmetry than reac-
tions (16) and (17). For example, if the global-sym-
metry-destroying interactions produce relatively little
mixing for the baryons, pions and Y*, S~, but produce
large mixing for the E mesons, then apparent violation
of global symmetry is not unnatural for (16) and (17).
Vi'hile the mixing may be the multiplet (0,—'„—', ) with any
multiplet possessing a T=-'„X=~ component, it seems
that the mixing of (Og„'s) with (1,—'„-',) is the simplest
possibility.

In this view, then, the usual interactions (baryons,
pions, and E mesons) are regarded as predominantly
globally symmetrical. The globally unsymmetrical inter-
actions give rise to, among others, two effects: (a) mass
splitting of the states within each multiplet. (b) a
strong mixing for the E meson of a (1P„—', ) T=-', com-
ponent with the (OP„-', ) state. The globally unsym-
metrical interactions may, for example, have a very
small range, so that the two effects (a) and (b) are the
only ones that one need consider as causing global
unsymmetry in the zeroth approximation. The influence
of global unsymmetry is then quite limited in scope,
though not in magnitude, and one can derive conse-
quences that can be checked with experimental infor-
mation. [This is true only insofar as one does not probe
into the very smat/ range where the strong unsymmetric
force is assumed to be effective. It may be instructive to
recall the well-known symmetry between e+ and p+. In
that case, the asymmetry between these two particles
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TABLE III. Phase-space factor 0, projection weight m, and rela-
tive partial widths of resonance levels. The weights m are calcu-
lated from the quantum number assignments. The phase space
factor 0 is computed from experimental resonance energies for N*
and I'*, and from an assumed energy spectrum for Z* and ™*.The
partial widths of other disintegration processes, such as Z*+ —+ x+
+Z etc. , can be inferred from the table through a simple isotopic
spin rotation.

Particle

(iver 4) ++

Total
energy
(Mev)

1237

Disinte-
gration

products

Computed
relative par-

a tial width
0

(Mev')

9.7X10' 1

m++4
2++~0
20+m+

7 3X10'
1.6X106
1.6X106

0.5
0.03
0.03

~1539(?) s ++X+ ~18(?)&& 10P 1 ~1.9(?)

1637(?) s.++ o 15(?)&(10P 1 1 5 (?)

seems to be completely characterized by their large
mass difference which, presumably, is also generated by
some unsymmetrical forces, strong in magnitude but
remarkably limited in its symmetry destroying effects. ]

If one asks how does it happen that only the E
particles have a strong mixing, a possible answer could
be that without the globally unsymmetrical interaction
two multiplets (1,—,', rs) and (O, rs, ~s) happen to lie rela-
tively close together and, therefore, result in large
mixings for the states with T=—,'. It would then be
reasonable to expect the existence of other excited
states E*.

In such a picture the E meson is a mixture of (O, s,s)
and (1,—',,—',), each of which, in interacting with the other
particles, still predominantly satisfie global symmetry.
Thus, e.g., in reactions such as E +baryon with
multiple pion productions, one can apply the global
symmetry arguments and obtain equalities and in-
equalities between the various related processes.

II =C'E~/(En+E-) (18)

where q=momentum of pion in the rest system of the
resonance state, E&=total energy of the final baryon,

V. POSITIONS AND WIDTHS OF
N; Y*, S*, AND =*

The discussion of Sec. 6 suggests a zeroth order calcu-
lation of the partial widths of X*I'*Z*and ™*,for the
processes tabulated in Table III. These processes repre-
sent a transition from a (ss, -'„0) multiplet to a product of
a (—'„-,',0) multiplet and a (1,0,0,) ) multiplet. The de-
composition therefore yields unique weights zv which are
related to the squares of the appropriate transition
amplitude. The calculation of these weights from the
usual tables of Clebsch-Gordan coefFicients is straight-
forward and the result is tabulated in Table III. Be-
sides these weights due to the projection of the initial
state on final states, there is also a phase-space-poten-
tial-barrier factor 0 for the p-wave state. We take it to
be given by

and E = total energy of the final pion. In the approxi-
mation that other effects due to global asymmetrical
interactions are neglected, the partial widths of each
resonance level are proportional to the appropriate
products of z and Q. To calculate 0 one needs the
excitation energy of the resonance states. For Ã* and
F* we take the values in reference 1. To guess at the
energies of Z~ and ™*we write the total energy E. of the
excited state in the multiplet (-,',—',,0) in the form

E(=E~+E )
=E~*+rr'Z 9)I+P'(K' ——,')+7'(Xp ——,'), (19)

where rr', P' and 7' are constants. Similarly, for the 8
baryons in the multiplet (-', ,—,',0) we have an analogous
expression

E=E + & 3)I+p(3I'—-')+7(& —l), (2o)
where

n=E~ —Ep—77 Mev,

P = -', L-,
' (E-.+Esr) —r~ (3Ex+Eq)]=—59 Mev,

y = —(E-.—E~)——380 Mev.

One sees that by taking"

(21)

n'=cr, P'=P, y'= —400 Mev, (22)

one obtains the experimental resonance energy for I"*.
With this choice the resonance energies for Z~ and ™*
can be computed and are tabulated in Table III, with
the corresponding phase space factors 0,

The last column of Table III shows a smaller total
width for V* than lV* Lin the ratio of approximately
0.56:1], and shows a very small branching ratio of
T*—+ Z+w. Both of these are in general agreement with
experimental information. '

8. CHARGE CONJUGATION INVARIANCE

With the inclusion of the unitary operator C, repre-
senting charge conjugation, the symmetry group is
enlarged. The irreducible representations become larger
in general, corresponding to, e.g., the fact that a particle
and its antiparticle have the same mass. To study the
combined group generated from gp, C and the baryon
number gauge transformation exp(i0$), we start from
their commutation relations. For the sake of clarity we
shall formulate this discussion in theorems. We shall
also only deal with particles and states that have
transition matrix elements into e baryons and anti-
baryons, m= 1, 2, 3,

Theorem 1.

Gr =—C exp[i'(@s+3IIs+&s)]

commutes with all elements of the group gp.
Proof: For a single baryon-antibaryon the explicit

representations of C, 2, OR, X, R are given in Appendix
B.The theorem follows from a straightforward explicit

"A similar guess on the masses of excited levels has been made
by A. Pais (private communication). See also reference 7.
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{~~p p'+ }+{~~+ p'p } (30)

where each curly bracket represents a state, for which
the first symbol inside specifies the state of particle a
and the second symbol that of particle b. Consider a
Lc number) product wave function of an orbital part,
a spin part, and a charge part I depending on the other
quantum numbers, 2, Zp, BR, BRp, etc.] of the two
particles. For a state 7=0, the product of the first two
parts is antisymmetry in the interchange a+-+ b. Hence
the charge part is symmetric since the entire wave
function must be antisymmetric. Now under a+—& b,

(27) ~ (28), (29) +-& (30).
"T.D. Lee and C. N. Yang, Kuovo cimento 3, 749 (1956).

computation of the commutators. For other states the
theorem follows because G~, C, exp(ipr2p), exp(ivr5Kp),
and exp(im. Kp) are all multiplicative for a collection of
particles.

Theorem 2.

G&X+XGi=0, [iV,gpj =0, G1 —1 ~ (24)

Proof: This theorem follows directly from the explicit
representation of Appendix B.

Theorem 3. The full group generated by gp, G~ and
exp(i') is the direct product group gp&(Op+, where
O~+ is the group of all 2&(2 real orthogonal matrices
with determinant =&1.

The proof of this theorem is again straightforward.
The irreducible representations of Op+ are either (a)

2&&2 in size, in which 1V=+o. and 1V= o. —Ln=integerj
each occurs once, representing physica11y a pair of
particles, and G~ switches the two states; or (b) the
representation is of dimension 1)&1 in which X=O and
either G~=+1 or G~= —1.

For a state with S=O, the operator G~ is One aed the

same uumericat cortstant (=&1) for all states irt a
multiptet of gp. By (23), C brings one state into another
in the same multiplet of gp.

Theorem 4. For the pions, G~= —1.
Proof: The pions are eigenfunctions of dI, with eigen-

value 5=0. Hence" G~ ——G= —1.
Theorem 5. For the (0,-'„-', ,X), X=O representation, if

the total angular momentum J=0, and the system has
transition matrix elements into a baryon-antibaryon
pair, then

GgX= —1. (25)

For the (1,—'„—',,X), 1V=O representation under the same
assumption,

G,P, =1. (26)

Proof: In the notation of Appendix B, we have four
possible states for the baryon-antibaryon pair that
belong to (0,—',—',), with 9Rp= —',, Kp=-', '.

{pz'}+{uz+}, (27)

{Z'p}+{Z"u} (28)

{I'+='}+{I"='} (29)
and

Hence the states are either

(27)+ (28) or (29)+ (30), (31)

or superpositions of these two. By using the explicit
matrices listed in Appendix B it can be directly verified
that under

R: (27) ~ (29), (28) &-+ (30),

G, : (27) +-& —(30), (28) ~ —(29).

Hence under RG~ both wave functions in (31) remain
themselves but change sign. Thus (25) is proved. A
similar proof holds for (26).

Applied to the E mesons, if the E meson admixture
(1P„p~) can be neglected, Theorem 5 states that

(Gi)x= —&x.

While all the four states BR~=+—,
' and X3——&—', are

eigenstates of G& with eigenvalues —Xz, only two:
5KG=K~=&~ are eigenstates of E with eigenvalues ) ~.

If, further, one assumes that time reversal invariance
holds, then the two states E~' and E2' have simple be-
haviors under R. To see this, we notice that (G~)x is a
numerical constant. Hence (23) shows that

C
~

m, =-'„x,= ——',)= —G,
~
m, = —-'„x,=-',).

If I' is the parity operator, we have

CP ~mr, =-,', X,= ——,')= —Gg led, = —,', X,=-', ).
Now EP, (Kp') is an eigenstate of CP with eigenvalue

+1, (—1).Hence

~
R, ,') —

~

DR, =-„Ot,———,)W (G&P)
~

OR& ———-„Ot&———,).
One obtains with the use of (15):

R
~
Ki, pe) =~ (RP)

~
&1,2') =~ (~rcPx)

I
&~,p'»

where Px is the parity of Ep Lwith respect to, say, AN].
Thus we obtain the entries in Table II for E~', E2'
under E..

9. REMARKS

For a symmetry to exist between V* and N* it is no
necessary that all 8 baryons be brought into globa
symmetry. For example, one could have a symmetry
between E, I', and Z without . A simple symmetry
group in such a case" is SU~)(SU3 which has more
parameters than gp. The irreducible representations in
such a case can be written down and an analysis like the
above for bp can be made. There also would be a com-
panion Z* T=2 state together with Ã* and V*. The
weight factors m for X*, F*, Z* remain the same as in
Table III.

APPENDIX A

We give here several examples other than gp satisfying
conditions (i) and (ii) of Sec. 2.

(A) The group b~. The group is isomorphic with
SU2XSU~ where SU2 consists of the 2 transformations
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Ug=expi(ligi+l222+l323) and SU4 consists of all the
unimodular unitary transformations between N, I', Z,
".Clearly R is an element of SU4. Hence go is a subgroup
of g, .The usual gi ——

g2 ——g3 ——g4 case" [where gi, g2 g3 g4

are, respectively, the coupling constants between pion
and EX, FF, SZ, Z j has this larger symmetry gi
rather than go. Notice that if the coupling constants

gi g2 g3 g4 the symmetry group is the smaller

go, with the pion assignment (1,0,0,X ) where X = —1.

0 0 o-g 0
0 0 0 o.g

exP (i8) 0 0 0
0 o-g 0 0

To find the group we introduce the matrices

(32)

(B) The group 0&'. The group is generated by the
invariant subgroup SU2XSU~XSU2 of go, together
with the elements

0 0 I 0
0 0 0 I
I 000
0 I 0 0

0 0 —I 0
. 0 0 0 —I

P' I 0 0 0
0 I 0 0

I 0 0 0
0 I 0 0"=0 0 —I 0
0 0 0 —I

0 I 0 0
I 0 0 0
0 0 0 I'
0 0 I 0

0 —I 0 0
. I 0 0 0

0 0 0 I)
0 0 I 0

I 0 0 0
0 —I 0 0
0 0 I 0
0 0 0 —I

The infinitesimal generators of the invariant subgroup form

SU2XSU2XSU2 of go are exp(P a„„v„v„),

where a„„are real numbers. Now

or

oi, 02, a3, (1+p3)ri, (1+pa)r2, (1+pq)r3,
7

(1 P3)ri| (1 P3)&&y (1 P3)&3~ (33) [exp(P g„„v„v„)]v,[exp( —P a„„v v )]=P b, .v (38)

Oi~ 7i) P37i.

The infinitesimal generator for (32) is

pyO y.

Taking the commutator of this generator with those
listed in (33) one obtains additional generators. Alto-

gether by repeatedly taking commutators one obtains
the following 21 infinitesimal generators:

O'ip 7i) Ploip P3&ip P2&i&j (34)

Taking further commutators gives rise to no new inde-

pendent generators. The group obtained from these 21
generators is 07' which has a 2-to-1 homomorphism with

the group of 7X7 proper real orthogonal matrices 07, as
already discussed by various authors' ' in the literature.
To see this we define seven anticommuting Hermitian
matrices

v»v. +v.v» =2b». , (36)

4+5+6+7 Z. (37)

The 21 infinitesimal generators (34) are then iv»v.
(pN v). The group generated by (34) is therefore of the

7&=P3+&) &2= P3f727 73=P3oay 74=P&rl,
v5 p1&2q v6 p173q v7 p2 (35)

Then

where ~~b;, ~~
is a 7X7 real orthogonal matrix with de-

terminant=1. It is easy to prove that, conversely, for
every such ~~b;, ~~, there exist two sets of real a». 's

satisfying (38). The group has thus a 2-to-1 homo-
morphism with 07. [T.A. Tarski has pointed out to us
that Oq' is called spin (7) in the standard language. )

In terms of the v's, the element R of go ls

~=P1= —Z+4+5P6 =Py+2+3+7
= [exp (~viv2/2) j[exp (m v7va/2) j. (39)

Thus R is an element of 07', hence go is a subgroup of Oq'.

Both of the above two groups contain go as a sub-

group. There exist also groups that satisfy conditions

(i) and (ii) but do not contain go as a subgroup.

(C) The group SU3. It was pointed out to us by
Speiser and Tarski" that the group" SV3 has an
irreducible SXS representation which satisfies both
conditions (i) and (ii). However, in this case it seems
impossible to incorporate z mesons and E mesons with-
out introducing more new bosons. It is clear that go is
not a subgroup of SV3. The full implications and
consequences of such possibilities still need to be
investigated.

APPENDIX B

We give in this Appendix explicit matrices for G~, E,
2, 5R, X, and N between the 16 states that describe a

'4 D. R. Speiser and J. A. Tarski (private communication).
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single baryon or antibaryon:

where

S
~0

M

8— +V
PO

ZO

Z

and p
g+

ZO

+0
Y—

cr, 0 0 0
0 cr; 0 0
0 0 0-, 0

, 0 0 0 o-,.
s=2

0-; 0 0 0 '

0 0, 0 0
0 0 cT; 0
0 0 0 o-;

(i=1, 2, 3)

' We use the notation that, e.g., F is the antiparticle of F+ and
is negatively charged.

The antibaryon states" are defined such that under the
charge conjugation operation all baryon states p, e,

, I"+, 7', Z', Z are transformed in an ideetica/ way
into their respective antibaryon states p, n, ™0,™+,Y,
F', Z', and Z+. The minus signs in 8' are so chosen that
the matrices G&, R, 2, 5';, X, and X are given by

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

1

0 I 0 0
0 0 I 0
0 0 0 I
0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

0 0 I 0'
0 0 0 I
I 0 0 0
0 I 0 0

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

—I 0 0 0
0 —I 0 0
0 0 —I 0
0 0 0 —I

0 0 0 0
0 0 0 0
0 0 0 I

10 0 I 0
1 2 0 0 0 0'

0 0 0 0
0 0 0 I
0 0 I 0

0 0 0 0
0 0 0 0
0 0 0 —I

, . 0 0 I 0
5R2=2j

0 0 0 0
0 0 0 0
0 0 I 0

, 0 0 0 —I
5K3= 2

0 0 0 0
0 0 0 0
0 0 0 —I
0 0 I 0

0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 —I

0 I 0 0
I 0 0 0
0 0 0 0

, 0 0 0 0Xl= 2 0 I 0 0'
I 0 0 0
0 0 0 0
0 0 0 0

0 —I 0 0
I 0 0 0
0 0 0 0

, . 0 0 0 0X2=2i

and

0 —I 0 0'
I 0 0 0
0 0 0 0
0 0 0 0

I 0 0 0
0 —I 0 0
0 0 0 0

, 0 0 0 0
3—2 I 0 0 0'

0 —I 0 0
0 0 0 0
0 0 0 0

where 0;(i= 1, 2, 3) are the 2 &(2 Pauli spin matrices and
I is the 2&&2 unit matrix. All empty places in the above
matrices are zeroes.


