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Production of Pion Pairs—Isospin Analysis
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(Received January 11, 1961)

The reactions y+N — 2r+N and 7+N — 2r+N are analyzed in terms of the relevant isospin
amplitudes. An experiment is suggested to measure the phase difference between even and odd =—m isospin
states, with a view toward detecting a resonance in the w— system. The experimental determination of

the magnitude and phase of the amplitudes for the second reaction is discussed.

INTRODUCTION

N the first two sections of this paper we are concerned

with the photoproduction of pion pairs. The

interpretation of observed charge state ratios and
angular distributions in the reaction

v+ N — 2r+N 1)

is greatly facilitated by expressing the amplitude in
terms of the relevant dynamical variables. The phenom-
enological analysis of (1) involves both the isospin and
angular momentum decomposition of the production
amplitude. Here we are concerned with the charge
state ratios and so consider only the isospin dependence
of (1). The angular momentum analysis of (1) has been
given by Peierls! and Ciulli and Fischer.? Of course the
isospin is not conserved in (1); however, photons
violate isospin conservation in a well-known way. By
this we mean that the interaction inducing the reaction
(1) transforms in a known (simple) way under rotations
in isospace.

If we let the initial nucleon N in (1) be either a
proton or a neutron, then there are six possible reac-
tions. It turns out that the isospin analysis requires six
independent matrix elements. Therefore isospin conser-
vation does not play so dramatic a role as in the reaction

7+N — 2r+N, (2)

in which four isospin amplitudes describe ten possible
processes.®* The isospin analysis, besides being the
first step in any ‘“fundamental” dynamical calculation,
is also useful for the interpretation of experimental
results in terms of simple models. Details of the con-
struction of a dynamical theory for the process (2)
may be found in a recent work by the author.? In Sec.
III we discuss reaction (2).

I. THE PHOTOPRODUCTION AMPLITUDE

We use the following notation: k is the photon
momentum; p, q are the momenta of the final pions;
a, B are the charge indices of the final pions; 7, 7’ are
the charge indices of the initial and final nucleons;
and m, m' are the spin projections of the initial and final
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nucleons. The nucleon momentum is given by momen-
tum conservation. The index a goes with p, 8 with q.
a=1,0, —1 refers to a positive, neutral, negative pion,
respectively. 7=3% (—3) describes a proton (neutron).
We use the following coupling scheme: First add the
isospin of the two pions to get isospin t; then add this
to the nucleon isospin to get total isospin T. The
restrictions of Bose symmetry are simplest in this
coupling scheme. Clearly, in the final state, for 7'=4%
only =0, 1 are allowed; for T=$% only {=1, 2.

We are now going to prove that the transition
amplitude T for reaction (1) may be written as follows:

(paqBr'm’| T | krm)

= 3 ard(aBr' )M (pa,k; m'm).  (3)
Tt

The index j stands for S (scalar) or V (vector), as will
become clear presently. The “scalar’” amplitude occurs
for T=1% only. The amplitudes M 7,7 may be subjected
to an angular momentum and multipole decomposition,
but we shall not do that here. The coefficients are just
constants, containing all the charge state information.

In the “one-photon” approximation the left-hand
side of (3) is

—<‘If“)(paqﬂ,7’7n')\fi(x}-A(X)d3x ‘I'(TWL)>- 4)

In Eq. (4), ¥ (pagB,r'm’) is a physical eigenstate of
the 2w — N system obeying the incoming-wave boundary
condition; ¥(rm) represents a physical nucleon. j(x)
is the charge current density giving rise to the photon
field. A(x)=exp(¢k-x)/(2k)* is the vector potential
of the electromagnetic field. [Eq. (4) does not take into
account virtual photons or the direct 2y—2x coupling.
Either of these processes can induce isospin changes
AT=2 or greater. However such processes involve
extra factors of e so that the error made is expected to
be of the same order as that caused by w*—° mass
difference, etc., leading to the violations of charge
independence in the final state.]

In this approximation one has

i=istiv, (5)

where jg transforms like a scalar in isospace (i.e. it is
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invariant under rotations and conserves isospin:
AT=0) and j, transforms like the 3-component of a
vector in isospace (i.e., transforms like the coordinate z,
and gives rise to AT=0 or 1). Therefore we write the
interaction term as follows:

—fj- Adx=S5+Vs;
(6)

s== [is-Adx; Vi=— [iv- A

Suppressing the pion momenta and nucleon spin, we
have the problem of finding the matrix elements

(¥ (aBr") | S+ V3| ¥ (7). (7

Our considerations depend only on charge independ-
ence and are quite independent of such details of (4) as
“physical state vectors,” and boundary conditions they
might obey, or the precise structure of j(x). The next
step is to express ¥(efB7") in terms of eigenstates of
m—m isospin t and total isospin T. Recalling the
previous discussion, we find (X, is the nucleon isospin
function, ¢, the pion isospin function)

Y (afr") = patpsXs (8)
= > apdrir,; 9
Tt

ar=C(11t;a8)C (5T ; a+67"). (10)
®rir, is the 2r— N isospin eigenstate of the indicated

variables. The notation of Rose? is used for the Clebsch-

Gordan coefficients. On using (9), Eq. (7) becomes

(¥ (o) | S+Vs[¥(r))
= ; ard®nir,|S+Vs| ¥ (T=3%, T.=7)). (11)

Now, a basic theorem in the theory of angular
momentum (Wigner-Eckart theorem?) states that the
“magnetic” quantum number dependence of matrix
elements between eigenstates of J and J’ of any
quantity that transforms under rotations (in isospace,
for our problem) like a “spherical tensor” (i.e. like
spherical harmonics) is contained entirely in a Clebsch-
Gordan coefficient. Denoting the spherical tensor
operator by Ty, the theorem says (7, m are the
aforementioned angular momentum quantum numbers)

(12)

where the ‘“reduced matrix element” (§/||Tz||7) is
independent of m, m’ and M. For proton reactions we
have T,=T,=3. For the isotopic scalar operator

(G'm | Trar| jmy=C(FLj"; mM)(§'|| Tl 5),

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

P. CARRUTHERS

S[L=M=0in (12)]

My S=(Pry|S l V(T'=T,=3))=06r5,
M= (ors IS (T=1),

For the isovector part V3 [L=1, M=01in (12)]
Mr” =C(T; 3009”5 Np”=(Brel|Val[ W (T=13));

(13)

oMY= (3)honY, MY = (2/3)i90, (14)

Egs. (11), (13), and (14) thus give

(pagqBr'm'| T | krm)= t_ZO la%t(aﬂ‘r'r)[m%ts'f"m%tv]
T e, (15)

t=1,2

which is of the form (3). If desired, the reduced matrix
elements 9r,” can be found from (14). Table I gives
the ar, coefficients for y— p reactions.

Now, according to the Bose symmetry of the pions
it can make no difference which pion is called number
one, e.g., [cf. Eq. (3)],

(pags- - | T|k--)=(qspa- - | T|k--).  (16)

The ari(eB7'7) coefficients have parity (—1)¢ under
interchange of a and 3, as may be seen from (10) since
C(114; aB)=(—1)!C(114; Be). [The 2x isospin wave
functions are odd (even) under interchange for (=1
(#=0, 2).] In order to maintain (16), the amplitudes
M7/ (pg,k) must obey [see (3)]

Mr (pg,k) = (—1)*Mr,(qp,k). a7

This symmetry is useful in sorting out the contributions
of the different isospin channels.

II. CROSS SECTIONS FOR PHOTOPRODUCTION

Using box normalization, setting the volume equal
to unity, the differential cross section is

2 & pdq
daz—[TIZB(w,,—l—wq—f—E’—k—E)( ,
v

™

(18)

where E (E') is the initial (final) nucleon energy. The
“flux” factor v is, for example, in the c.m. system
(14%/E). Owing to the § function one energy integra-
tion can be performed. (Already the nucleon factor
d*py has been removed using the total momentum
conservation delta function.) Writing do = (2r/) | T | 2dp,
we have
1 E'w 0 pqPdeo ,dQ,dQ,

dp=
(2m)8 *(E'+wq) —w,q- (q+py")

for the phase space density. It should be remarked that
in (18) one generally averages over initial spins and
sums over final spins. Also, one frequently needs to
average over polarization directions of the photon.

Of course, in actual experiments one measures an

(19)
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TaBLE I. The coefficients ar; of the isospin amplitudes Mz,
for the y+p — 27+ N reactions.

Reaction ao a1 a3 (471

vFp > w4 4p @ —@©*r Q@ -5
v p = m0fa9tp —(3)* 0 0 —2(15)~%
y+p — w4 0 G O (3/10)%

average matrix element

| T|%dp
2w Jap

Apefu T|9a00,  (20)

] Ap

where Ap=/"dp is the phase space accepted in a given
experiment. An average over beam energy is generally
required, as well.

An important consequence of (17) is that even and
odd ¢ terms Mrz,7 do not interfere in the fofal cross
section. This is easily seen from (3) and (18): The
even-odd ¢ interference terms in |T'|? are odd under
interchange of p and q, according to (17), while the
phase space density [cf. (18)] is even under the same
operation.

Before proceeding, we remark on the invariance of
the transition amplitude. The T is (18) is related to the
Lorentz-invariant amplitude T'iav by the relation

M2 3
T= (——————) Tinv-
8wwkEE

Sometimes one writes (18) in the (equivalent) form

(21)

drm () Tl 30 (o0~

= inv| %0 '—k—

T o\ 8tE Pt o=k n)
&p dq dPpn’
X

(22)

Wp Wgq

Now we consider the influence of (17) on the cross
section. First of all, according to Eq. (15) and Table I,
the total cross section for y+p — 27N is simply

orot(Y+P)
= f (d0'+ _+d0'+0+d0'0())

— (2n/9) f Aol | T — |24 | Tol 23| Tuo] 2]

= /o) [ otHome? |2 | Sbomy |
o o [T 2. (23)

A factor 3 has been inserted before |T|% to prevent
counting identical final states twice. Note the lack of
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interference between the amplitudes for distinct values
of Tt.

Now we investigate the possibility of determining
the relative phase of the isospin amplitudes. This is
of considerable interest in detecting resonances in the
final-state interactions of two of the three particles.
When an ““isobar” is formed in the final state, one may
expect the total amplitude to contain as a factor the
(resonant) scattering amplitude of the particles forming
the isobar. This has been verified for the important
case of 74N — 27+ N, where the isobar is the 71— N
3—3 resonance.?

For clarity we consider a specific reaction:

y+p—wttrtp.

We contemplate two experimental situations 4 and B.
In case A the «t has momentum p;, the 7~ momentum
p2. In case B the 7~ has momentum p;, the 7+ momen-
tum p,. These situations are described by the amplitudes
(e for even, o for odd ¢)

Ty _(p1,p2)=T°(p1,p2)+T°(p1,p2), (4)
T —(p2,pr) = T°(p1,p2) — T°(p1,p2), (B)

where we have used (17); the meaning of 7 T° can
be seen from (15).

Now if our counters, subtending solid angles d2(d2s),
accepting pions of momentum p;(p.) cannot distinguish
't from 7~, we measure

3(doatdog)= Qu/0){[T[*+|T°[*}dp,

so we cannot say anything about the even-odd ¢ phase
difference.

However, if we can distinguish #t from 7~ (or #t#°
in the reaction y+p — 7t47°+#x) then we can form
the difference:

2(doa—dop)= (2x/v)2 Re[ T*T*]dp
=(4wdp/v) 3 arara|Mrd|

TT'j5’,t=0,2

X | Npi?’ | cos(dps?—drn?"),

(24)

(25)

(26)

(27)

where we have written Mg/= |Mr,?| exp[4dr:/] with
j=S or V. The meaning of (27) is that, if the kinemat-
ical conditions are varied so that, e.g., the odd ¢
amplitude goes through a resonance (as would be the
case for a final state =1 r—x “isobar”) and the even
¢t amplitude does not, then the cosine will vary rapidly.®

III. PION PRODUCTION BY PIONS

Before discussing the content of Eq. (27) we consider
the analogous results for reaction (2). Corresponding
to Eq. (3), the production amplitude for the process

5 One must avoid the special arrangement in which p; and p.
have equal magnitudes, and lie at equal angles (from the beam
direction) in a plane parallel to the heam direction. For this case
dﬂ'A=d0'B.
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(2) has the decomposition?
(paqr'm' | T|kyrm)= 3 ari(eBy,'r) Tr(pg k), (28)
Tt

where k is the momentum, v the charge state, of the
initial pion. The other symbols have the same meaning
as in Eqg. (3). The nucleon spin dependence has been
suppressed in the four isospin amplitudes Tjo, T31, Ty,
T3,. The constants ar, are given by?

ari(eBy,m't)=C(11t; af)C (KT ; a+p7')
XCA3T;v7). (29)
Values of ar; for the n*—p reactions are given in
Table II. Corresponding to (17), we have
Tr(pg,k) = (—1)"Tr:(qp,k). (30)

The angular momentum analysis'™® of the amplitudes
T'r¢(pq,k) is similar to the isospin decomposition.

Now define the phases 67:(pg,k) of the production
amplitudes by the equation

Tr(pg,k)=7r.(pqk) exp[idr.(pq,k)],  (31)

where 77, is a positive real number, the amplitude
Of TT:.
The differential cross section is of the form (18), so

A0 Aszo31 cosE
Aoy cos§ Aun
A1 cos(E+) A1 cosn

Aoz cos(E+n+5)  Agge cos(n+5)

If desired, the five proton-pion reactions may be
identified by the charge of the final pions. Then the
total cross section for zt—p {n~—p} single pion
production is proportional to

Tr[M o +3M T My +M_o+35Moo]},

where Tr denotes the trace.

The simplest reaction is of course #t4p — at+7+
+n. Only Asee=%T3,% is non zero in this case. For a
specific pgk, T3, is found from

doy = (2n/v) 3T dp.

From the reaction #t4p — #7474, one may find
T3 and cos(8s;—032) =cos{. Recalling Egs. (25)-(27)
we have

3 (doso?+doso®) = 2n/0) 3T+ 16T 3" dp.

T3, follows from (38) once T2 has been found from (37).
The magnitude of the phase difference { is found from

(37

(38)

3 (doyo* —doyo®) = — (2/0) TnTy2 cosdp/ (S)%. (39)

Eq. (39) gives two possible solutions {==|¢|. Then
from the relations
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we are led to consider the absolute square of (28) (for
a given set of values of afy, 7'7)

|T|2= Y Ag¢rre cos[ore—0rre]; (32)
T
Arsrrv=apar e Trd e (33)

It is of interest to investigate ways of determining
the amplitudes 77; and phases ér;. Only the relative
phases occur in (32) so the best we can do is to determine
the four amplitudes 77, and three relative phases.
Making the definitions '

(34)

the remaining phase differences are given by
830—051= &+,
dy1—08g=n+{,
d30—0g0= E+nt{.

With the definitions (33)-(35), (32) is given by the sum
of all the elements in the symmetrical matrix M :

(35)

Ao COS(E+"7) Ao COS(E‘*"?‘H‘)

Ay cosn Az cos(n+¢) (36)
Anp Ajz1gs cos{
Ajizq cost Asoso

Yot tdos®) 2 1
=TTy
dp 9" 18
2 1
+-T31T3 cosn+—T?,  (40)
9 10
% (do‘_oA - d(T—OB)

=[2741732 cos(n+¢)
dp

T Ty cost/I3(5)H],  (41)

one can find solutions for 731 and 7, for each of the two
signs of {. Note that the sign of 5 is coupled to the
choice of ¢: if { — —¢ then n — —7 gives a solution.
Rearranging (40) and (41), dividing (41) by (40)
gives tang= f(7}312), where f is of the form
a—blc—Tu®)™.

Substitution into (41) then gives a cubic equation for
T3:2. The requirement that 773 be real and positive
excludes negative and complex values of 732, although
a priori it appears that one cannot exclude multiple
solutions. In a similar way one can find values of T}
and £ which satisfy the relations

3(doy _A+doy _P)/dp
= (1/9) {2713.()2 + T%12+%T%22+ T%IZ_ 2‘]}17‘%1 COosn

—2(3) T y2 cos((+n+0)}, (42)
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3(doy. A—doy _B)/dp
= (2/9){— (2)}T30T 1 cost+ (2)*T30T 1 cos(E+n)
+ (5) T3 cos(n+) — (5) #3172 cost )

The set of solutions (in general nonunique) generated
by Egs. (37)-(43) could be tested for consistency by
the experimentally difficult process 7+ — 7%+n'+n:

Odoo/dp=Tii+3T 12+ 2 1uT s cos(E-Hnti).  (44)

Recently it has proved possible to measure the fofal
cross section for reaction (44).8

Despite the nonuniqueness of our solutions, the
latter should provide interesting information about
the dynamics of the production process.

The total cross sections for single pion production are

(43)

sot(m—p)=3(o30t o) +E(ontop),  (45)
got(mt—p)=%(opto32), (46)

where the partial cross sections are given by
o= (Zw/v)fffm?dp. (47)

IV. REMARKS

The isospin amplitudes are of considerable intrinsic
interest. There is another possible application of our
results, however. It will be recalled that the quantity
(doa—dop) is particularly sensitive to the phase
difference between the even and odd = — 7 isospin states
[cf. Egs. (27), (39), (41),and (43) ]. Now, if the formation
of an “isobar” (either 7w or #N) in the final state is
predominant, the phase of the total amplitude varies
rapidly as the c.m. energy of the isobaric constituents
passes through the resonance energy. This variation
is reflected in the behavior of (dos—dog). For example,
in the case of the (wV) isobar, we have found that the
total amplitude contains as a factor the elastic scatter-
ing (3—3 state) amplitude.? Further, the =N isobar
does not especially favor either even or odd w—m
isospin insofar as the occurrence (but not the amplitude)
of resonances is concerned. On the other hand, our
coupling scheme emphasizes the dynamical features of
the w— system [besides yielding the simple symmetry
of Eq. (30)].

Two cases are of especial interest. First of all,
suppose the final state is dominated by a =— isobar
(e.g., a t=1 resonance?). In this case a straightforward

6J. C. Brisson, P. Falk-Vairant, J. P. Merlo, P. Sonderegger,
R. Turlay, G. Valladas, Proceedings of the 1960 Annwual Inter-
national Conference on High-Energy Nuclear Physics at Rochester
(Interscience Publishers, New York, 1960).

7W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365 (1959).
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TaBiE II. The coefficients ar; of the isospin amplitudes T'r;
for the 7+p — 274N reactions.

Reaction a0 an an ase
hp o twtte 3@ 3 =3 3(5)
T +p o T +n0+p 0 -3 —3@F —(10)%
7 +p — 0+n"+n 3(2) 0 0 (2/3)(5)%
at4p — rtdadtp 0 0 2)—% —(10)~%
Tt4+p = rttrttn 0 0 0 2/(5)%

(Q-value plot should detect the resonance. The methods
of the present paper could then be used to identify the
resonant isospin state, and also to verify the rapid
change of phase associated with the resonance. Secondly
it may be desirable to segregate the single pion exchange
contribution®® to the reaction (2) from the total
amplitude. This separation is expected to be difficult
in the resonance region (0.5<E,<1.5 Bev) because of
the frequency of =V isobar formation (in this energy
range the energy of at least one of the final pions can
be near the 3—3 resonance energy). Therefore it is
necessary to choose kinematic conditions carefully.
Note that in the measurement of do 4 —dop the relative
m—N energy for a pion of given charge is not the same
for conditions 4 and B. Therefore the conditions
specified by Drell and Zachariasen® are not satisfied,
so that one must attempt to avoid the #— NV resonance
region for both the final pions.

Finally we remark on the interesting features of the
reaction 7#7+4p — 7~ +7+p near a Bev incident pion
lab energy. Recently Pickup, Ayer and Salant,* and
Rushbrooke and Radojicic!? reported the existence of a
sharp peak in the Q. spectrum. However the reaction
7+ p — 7 +nt+n shows no such peak," but behaves
as expected from the (r—N) isobar model. This
behavior can be understood easily if the formation of a
(m—) t=1 isobar occurs in the final state. In this case
one expects the amplitudes 7'y; and Ty to have roughly
equal amplitude and phase. From Table II it is then
seen that for #=+p — o +at+n the {=1 amplitudes
cancel, while for #7+p — 7%} the interference
is constructive in the =1 states. Therefore the apparent
fact that the (r—m) isobar dominates the final state
in the reaction m#~+p — wt+47°4p while the (7—N)
isobar dominates 7+p — 7 +xt+# is simply under-
stood in terms of interference between the (7%)= (31),
(31) states.

8 C. J. Goebel, Phys. Rev. Letters 1, 337 (1958).

9 G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
( 10 3) D. Drell and F. Zachariasen, Phys. Rev. Letters 5, 66
1960).

U E. Pickup, F. Ayer and E. O. Salant, Phys. Rev. Letters 5,
161 (1960).

2 J. G. Rushbrooke and D. Radojicic, Phys. Rev. Letters 5,
567 (1960).



