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Production of Pion Pairs Isospin Analysis
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The reactions y+N —+2~+N and ~+N ~ 2~+N are analyzed in terms of the relevant isospin
amplitudes. An experiment is suggested to measure the phase difference between even and odd m —7f isospin
states, with a view toward detecting a resonance in the m —w system. The experimental determination of
the magnitude and phase of the amplitudes for the second reaction is discussed.

INTRODUCTION

' 'N the first two sections of this paper we are concerg. ed
~ ~ with the photoproduction of pion pairs. The
interpretation of observed charge state ratios and
angular distributions in the reaction

is greatly facilitated by expressing the amplitude in
terms of the relevant dynamical variables. The phenom-
enological analysis of (1) involves both the isospin and
angular momentum decomposition of the production
amplitude. Here we are concerned with the charge
state ratios and so consider only the isospin dependence
of (1).The angular momentum analysis of (1) has been
given by Peierls' and Ciulli and Fischer. ' Of course the
isospin is not conserved in (1); however, photons
violate isospin conservation in a well-known way. By
this we mean that the interaction inducing the reaction
(1) transforms in a known (simple) way under rotations
in isospace.

If we let the initial nucleon N in (1) be either a
proton or a neutron, then there are six possible reac-
tions. It turns out that the isospin analysis requires six
independent matrix elements. Therefore isospin conser-
vation does not play so dramatic a role as in the reaction

nucleons. The nucleon momentum is given by momen-
tum conservation. The index n goes with p, P with q.
m= 1, 0, —1 refers to a positive, neutral, negative pion,
respectively. r=2 (——,') describes a proton (neutron).
We use the following coupling scheme: First add the
isospin of the two pions to get isospin t; then add this
to the nucleon isospin to get total isospin T. The
restrictions of Bose symmetry are simplest in this
coupling scheme. Clearly, in the final state, for T=-,'
only t=0, 1 are allowed; for T=2 only t=1, 2.

We are now going to prove that the transition
amplitude T for reaction (1) may be written as follows:

(pnqpr'm'
~

T
~

krm)

= p nrem'(npr'r)mri&(yq, k; m'm). (3)

The index j stands for 5 (scalar) or V (vector), as will
become clear presently. The "scalar" amplitude occurs
for T=-,' only. The amplitudes AT&& may be subjected
to an angular momentum and multipole decomposition,
but we shall not do that here. The coeKcients are just
constants, containing all the charge state information.

In the "one-photon" approximation the left-hand
side of (3) is

m+E —+ 2rr+E, (2) %(—& pn, w'm' j x A xdaxC 7m . 4
in which four isospin amplitudes describe ten possible
processes. The isospin analysis, besides being the
first step in any "fundamental" dynamical calculation,
is also useful for the interpretation of experimental
results in terms of simple models. Details of the con-
struction of a dynamical theory for the process (2)
may be found in a recent work by the author. ' In Sec.
III we discuss reaction (2).

In Eq. (4), q '(pnqP, r'm') is a physical eigenstate of
the 2x—E system obeying the incoming-wave boundary
condition; @(rm) represents a physical nucleon. j(x)
is the charge current density giving rise to the photon
field. A(x)=exp(ik x)/(2k)*' is the vector potential
of the electromagnetic field. LEq. (4) does not take into
account virtual photons or the direct 2y —2m coupling.
Either of these processes can induce isospin changes
d, X=2 or greater. However such processes involve
extra factors of e so that the error made is expected to
be of the same order as that caused by x+—m' mass
diGerence, etc., leading to the violations of charge
independence in the final state. )

In this approximation one has

I. THE PHOTOPRODUCTION AMPLITUDE

We use the following notation: k is the photon
momentum; p, q are the momenta of the final pions;
n, P are the charge indices of the final pions; r, r' are
the charge indices of the initial and final nucleons;
and m, m' are the spin projections of the initial and final

*National Science Foundation Postdoctoral Fellow.' R. F. Peierls, Phys. Rev. 111, 1373 (1958).' S. Ciulli and J. Fischer, Nuovo cimento 12, 264 (1959).
3 P. Carruthers, Ann. Phys. (to be published).
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where js transforms like a scalar in isospace (i.e. it is
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invariant under rotations and conserves isospin:
AT=0) and j„ transforms like the 3-component of a
vector in isospace (i.e., transforms like the coordinate s,
and gives rise to AT=0 or 1). Therefore we write the
interaction term as follows:

S (X=M=0 in (12)]

For the isovector part Va $L= 1, M=O in (12)]

(13)

j Ad'x=—S+U3,

(6)

m„v=C(-,'1r -'0)x, v x„v=—&c„IIV,llq (T——,)),
gg~ v (3)—,'~, iv Dlt', iv (2/3), 01,,iv (14)

S=——
) je Ad3x; V3—=— t jv. Ad'x.

Suppressing the pion momenta and nucleon spin, we
have the problem of finding the matrix elements

Eqs. (11), (13), and (14) thus give

&pnqPr'm'I 2'lkrm)= P n;&(nPr'r)[K, ,e+~, ,v]
t=0, 1

+ p n.;,(npr'r)m;, v, (15)
t=1,2

&q( p')ls+v I+()). (7)

%(npr') =p.pe&,

Q nr(@rory i
Tt

(8)

(9)

Our considerations depend only on charge independ-
ence and are quite independent of such details of (4) as
"physical state vectors, " and boundary conditions they
might obey, or the precise structure of j(x). The next
step is to express %(npr') in terms of eigenstates of

isospin t and total isospin T. Recalling the
previous discussion, we find (X, is the nucleon isospin
function, Q the pion isospin function)

which is of the form (3). If desired, the reduced matrix
elements Xr,v can be found from (14). Table I gives
the nr, coeQicients for y —p reactions.

Now, according to the Bose symmetry of the pions
it can make no difference which pion is called number
one, e.g. , Lcf. Eq. (3)),

&pnqp" ITlk" &=&qppn" ITlk

The nrem(npr'r) coefficients have parity (—1)' under
interchange of n and P, as may be seen from (10) since
C(11t;nP) = (—1)'C(11t; Pn). LThe 2ir isospin wave
functions are odd (even) under interchange for t=1
(t=0, 2).] In order to maintain (16), the amplitudes
ORr, i(pq, k) must obey Lsee (3)]

nr, =—C(11t;nP)C(t-,'T; n+Pr'). (10) ~„'(pq,k) = (—1)9Er, (qp, k). (17)

C nr, is the 2m —S isospin eigenstate of the indicated
variables. The notation of Rose4 is used for the Clebsch-
Gordan coeKcients. On using (9), Eq. (7) becomes

This symmetry is useful in sorting out the contributions
of the different isospin channels.

II. CROSS SECTIONS FOR PHOTOPRODUCTION
&q'(nP ') IS+V, lq'( ))

Using box normalization, setting the volume equal= Znri&c'r'r~lS+Valq'(T=2~ T~=r)) (11) to unity, the differential cross section is
Tt

Now, a basic theorem in the theory of angular
momentum (Wigner-Eckart theorem') states that the
"magnetic" quantum number dependence of matrix
elements between eigenstates of J and J' of any
quantity that transforms under rotations (in isospace,
for our problem) like a "spherical tensor" (i.e. like
spherical harmonics) is contained entirely in a Clebsch-
Gordan coeKcient. Denoting the spherical tensor
operator by Ti,~, the theorem says (j, m are the
aforementioned angular momentum quantum numbers)

&j
'm'I 2'~~PI»=C(j Ij ' m~)& j'112'~ll j) (12)

where the "reduced matrix element" (j'll Tr, ll j) is
imdeperidelt of m, m' and 3II. For proton reactions we
have T,= T,'= ~. For the isotopic scalar operator

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley R Sons, Inc. , New York, 1957).

d"pd Q
de. =—

I T I '6(co +(u +E' k E)——
V (2~)'

1 E cd pcoqpg dMydQydQlq
dp=

(2~)' q'(E'+~, )—~,q (q+p~')
(19)

for the phase space density. It should be remarked that
in (18) one generally averages over initial spins and
sums over final spins. Also, one frequently needs to
average over polarization directions of the photon.

Of course, in actual experiments og.e measures an

where E (E') is the initial (final) nucleon energy. The
"Aux" factor v is, for example, in the c.m. system
(1+0/E). Owing to the 8 function one energy integra-
tion can be performed. (Already the nucleon factor
d'p~ has been removed using the total momentum
conservation delta function. ) Writing do = (2ir/n) I

T
I
'dp,

we have
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TABLE I. The coeKcients nz& of the isospin amplitudes 5R&&~

for the y+p —+ 27i-+Ã reactions.

Reaction

7+p ~'+~ +p
y+ p -+ vro+~o+ p
~+p ~ ~++~0+

Clip

(3) '
(3)

—$

0

—(6) ' (3) ' —(&5) '
0 0 —2(15) &

(3) ' (6) ' (3/&0)'

average matrix element

2ll Qp 2'
(—

I
T—

I
')o.~~, (20)

where Ap= J'dp is the phase space accepted in a given
experiment. An average over beam energy is generally
required, as well.

An important consequence of (17) is that even and
odd t terms 5R~~& do not interfere in the total cross
section. This is easily seen from (3) and (18): The
even-odd t interference terms in

I
TI' are odd under

interchange of p and q, according to (17), while the
phase space density Lcf. (18)$ is even under the same
operation.

Before proceeding, we remark on the invariance of
the transition amplitude. The T is (18) is related to the
I orentz-invariant amplitude T;, by the relation

T+-(1 i, 1 ) = T'(1 i,p )+T'(1,1o), (~)
T+-(1 o,1 i) = T'(1 i,po) —T'(1 i,po), (~)

(25)

where we have used (17); the meaning of T', T' can
be seen from (15).

Now if our counters, subtending solid angles dpi(dQ~),
accepting pions of momentum pi(p, ) cannot distinguish
m+ from x, we measure

interference between the amplitudes for distinct values
of Tt.

Now we investigate the possibility of determining
the relative phase of the isospin amplitudes. This is
of considerable interest in detecting resonances in the
final-state interactions of two of the three particles.
When an "isobar" is formed in the final state, one may
expect the total amplitude to contain as a factor the
(resonant) scattering amplitude of the particles forming
the isobar. This has been verified for the important
case of m.+N ~ 27r+E, where the isobar is the 7r —X
3—3 resonance. '

For clarity we consider a specific reaction:

y+p~n++7r +p. (24)

We contemplate two experimental situations A and B.
In case A the m.+ has momentum p~, the m. momentum
y2. In case 8 the z has momentum p~, the m+ momen-
tum p2. These situations are described by the amplitudes
(e for even, o for odd t)

—,'(dag+daii) = (2m/o){ I
T'I'+

I
T'I')dp (26)T=I

I T;„.
(8a)„(uokEE')

(21)

Sometimes one writes (18) in the (equivalent) form

1 )M'q
I I T'=I '~"'(p+v+p~' & p~)——

(2m)'v &8kE)
d p d g d p~

X
—,
' (day —daz) = (2'/e) 2 Re/T'*T']dp

(22)
= (4~dp/v)

ST'g P, ~=O, 2

so we cannot say anything about the even-odd t phase
difference.

However, if we can distinguish 7r+ from m (or or+ad'

in the reaction y+P ~ n.++vro+n) then we can form
the digereece:

Now we consider the influence of (17) on the cross
section. First of all, according to Eq. (15) and Table I,
the total cross section for y+ p ~ 2m+X is simply

a~.~(V+p)

(da+ —+da+ o+dao o)

=(2~/o) dpI:IT —
I +IT+oI +—

I Tool 1

= (&/&)„du{ I &r o +~;ov I '+
I
&1i +OR;ivI '

+ I
~~,v

I
'+

I
~l2v

I
') (23)

A factor 2 has been inserted before
I
TooI' to prevent

counting identical final states twice. Note the lack of

X I~r i'
I

cos(br, ~—&r,~'), (27)

where we have written ORr~~' ——IDENT'I exp[i@~'] with
j=5 or V. I'he meaning of (27) is that, if the kinemat-
ical conditions are varied so that, e.g. , the odd t
amplitude goes through a resonance (as would be the
case for a final state t= 1 m —7r "isobar") and the even
t amplitude does rot, then the cosine will vary rapidly. '

III. PION PRODUCTION BY PIONS

Before discussing the content of Eq. (27) we consider
the analogous results for reaction (2). Corresponding
to Eq. (3), the production amplitude for the process

5 One must avoid the special arrangement in which p1 and p2
have equal magnitudes, and lie at equal angles (from the beam
direction) in a plane parallel to the. beam direction. For this case
dog=do gg.
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(2) has the decomposition'

(pnqtsr'grg'I T
I
kyrgrg) = P arg(ogPy, r'r) Trg (pq, k),

where k is the momentum, y the charge state, of the
initial pion. The other symbols have the same meaning
as in Eq. (3). The nucleon spin dependence has been
suppressed in the four isospin amplitudes T;0, T,,y T,-i,

T;2. The constants aTt are given by'

arg(g4y, r'r) =C(11t;nP)C(t-,'T; cg+Pr')
&&C(1-,' T; yr). (29)

Values of arg for the gr+ —p reactions are given in
Table II. Corresponding to (1/), we have

Trg(pq, k) = (—1)gTrg(qp, k). (30)

The angular momentum analysis' ' of the amplitudes
Trg(pq, k) is similar to the isospin decomposition.

Now define the phases erg(pq, k) of the production
amplitudes by the equation

Trg(pq, k)= Erg(pq, k) expI iggrg(pq, k) j, (31)

where ETt is a positive real number, the amplitude
of TTt.

The differential cross section is of the form (18), so

we are led to consider the absolute square of (28) (for
a given set of values of ggPy, r'r)

ITI'= P Arg. r g cosPrg —br gl (32)

A Tt, T't' =~Tt~T' t '+Tt+T't' (33)

the remaining phase differences are given by

tgrgp egg,'1 $+'gg

gg, i—5;p = it+ t,
;o t'g ;o= $+-r-t+-{.

(35)

With the definitions (33)—(35), (32) is given by the sum
of all the elements in the symmetrical matrix 3f:

It is of interest to investigate ways of determining
the amplitudes VTt and phases 8Tt. Only the relative
phases occur in (32) so the best we can do is to determine
the four amplitudes V"Tt and three relative phases.
Making the definitions

&-;o-&-;i—= 5,

(34)

b;i t'g;p=—t,

A;0;o
A;p;i cos&

Agp, i cos($+gt)
.A ,*p;o cos($+rt+{)

Ago~i cos)

A p&i cosg
A;i;o cos(it+{)

A;p;i cos(&+it)
Ap;y cosg

A;i;p cos{

A;p, o cos($+gt+t')
Agi;p Cos(r/+t )

A,*i;p cos{
A;g, 2

(36)

If desired, the five proton-pion reactions may be
identified by the charge of the final pions. Then the
total cross section for gr+ —p {gr

——p) single pion
production is proportional to

TrLM'+p+ pM++j{TrI 3il+ +M-o+2Mooj),

where Tr denotes the trace.
The simplest reaction is of course or+jp —+m.++gr+

+gg. Only A;&.p
———,V'g&' is non zero in this case. For a

specific pqk, K;p is found from

do++= (2~/&) (l &e')dp. (37)

From the reaction gr++p —+ gr++grp+p, one may find
9";i and cos(gg;i —b;o) = cost'. Recalling Eqs. (25)—(27)
we have

-,'(d "+d o ) = (2 /ig)L-,'v',, '+—,', v', ,'jdp. (38)

p (d++p d++p ) ( 2gr/)~p$i+t& cost dp/(5) ' (39)

Eq. (39) gives two possible solutions {=& I{I. Then
from the relations

9"*,i follows from (38) once 9";o has been found from (37).
The magnitude of the phase difference f is found from

-'(do p"+do ps) 2 1
~11 + +-,'1

dp 9 18

2 1
+—9";i9";icosrt+ —9 *,po, (40)

9 10
&(da' p

—d0 p )—= L2v giT-,*p cos('g+{)
dp

+~-; ~-; - 6/I3(5)'), (41)

one can find solutions for 5;» and g, for each of the two
signs of {.Note that the sign of rt is coupled to the
choice of t' if {~ { then r—t ~ —

gt gives a solution.
Rearranging (40) and (41), dividing (41) by (40)
gives tangt= f(V', io), where f is of the form

a b(c V'ip) '. — —
Substitution into (41) then gives a cubic equation for
K;~'. The requirement that 1";~ be real and positive
excludes negative and complex values of E;~', although
a priori it appears that one cannot exclude multiple
solutions. In a similar way one can find values of 1,,0

and $ which satisfy the relations

p (do+ '+d~+ ')ldp--
= (1/9) {2v';p'+ v', ,'+-,'1;P+v';i' —2V';iv;i cosset

—2(-')'&-:p&-:o cos(&+&+V)) i (42)



PRODUCTION Ol PION PAI RS —ISOSP I N ANALYSIS 1953

s (da+ "-«-+ ')-/dt
= (2/9)( —(2)'1 &pl|i cos$+ (2)*V 'pV &r cos($+rl)

+(5) '*&-:r&-;s cos(n+f) —(5) &-:r&-:s cosH (43)

TABLE II. The coeScients az t of the isospin amplitudes Tz f,

for the 7l-+p ~ 2'-+N reactions.

Reaction

The set of solutions (in general nonunique) generated
by Eqs. (37)—(43) could be tested for consistency by
the experimentally difficult process pr +P -+ prP+prP+e:

9dopp/dp= Vip +ales +2(p)tV lpga ss cos($+rt+f). (44)

:+p +"'+n
7l- +p —+X +21-0+p
7r +P —+ 7t.0+7'.0+n
7l.++p —+ m++7l-0+ p
7l-++P —+ ~++~++n

—3(2)'

—:(2)'
0
0

—'(2)''
0
0
0

1
3

-l(2) '
0

(2) k

0

0~0&, &—
where the partial cross sections are given by

a r,=—(2s/s) WrPdp. (47)

IV. REMARKS

The isospin amplitudes are of considerable intrinsic
interest. There is another possible application of our
results, however. It will be recalled that. the quantity
(do.~—do.n) is particularly sensitive to the phase
difference between the even and odd m. —m. isospin states
(cf. Eqs. (27), (39), (41),and (43)j.Now, if the formation
of an "isobar" (either prvr or prS) in the final state is
predominant, the phase of the total amplitude varies
rapidly as the c.m. energy of the isobaric constituents
passes through the resonance energy. This variation
is reflected in the behavior of (da.@—do ~). For example,
in the case of the (zN) isobar, we have found that the
total amplitude contains as a factor the elastic scatter-
ing (3—3 state) amplitude. ' Further, the prS isobar
does not especially favor either even or odd x—x
isospin insofar as the occurrence (but not the amplitude)
of resonances is concerned. On the other hand, our
coupling scheme emphasizes the dynamical features of
the pr —z system [besides yielding the simple symmetry
of Eq. (30)].

Two cases are of especial interest. First of all,
suppose the final state is dominated by a x —m. isobar
(e.g. , a t= 1 resonance"). In this case a straightforward

' J. C. Brisson, P. Falk-Vairant, J. P. Merlo, P. Sonderegger,
R. Turlay, G. Valladas, Proceedings of the 1960 Annlul Inter-
national Conference on H~gh-Energy Nuclear Physics at Rochester
(Interscience Publishers, New York, 1960).' W. R. Frazer and J.R. Fulco, Phys. Rev. Letters 2, 365 (1959).

Recently it has proved possible to measure the /otal
cross section for reaction (44).'

Despite the nonuniqueness of our solutions, the
latter should provide interesting information about
the dynamics of the production process.

The total cross sections for single pion production are

a ...(pr —P) =-', (o,p+o *,i)+-', (a;i+a,*p), . (45)

Q-value plot should detect the resonance. The methods
of the present paper could then be used to identify the
resonant isospin state, and also to verify the rapid
change of phase associated with the resonance. Secondly
it may be desirable to segregate the single pion exchange
contribution' ' to the reaction (2) from the total
amplitude. This separation is expected to be difficult
in the resonance region (0.5&8 &1.5 Bev) because of
the frequency of prX isobar formation (in this energy
range the energy of at least one of the final pions can
be near the 3—3 resonance energy). Therefore it is
necessary to choose kinematic conditions carefully.
Note that in the measurement of do.~—d(T~ the relative
pr —X energy for a pion of given charge is not the same
for conditions 3 and B. Therefore the conditions
specified by Drell and Zachariasen" are not satis6ed,
so that one must attempt to avoid the x —X resonance
region for both the final pions.

Finally we remark on the interesting features of the
reaction pr +p~ pr +z.p+p near a Bev incident pion
lab energy. Recently Pickup, Ayer and Salant, " and
Rushbrooke and Radojicic" reported the existence of a
sharp peak in the Q spectrum. However the reaction
z. +p —+ vr +pr++rc shows no such peak, "but behaves
as expected from the (z.—iV) isobar model. This
behavior can be understood easily if the formation of a
(z.—pr) t= 1 isobar occurs in the final state. In this case
one expects the amplitudes T;& and T;.& to have roughly
equal amplitude and phase. From Table II it is then
seen that for z +p —& z +~++a the t=1 amplitudes
cancel, while for pr +p-+ pr +prp+p the interference
is constructive in the t= 1 states. Therefore the apparent
fact that the (pr —pr) isobar dominates the final state
in the reaction z. +p —+ pr++~p+p while the (vr —1V)
isobar dominates z. +p ~ 7r +pr++rs is simply under-
stood in terms of interference between the (Tt)= (—', 1),
(-,'1) states.

' C. J. Goebel, Phys. Rev. Letters 1, 337 (1958).' G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
'0 S. D. Drell and F. Zachariasen, Phys. Rev. Letters 5, 66

(1960)."E.Pickup, F. Ayer and E. O. Salant, Phys. Rev. Letters 5,
161 (1960).

'-"j.G. Rushbrooke and D. Radojicic, Phys. Rev. Letters 5,
567 (1960).


