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It is proved that no infinities appear in the power series expansion of the S matrix in quantum electro-
dynamics if one uses an improved perturbation procedure which is based on the following property of all
renormalizable 6eld theories. The dependence of solutions on the coupling constant has a singular part,
nonanalytic at g =0.This singular dependence must be treated exactly, whereas the remaining, nonsingular,
dependence can be expanded into a power series. This power series coincides with the standard renormalized
expansion. All renormalization constants in every order remain 6nite, provided their singular dependence
on the coupling constant is treated exactly. The problem of convergence of the whole series has not been
investigated.

I. INTRODUCTION part of the functions of e. The renormalization con-
stants, in every order, depend critically on e; all
divergencies, from which standard perturbation theories
suffer, are caused by the improper expansion of these
constants in terms of e, as will be shown later.

In Sec. II, features of the cutoG renormalization
procedure, which are important for the discussion to
follow, are brieRy reviewed. Section III is devoted to
the investigation of a simple mathematical model. This
model is treated both by the standard and by the
modified perturbation theory. In this elementary case
the essential differences of the two methods are clearly
displayed. The modified perturbation theory in quan-
tum electrodynamics is introduced in Sec. IV and in
Sec. U its physical content is discussed.

,
'HE problem of divergencies in quantum field

theory is as old as the theory itself, None of the
usual methods, which lead to finite renormalized
perturbation expansions, remove infinities completely.
Merely the relations involving renormalization con-
stants are systematically avoided.

In this paper a new perturbation expansion is
introduced. The properties of this modified perturbation
expansion may be summarized as follows: (a,) The
initial Lagrangian remains unchanged, i.e., there is no
cutoff. (b) No infinities appear' in the perturbation
expansion. All renormalization constants are finite in
every order. (c) For all finite values of energies, the
renormalized results (renormalization is finite) coincide
with the old ones.

The modified perturbation expansion is based on the
following conclusions which can be drawn from Dyson's
classical paper. ' Finite values of all renormalized
Green's functions indicate that these functions can be
expanded into power series in e, which are at least
asymptotic. On the other hand, the infinite values of
renormalization constants suggest that the dependence
of these constants on e is singular at e=0. The non-

analytic character of quantum electrodynamics at e= 0
has been conjectured long ago by Dyson. ' Recently
this problem was investigated by Redmond4 and
Frautschi' in connection with the renormalization group
and spectral representations.

The purpose of this paper is to show explicitly that
all solutions in quantum electrodynamics are singular
at t, =0. It will be proved, moreover, that no infinities

appear in every order if one treats the dependence on
e of all renormalization constants exactly and uses a
perturbation expansion only to evaluate the analytic

II. THE STANDARD PERTURBATION THEORY

The basic property of all renormalizable field theories,
which allows of finite results in the standard pertur-
bation theory, consists in that all divergencies appear
only through renormalization constants. One may then
either introduce a cutoG into the initial Lagrangian, '
or treat some intermediate expressions as finite func-
tions, although they are in fact meaningless. There is
no basic diGerence between these two methods, the
former being simply a more satisfactory form of the
latter. Both will be called the cutoG perturbation
expansions.

There are two disadvantages to the cutoG procedure.
(a) The theory with a cutoff is different from the
original one. (b) The final operation of removing the
cutoff, with all infinities compressed into the physical
parameters, is unsatisfactory from the mathematical
point of view. The recent method' of treating products
of distributions as finite but undetermined functions is
an alternate description of what is done in the cutoff

rocedure, rather than a solution of difhculties. Finally,
here is the method due to Xishijima' who was able to

6N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Pzelds (Interscience Publishers, Inc. , New
York, 1959).

7H. Bremermann, preprint; J. G. Taylor, Nuovo cimento 17,
695 (196O).

K. Nishijima, Phys. Rev. 119, 485 (1960).

*A short account of the present work appeared in Phys. Rev. pLetters 5, 584 (1960).
t On leave of absence from Warsaw University, Warsaw,

Poland.
' It is assumed that the infrared divergencies are removed by

the usual procedure.
2 F. J. Dyson, Phys. Rev. 75, 1736 (1949).
3 F. J. Dyson, Phys. Rev. 85, 631 (1952).
P. J. Redmond, Nuovo cimento 14, 771 (1959).

' S. C. Frantschi, Progr. Theoret. Phys. Japan 22, 882 (1959l.
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arrive at renormalized Green's functions without even
mentioning the renormalization constants in inter-
mediate steps. However, this method lacks a direct
connection with the Lagrangian formulation and is
rather complicated. All three methods differ only in the
derivation of the final results. The renormalized pertur-
bation expansions are in all cases the same and all
methods share their main defect: The Lagrangian and
the 5 matrix appear, in a sense, as complementary
quantities. If one is made finite, the other becomes
infinite. There is no substantial difference between the
cutoG procedure and the remaining two methods. In
the cutoG perturbation theory all steps are exhibited
explicitly, whereas Nishijima and also Bremermann
and Taylor ingeniously avoid dangerous places. There-
fore, the present method will be compared with the
cutoG procedure as the most complete version of the
standard perturbation theory. For the purpose of this
comparison, the following three operations which
characterize the cutoff method are singled out.

(a) The expression for the scattering matrix is
changed by introducing a cutoG A. When A tends to ~,
the new 5 matrix approaches its initial form.

(b) 5 is expanded into a power series in e. All terms
are finite, provided the cutoff is kept finite. The
dependence on A. of every term has the following
properties. All renormalization constants (and only the
renormalization constants) depend critically on A,
becoming infinite when cutoff is removed. The depend-
ence on A. of the renormalized Green's functions is
nonsingular. They have finite limits when A tends to ~.

(c) Finally, the experimental data are invoked to
replace the singular functions of the cutoff by known
finite parameters. The remaining dependence on cutoff
is removed by letting A tend to .

In the next section these three operations are per-
formed on a simple model, which then is also treated
by the method introduced in this paper.

III. ILLUSTRATIVE MODEL

Let us consider the function F(X,p) defined by the
following integral

quantum electrodynamics can be easily applied to this
model by replacing the original function F(X,p) by a
cutoff function Fo (lI„P),

F(X,P)=F0(X,P) in p. (3.3)

The power series expansion in A, of Iio, is a sum of
convergent integrals. When these integrals are evalu-
ated it is found that Fe(X,p) has the form"

n=p

+ Q 0"F (l~,p). (3.4)
m=1

Suppose the value of the function F(X,p) is known at
one point. This assumption corresponds to the intro-
duction of the experimentally observed quantities into
the perturbation expansion in quantum electrody-
namics. The singular part of (3.4), 0 'F i (X/0), can then
be replaced by one finite constant, to be determined
from "experiment. " The final form of the function F,
obtained with the use of cutoff procedure, is

F(~ P) =&+ Z l "f-(P) (3 5)

The three sets of terms in (3.4) correspond, respectively,
to the renormalization constants, to the renormalized
Green's functions, and to the corrections to these
functions for finite values of the cuto8.

A perturbation theory will now be introduced which
gives finite terms in all orders, without any modifica-
tions in the original function F(X,p). First, let us write
our integral in the form

F(X,p) = " exp( —Xx) exp( —Xxy cos'px)dx. (3.6)

Fg(X,p) = exp( —Ox)

)&expL —Xx(1+y cos'Px) jdx, (3.2)

exp[ —Xx(1+y cos'px)$dx, (3.1)

where y, X, and p are real parameters and ~y~ (1.Let
us assume that the p dependence of the function F for
small positive values of X is to be investigated. In this
model, the p dependence represents the physical infor-
mation and X is the coupling constant. The improper
expansion of (3.1) into the power series of X produces a
series of infinite integrals, just as the usual perturbation
procedure does in quantum electrodynamics. The
integral (3.1) will now be evaluated using both the
cutoG method and the modified perturbation expansion.

The standard method of dealing with divergencies in

The dependence on X in the first exponential is singular
whereas in the second it is not. Therefore, this integral
may be expanded into a power series of the form

(—1)"X"y" p"
F(X,P) = P exp( —Xx)x"cos'"Pxdx (3.7)

n=p dp

which contains only finite terms. integration of (3.7)
results in

00

F(l,P) = f i+ Z li"f-(P)--
n=p

"Noke added in proof. —The author is indebted to Dr. A. Katz
for pointing out an error in the original manuscript.
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where the coefficients f„(p) are identical with those
obtained in (3.5). Since f i is well determined no
extraneous constant need be introduced. Comparing
(3.8) with (3.4), one can see why the "renormalization
constant" 0 'F iP./0) is a singular function of the cutoff
0. This is due to the singular dependence of the first
term in (3.8) on A. The principal idea of the modified
perturbation expansion consists in the separation of
the X dependence into the singular and nonsingular
parts in such a way as to allow an exact treatment of
the singular dependence.

equations,

( 8 ) (
1—A

—
2( i7 ——m

) ( iy ——m )P(x)=O. (4.6)
ax i E Bx )

S~(p) =
m —Vp m —A—yp m+4 —yp

(4.7)

The tf(x) fields depend on e through A, and this de-
pendence will be treated exactly. The propagator for
the g field has the Pauli-Villars structure,

IV. THE MODIFIED PERTURBATION THEORY
IN QUANTUM ELECTRODYNAMICS

As indicated by the results of the previous section,
to get a finite perturbation expansion the singular and
the regular dependencies on the coupling constant must
be separated out and the singular dependence must be
treated exactly. This can be accomplished by separating
the total Lagrangian into the free and the interaction
parts in a special way. The free Lagrangian will be
written as

(Lo=4] iy —e
/

1—A —'J iy —e—
I

gx ) ( gx )
+ ', A„aA&.-(4.1)

The interaction Lagrangian is then equal to

Lz=eZ2fiy AiP+fmZg~+(Z2 —1)P~ iy —m—~f
ax

(.+ ', (Z 31)A„-A&+h. 'p~ iv —m
~
f. (4.2)—

ax

All fields and charge in (4.1) and (4.2) are renormalized.
This separation was found to be the most convenient
for the present discussion. However, it is by no means
the only one leading to a finite perturbation expansion.
The quantity A ' will be chosen either as

(4 3)
or as

As can be easily verified, the 5 matrix expanded into
the power series in L,z contains only finite terms.

Let us now consider the first case in which terms up
to the Sth order are to be evaluated. This whole power
series depends on e not only directly, but also through
A. The dependence on A. of all renormalized results is
analytic at A'= ~. The zeroth-order term in A repro-
duces the usual renormalized functions. All higher-order
terms in 1/P, ' are negligible in view of the chosen
dependence of A on e. All renormalization constants and
the mass renormalization depend on A, and hence on e,
logarithmically. To evaluate these constants, the entire
series must be summed up because higher terms are of
the same order of magnitude as the lower ones. The
second choice of A, (4.4), allows us to write down the full

asymptotic series in e. After renormalization, finite in
every order, it coincides with the usual renormalized
perturbation expansion. The higher terms in 1/A.' now
have vanishing asymptotic expansion. To evaluate the
renormalization constants, the summation of all leading
diagrams is again necessary.

The separation of the Lagrangian, proposed in this
section, is rather artificial. It has no physical meaning
and is introduced as a mathematical device only.
However, one should expect that this procedure could
be improved by using a self-consistent method. For
example, one may take the propagator Sp and Dp to
include all radiative corrections. This gives finite
results, at least in quantum electrodynamics, provided
we reject the contribution from complex poles. This
problem will be discussed in another publication.

A-'=m ' exp(1/e') (4 4) V. DISCUSSION

depending on whether the perturbation expansion up
to an order X, or the asymptotic series, is to be evalu-
ated. The 5 operator has the usual form, '

(S=T exp( i Lz(x)zlx I,i) )' (4.3)

'A consistent way of treating the derivatives in I.I and the
higher order field equations is presented in the Appendix.

but the interaction Lagrangian in the exponent is
built up from tP fields which satisfy the modified free

The failure of all previous attempts to get a finite
perturbation expansion was caused essentially by
attributing unjustified physical reality to virtual parti-
cles. These virtual particles were assumed to have
propagators of the free physical particles even for
momenta lying far from the mass-shell values. This
assumption has no physical basis. One is entitled to
require the propagator of the virtual particle to become
the propagator of the free particle with a physical mass
only near the physical region, p'=m'. The notion of
the virtual particle, with momentum far from this
region, is a purely mathematical concept introduced by
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the perturbation procedure. From the physical point
of view, there are no grounds on which to object to
indefinite metric for virtual particles; in the present
approach they do contain components with negative
metric. The final and initial particles, however, show
no trace of indefinite metric, in every order of pertur-
bation theory. This is due to the fact that the initial
Lagrangian describes a system with positive definite
metric.

There still are many questions which remain to be
answered. The"most interesting of these concerns the
values of the renormalization constants. To answer
this question, one must sum up the whole series,
including at least the leading terms. "The problem of
values of renormalization constants" cannot be solved
without full examination of the renormalization group
and high-energy limits in the modified perturbation
expansion. The problem of higher orders is also crucial
in applications of the modified perturbation expansion
to nonrenormalizable theories.

equations of motion, physical particles, etc., may be
disregarded; one then may concentrate on the evalu-
ation of the integral (A1). Besides, this form of the
quantum field theory can be treated in complete
analogy with the model of Sec. III. Here, as in Sec. III,
we have an exponential function under the sign of the
integral, whose straightforward expansion into the
power series in e produces a series of divergent terms.
Looking for a separation of the exponential in (A1)
into singular and nonsingular parts, we must bear in
mind that the only functional integral amenable to
evaluation is the one containing at most a bilinear
combination of fields in the exponent. Thus, the
Lagrangian Lo will be chosen in the form

)~Lp(x)dx= ~it(x)5s '(x—y)P(y)dxdy

r
A„,.(x)A~ "(x)dx, (A3)
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APPENDIX

In the functional formulation of quantum field

theory, " the basic role is played by the vacuum expec-
tation value Z{rt,r),J„}of the 5 operator in the presence
of external sources. " All Green's functions can be
derived from Z by functional diGerentiation. The
concise expression for the Z functional can be written
as a functional integral over fields,

m

+ P ns(e)1 iy 15(x—y), —(A4)
ax)

and the coefficients nt, (e) need not be specified now. It
will be assumed only that m&~3, in order to get finite
terms in perturbation expansion. Expanding the inte-
grand into the power series in LI——L—Lo a series of
the following integrals results:

Z f rt, r),J„}

gg8A„exp i )L(x)+L,(x)jdx, (A1)
J J

r

Z„(r),r),J„}= +8/82„dxr. dx Lz(xr) .Lz(x„)
4

Xexp i (Lp+L )dx . (A5)

where L(x) is the usual Lagrangian 'of quantum electro-
dynamics and L,(x) is the Lagrangian of the interaction
with sources,

L, (x) =P(x)ri(x)+rt(x)P(x)+2 "(x)J„(x). (A2)

The advantage of the functional formulation, for our
purposes, resides in the fact that once the expression
(A1) has been written down —commutation relations,

'0 For example, one may use the summation procedure, intro-
duced by Landau et al LL. D. Landau, A. A.. Abrikosov, and
I. M. Halatnikov, Doklady Akad. Nauk S.S.S.R. 95, 497, 773,
1177 (1954).g"It may happen that these constants are after all arbitrary.

"K.Symanzik, Z. Naturforsch. 9, 809 (1954).
'3 The notation of a previous paper t I. Bialynicki-Birula,

Nuovo cimento 17, 951 (1960)) is used here.

r
4(*)~ 0(x)— ~~(x—y)dy n(y),

A„(x) -+ A„(x)— Dz (x y)dy J„(y). —
(A6)

"P.T. Matthews and A. Saiam, Nuovo cimento 2, 120 (1955).

All these integrals can be obtained from the simplest
of them, i.e., from Zo, by functional differentiation
with respect to p, q, and J„.To evaluate Zo one may
use the method of Matthews and Salam" or simply
shift the origin of coordinates in the space of functions

P, 1(, and A„,
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The result is

Zs(rt, rt J„}=1V exp i Jt r4(x)Sir(x y)r—t(y)dxdy

form"
(1 5 1 5 1 5

Z{v,n,J,}=«p i
~

I.r( —,—,— ~dx
&i 5&(x) i 5&(x) i 5J„(x))

)&Zp(rt, rt,J„}. (Ag)

where

fE= bfbpbA„exp i i~ Io(x)dx .

The total Z can be written in the following symbolic

+ ',i -J„(x)D&(x y) J—"(y)dxdy, (A7)
It can be seen that the usual diagram technique can be
applied here with all fermion propagators replaced by
5& and the interaction Lagrangian replaced by L,I. The
specific form of S~ is irrelevant as far as general rules
of obtaining the perturbation expansion are concerned.
"P. J. Redmond, Phys. Rev. 105, 1652 (1957).
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A noncanonical transformation which allows perturbative techniques to be applied to the pairing force
problem is introduced. The lowest-order eigenvalue equation gives the standard results for both strong
and weak coupling.

61c=c A, &CIcg, (2)

and where the CI„, c~,t are Fermion annihilation and
creation operators:

(tea„ca. (~=0; [ca„ca.;tjr=ha, a 5, , (3)

From (1) it is clear that unpaired particles do not

* Supported in part by the U. S. Atomic Energy Commission.
' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).
N. N. Bogolyubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34,

65 (1958) Ltranslation: Soviet Phys. —JETP 34, 41 (1958)g.

~ 'HE theory of the eRects of pairing forces developed
by Bardeen, Cooper, and SchrieRer' and by

Bogolyubov' is by now well established. However,
despite the elaborate formalism of perturbation theory
(in particular, field-theoretic perturbation theory), no
perturbation treatment has proved capable of handling
pairing forces. This paper introduces a noncanonical
transformation which permits the pairing Hamiltonian
to be treated by perturbative techniques. Unlike the
Bogolyubov canonical transformation, ' the present
transformation maintains particle number conservation.
The eigenvalue equation obtained in "lowest order, "
i.e., by summing the simplest infinite set of graphs,
gives the well-known results in both the strong and
weak coupling limits simultaneously.

The starting point is the Bardeen-Cooper-Schrieffer'
pairing Hamiltonian,

H= pa(~a/2)(cattcat+c attc at) Pa, a Vaa b—atba, (1)

where
Lba»aj+=o, Pa, ba'3+=1,

Lba, ba $-=o, fba, ba 'j-=o,
(6)

(7)

the latter two only for O'Qk.
From (6) it follows that 1 2na antic—ommutes with

ba and ba", and (1—2na)'=1. We introduce an order
into the set of k's and consider the noncanonical
transformation,

aa= LIIa (a fa (1—2na )$ba,

where fa is +1 if the level k is above the unperturbed
Fermi sea, —1 if k is below the unperturbed Fermi sea.

interact. H kg is occupied and —kg is not, then the
particle in kf cannot interact with other particles and
so has its unperturbed single-particle energy, coa/2.
Since unpaired particles are unperturbed, we eliminate
them and consider only paired particles: That is, we
can eliminate from the sums in (1) all values of k
which are only singly occupied and write

H .-=Pa' (coa/2)(cattcat+c attc at)--
=Pa, a &aa batba, (4)

where the prime on the sum indicates that pair states
kL=(kt, —kg)$ which are singly occupied are to be
omitted. We therefore have for all states in (4) the
operator equation,

@Ice=Cat Clct =S—t)'cg —C—leg C—fcg SIc= bjt, SIC&

and (2) and (3) give


