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A new formulation of the transition amplitude for the general rearrangement collision is presented.
Optical potential ideas are used in the derivation but the final result contains no mention of the optical
potential. The result is a matrix element with transitions only between mutually orthogonal states.

I. INTRODUCTION

HE general rearrangement scattering problem has
received much attention in connection with

nuclear scattering' and with atomic scattering. ' One of
the difhculties associated with the general formulation
is the lack of orthogonality between the initial and final
states of the system. This results in a situation where
approximations, which are, in fact, always necessary,
may yield nonsensical results. For example, a constant

- potential will cause a transition in first Born approxi-
mation. Another example is the calculation of exchange
scattering of an "electron" from "hydrogen" where we

neglect the electron-electron interaction. The result
should vanish, but in the usual formulation it vanishes
only in infinite order of the approximations. The under-

lying reason for these difficulties is that there is, As

prt'rtcip/e, no interaction which one can treat as being
small. The interaction which may act as a small per-
turbation in the initial (final) state causes binding in
the final (initial) state and so is not a small perturba-
tion there.

In this note we shall obtain a result in which the
orthogonality difhculties are removed. That is, the
transition amplitude will contain transitions only be-
tween mutually orthogonal states. The complete sym-
metrization which is imposed by the Pauli principle is
not considered here.

the final-state particles, C and D, and their interaction
Vg. That is,

H =H,+V,=Hr+ Vg. (2)

The initial state x; of the noninteracting particles, A
and 8, with a plane wave for their relative motion
satisfies

%—H')x'=0. (3)

Similarly the final noninteracting state satisfies

(E Hg)xr 0, — —— (4)

where

Q,.(+)=x~+ e.+.(+i

Gg

g; =8—H;+t', rt, (6)

and p is a positive infinitesimal which ensures that only
outgoing scattered waves are contained in 0;&+). Equa-
tion (5) is not in a convenient form for obtaining the
rearrangement amplitude since a, is not diagonal in the
final set of states. This can easily be remedied by putting
+;(+) in the form

where 8 is the total energy of the system. We shall now
present the usual derivation4 as a basis for what follows.

The total wave function of system is given by the
scattering integral equation,

II. FORMAL DEVELOPMENT AND DISCUSSION where
+,(+i =g —g,x~+g —

V +,(+i (7)

We are interested here in a collision in which the
final particles are not the same as the initial ones.
Symbolically, this is of the form

3+8~C+D.

The total Hamiltonian II may be broken -into the
Hamiltonian II;, of the noninteracting particles, A and

8, in the initial state, and their interaction V;. Or it may
be broken into the noninteracting Hamiltonian IIf of
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gr E Hg+jrt. —— —
It is easily seen that the first term in (7) contains no
amplitude for outgoing waves in the final state4 and
that the transition matrix obtained from the second
term of (7) is

T=(xt I V~I+'"').
The symmetric form for T,

where
T=(~"-'I V;) x,),

+f xf+(gf+) 'Vr+r

(9b)

(10)

may be obtained from 0' +) rewritten in the form

+,'+' =x~+g-'V, x,,
where g=E H+irt. Here again the fi—rst term contains

4 B. Lippmann, Phys. Rev. 102, 264 (1956).
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no outgoing waves in the final state and the asymptotic
form of the propagator, a ', yields (9b) for the transition
matrix.

We may modify the above development to include a
distorted wave for the interparticle motion in the initial
state. This is accomplished by including the distorting
potential, U;(+), in the initial state propagator, a, '.
Thus (11) can be rewritten

@,l+l —@ .l+l+g —&(V, P.(+))+,,(+) (11a)
where

includes a distorted wave for the final state will yield
the symmetric form

(18a)

where IIf projects onto the final state of the system
C+D. It should be noted that the results contained in

(18) and (18a) are independent of the distorted wave
treatment. That is: the wave functions +; and +f may
be approximated in any of the usual ways.

The form (18) may be rewritten as
.(+l —~+g.—&P.t+l@,i+) (12)

The requirement that 4„(+) differ from x; only by re-

placing the plane wave relative motion of A and 8 by
a scattered wave with outgoing wave boundary condi-
tions implies only that U;(+) be diagonal in the states
of A and B.

The T matrix is obtained from (11a) as

T—(@ ( l
i V, P, (+l i@,(+)) (13)

in the same way as (9b) is obtained from (11).
The crucial point of the derivation is now to indentify

0'„(+) as the true elastic scattering wave function in the
incident channel. This implies that U, (+) is an optical
potential for the elastic scattering in the incident
channel. Let us define an operator II; which projects
onto the initial state of the system 2+8.Then we have

In this form T has an interesting interpretation. The
first term is a transition from the elastic channel by V;
to that portion of the final state orthogonal to the elastic
channel. The second term is a transition from the in-
elastic initial channels to that part of the final state
parallel to the elastic channel. In this form the transition
only between mutually orthogonal states is evident. In
the commutator form of (18) the difficulties mentioned
in the introduction do not arise since the commutator
will vanish. Only that part of the interaction which
changes the state will contribute.

We note that even in lowest order the Born approxi-
mation is changed from the usual result. One form is

and
II'.(+)—@ .(+) (15)

U.(+)@ .(+)—II,y @,.(+) (17)

We now use (15) and (17) in (13) to obtain

T=(+qi—
&

i i V;,II;ji@;t+&), (18)

which is our final result. ' A similar derivation which

' The only property of the optical potential used here is con-
tained in (17). There are many equivalent optical potentials but
all of them satisfy this equation, so we need specify U;&+) no

Then if we multiply (5) by II;, we obtain

Q,,i+ l =~,+o,—&11 .V .Q .i+) (16)

since II, commutes with a, . Now comparison of (16)
and (12) yields

In a recent paper' this matrix element was evaluated
in the impact parameter formalism for the problem of
charge exchange of protons in hydrogen. There it was
seen that for high energies the second term behaved
only like E & relative to the first, and that the correction
to the cross section was a factor of 2 at 300 kev.
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further. For completeness we should demonstrate the existence of
U';(+) as de6ned above. This is omitted since it has been done
many times before. For example, F. Coester and H. Kummel,
Nuclear Phys. 9, 225 (1958) and M. H. Mittleman and K. M.
Watson, Phys. Rev. 113, 198 (1959).
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