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Radiative Corrections to Electron-Proton Scattering*
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The radiative corrections to the electron-proton scattering are calculated with the effects of the proton
recoil taken into account. We assumed the experimental conditions of Hofstadter et al. at Stanford, namely
only the 6nal electrons are momentum-analyzed. The anisotropy in the maximum energy of photons which
can be emitted and the radiation from the proton current are the two main effects due to the proton recoil,
and both effects are considered. The mesonic effects in the two-photon exchange diagrams are not con-
sidered. Other than the uncertainty in the mesonic effects, our formula is good up to about 5 Bev.

I. INTRODUCTION

ECENTI.Y' ' the energy of the electron-proton
scattering has been increased to around 1 Bev and

within a few years the energy will probably go up to
5 Bev (Cambridge Machine) or 15 Bev (Stanford
Monster). The purpose of this paper is to calculate the
quantum electrodynamic parts of the radiative cor-
rections which are applicable up to 5 Bev of the incident
energy.

Schwinger' first calculated the radiative corrections
to the potential scattering and he found that the cross
section is altered by a factor (1+5), where

—2n ( E 13' (' —tfs ) 17
I

ln ——
II ln —1 I+-

DE 12) ( rN' ) 36

Here q is the four-momentum transfer, E is the energy
of incident or scattered electrons (in the potential
scattering they are identical), rrt is the rest ma, ss of the
electron, and DE is the maximum energy loss of the
electron or the maximum energy of a photon which can
be emitted (they are identical in the potential scat-
tering). In the region M'» —q'»m', where M is the
rest mass of the proton, Eq. (I.1) is a good approxi-
mation and has been used extensively by the experi-
mentalists' in analyzing the data of the e—p scattering.
However at high incident energy and large scattering
angle, i.e., —tt'&3II', the incident energy (Ei) is no
longer equal to the energy of the final electron (Es) and
the maximum energy loss of the electron AE is no
longer equal to the maximum energy of a photon which
can be emitted. In fact E3 and E1 are related by the

formula

where
Es——Er/si,

rt —=1+Et3I '(1—cos0).
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It will be shown later that Eq. (I.4) is approxima. tely
true if one neglects the radiation by the proton current.

When —q'&M' the velocity of the recoil proton v4

approaches the velocity of light, i.e., P4= ~4/tc —+1.
Thus one would expect that in this case the radiation

Counting
rate

For definiteness let us define the energy resolution AE
as the experimental quantity shown in Fig. 1. Then
from the energy-momentum conservation, it can be
shown that the maximum energy of a photon which can
be emitted along the direction of the final electron is
AE, but in the direction of the incident electron it is
rt'AE Thus Kq.. (I.1) becomes quite ambiguous in the
practical application at high energies because one does
not know what to use for E and hE. Intuitively one
would guess that Eq. (I.1) should be changed to
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'R. Hofstadter and R. R. Wilson, Proceed'ngs of the Tenth
Annual International Conference on High-Energy Physics at
Rochester (Interscience Publishers, Inc., New York, 1960).' L. ¹ Hand, Phys. Rev. Letters 5, 168 {1960).'F. Bumiller, M. Croissiaux, and R. Hofstadter, Phys. Rev.
Letters 5, 261 (1960); 5, 263 (1960).

4 R. R. Wilson, K. Berkelman, and J. Cassels, Cornell Unive
sity reprint (to be published).' J. Schwinger, Phys. Rev. 76, 760 (1949), Eq. (2.105).

6R. Hofstadter, Revs. Modern Phys. 28, 214 (1956). Actuall
the energy of the scattered electron E4 was used in E of Eq. (I.1
in this reference.

FIG. 1. A typical energy spectrum of the scattered electrons at
r- a axed angle. The point E3"(8, ) is chosen to be the energy of the

elastically scattered electron at the center of the entrance slit.
DE should be chosen such that 8 ((AE((E3(1+2EI/31) '. The

y widths TV is caused by the energy spread in the incident beam and
) the Qnite width of the entrance slit. The curve should be integrated

from E3 ' to C in order to compute the cross section.
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from the proton current would be no longer negligible.
If one tries to calculate the bremsstrahlung from the
proton current, one encounters the usual infrared
divergence and thus one is forced to consider diagrams
such as M2, M3, and M6 in Fig. 2 in order to achieve the
infrared cancellation. The exact calculation of M~, M3,
and M6 is not attempted in this paper since to do it
one has to consider mesonic contributions from these
diagrams such as carried out by Drell and Fubini. ' We
shall merely extract the infrared contributions from
these diagrams using the technique developed by
Yennie, Frautschi, and Suura. '

It has been emphasized by the present author' in a
previous paper that in the calculation of the radiative
corrections for any process a critical analysis of the
experimental corrections for any process a critical
analysis of the experimental conditions is necessary. We
shall proceed to discuss our problem in the same spirit.
The experimental conditions assumed are those of
Hofstadter et at. at Stanford that electrons, after being
scattered by a hydrogen target and going through an
entrance slit, are momentum analyzed by a magnetic
spectrometer and the recoil protons are left undetected.

The notation used is similar to that in reference 9.
pi and ps represent the four-momenta of incident and
scattered electrons, respectively. p& and p4 are the four-
momenta of initial and recoil protons, respectively. The
metric chosen is such that pi ps

——EtEs —pt ps. The
units iri= c= 1 and e'/4m =n are used. p represents p„y„.

The infrared divergence is avoided by assuming that
a photon has a small 6ctitious mass t whenever we
encounter integrations in which such divergence occurs.
When the photon mass ) is used, it always appears in
both the elastic and inelastic cross sections in the form"

p
~(p„p,)=—(p; p;)

p s )ts

In our calculation only the real part of M& contributes
to the cross section, and it can be shown' that

«&(p', p—) =I:(p',p~))

II. ELASTIC SCATTERING CROSS SECTION

The Feynman diagrams contributing to the elastic
scattering cross section to order 0.' are shown in Fig. 2.
The expression for the elastic scattering cross section
can be written as"

d~.i-r c= (2~)'
[(pip, )'—m'Ms]i

X- &(Ps+P4—Pi—Ps)d'Pad'P4

XP PIIttMr+P 2 Re(MitM, )j. (II.1)
spin i=2

The first term in the square bracket of Kq. (II.1)
represents the Rosenbluth cross section. The matrix

Terms of order m'/ —q' compared with unity are
neglected throughout in this paper. In the calculation
of the contribution to the cross section by the radiation
from the proton current one encounters a lot of Spence
functions C (x). We shall neglect those Spence functions
which are of order unity, e.g. , C (1).This approximation
causes an error of order n= 1% in the cross section.

In Secs. II and III elastic and inelastic scattering
cross sections, respectively, are treated. The observ-
able cross section is obtained by adding elastic and
inelastic cross sections. In Sec. IV some numerical
examples are given. In Sec. V some precautions to the
practical applications of our formula are considered.

where p„=p,y+p, (1—y). We shall call terms of this
kind infrared terms. They always cancel out completely
when elastic and inelastic cross sections are added
together. Thus one does not have to integrate Eq. (I.S)
explicitly. [In the matrix element of M& of I'ig. 2, we
shall see that the infrared terms have the form

K(p, , —p;) instead of K(p, ,p,). K(p;, —p,) is complex.
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~ S. D. Drell and S. Fubini, Phys. Rev. 113, 741 (1959).
D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (to

be published). In addition to the problem of infrared divergence
these authors also gave a general treatment of the recoil effects
in the electron-proton scattering. The purpose of our paper is to
derive a convenient formula which can be used readily by the
experimentalists. Thus the present work and these authors' work
are complementary to each other.' Y. S. Tsai, Phys. Rev. 120, 269 (1960), also I'roceeCings of the
Tenth Anneal International Conference on High-Energy I'hysics at
Rochester (Interscience Publishers, New York, 1960).

"The notations for the infrared terms are improved in this
paper. —2K(Pi,pa)/g' corresponds to pm(q') in reference 9.

FIG. 2. Feynman diagrams for elastic scattering.

"Compare with Eq. (1) of reference 9.
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k+q —+ 0, we have infrared divergence. Suppose k ~ 0,
then F„ in M2 of Fig. 2 can be replaced by 7„, and we

mM 1
(p ) (p ) (p )p ( s) ( )

may wrtte the matrtx element for M& as

(EtEsEsE4)
'*q'

element M~ can be written as"

zQZ

e' r pr+k+et
3IIs— —

~

d'k s7(Ps)y„
(27r)' (EtEsEsE4) & ~ k'+2p, k

tnMZ'

where q= (pt —ps),
K

I'.(q') =Fr(q')V.+ Fs(q')qV. ,
2M

(II.2) Ps—@+M
X~„(p,) (p)1', v,m(p )

k' —2k ps
and I(:=1.79 is the Pauli magnetic moment of the
proton. Ft(q') and Fs(q') are the electric and magnetic
form factors, respectively, of the proton and are to be
determined by the experiment. After averaging over
the initial states and summing over the Anal states, one
obtains the Rosenbluth cross section":

X . (II.6)
(k' —) ')f(k+q)' —)t'g

The infrared contribution from M2 due to k —+0 is
obtained by neglecting k in the numerator and in
(k+q)', and we obtain( do q rs'm'Zs cos'(8/2)

(dD) Rosenbluth 4Etsr) stn'(8/2) zQZ t 4(pt ps)d'kM'= Mg
4s' ~ (k'+2pt k) (k' —2k ps) (k' —)t')g2

X F '— $2(Ft+ttF )' tan'(0/2)+K'Fs'j, (II.3)
4M' QZ

E(ps, —pt)Mt.
where ro=Qm ' 2.82)(10 "cm is the classical radius 2Ã
of an electron. For the vacuum polarization (M4) and
the electron vertex (Ms) diagrams, we can directly use Similarly the infrared contribution from Ms due to

'

the results of the electron-electron scattering calcu- k+q-+0 can be obtained by a substitution k+q~ k
lation'4 and obtain in Eq. (II.6), and we have

a —5 1 f' —q'y-
M4 ——

9 3 4m')
(II.4)

QZ
E(p4, —ps)Mt.

2

where

Q

LE(p p ) E(p p ) s ln( qs/gp)+2jM Thus we have accomplished the extraction of infrared

2x terms from M2. Neglecting the noninfrared terms in
(II.5) Ms, we obtain

1 dy p 2

E(p, ,p,)= (p,'p, .) I
—l —,p„=p,y+p, (1—y).
p 2 )ts

The terms E(pt, ps) and E(p, ,pt) in Eq. (II.5) are
infrared terms. It will be shown later that they cancel
out completely with the similar terms in the inelastic
cross section and therefore they need not be integrated
explicitly.

As mentioned in the previous section, we shall merely
extract the infrared terms from M2, M3, and M6 and
assume the noninfrared parts of these diagrams to be
negligible. Let us consider the matrix element for M2
as shown in Fig. 2. When either of the 4-momenta of
the photon propagators approaches zero, i.e., k —+ 0 or

"Although we are primarily interested in the electron-proton
scattering in this paper, our result can be used in the electron-
nucleus scattering. The atomic number Z is kept here for this
purpose. Also we shall see later that Z is a convenient quantity
for identifying the contributions from various diagrams in the
inelastic cross section. For electron-nucleus scattering the deQ-
nitions of P&, F2, a, and M should be appropriately changed.

"M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
tt See Eqs. (5) and (6) of reference 9.

Ms =Ms'+Ms"

QZ
Mrt E(ps, pt)+E(p4, ——ps) l

2
(II.9)

QZ
Ms ———MtLE(ps, ps)+E(p4, pt) j.

2x
(II.11)

Similarly, for M6 we have

QZ
MtLE(ps p4) E(ps,p.)j, (II 12)—

2

E(p&, —p&) and E(p4, —ps) are complex. Only the real
parts contribute to the cross section. It can be shown
that'

Re E(p;, F;)=E(p, ,p;)+ "negligible, " (II.10)

where "negligible" means the term of order unity. Using
a similar method, one can extract the infrared terms
from M3. Neglecting the noninfrared terms in M3, we

get
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FXG. 3. FeynInan
diagrams for inelastic
scattering.
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With this approximation we may write

i fctp t 1

x' (2) (2co) &

(111.3)

We shall neglect the k's in the numerators of the above
equations and in the term (p&—ps —k) in Kq. (III.1).
The experimental conditions under which this ap-
proximation is valid will be discussed in detail in
Appendix A. Here we simply state the result:

)do q (do q

~dQ~ elasttc LdD] Rosenbluth

1+—P—E(pt, ps)

yZ(p, p ) ZZ(p, p—) ZSC(p„p—)
+ZI (ps,ps)+ZK(ps, pt)

—Z'E(p, p4)+Z'E(ps, ps) ]

where the term E(p&,ps) was introduced by the renor-
malization of M6 and represents the infrared term of the
electromagnetic proton self-energy. LCompare Kq.
(II.12) with Kq. (II.5).]

Substituting expressions for the matrix elements in
Kq. (II.1), we obtain the elastic scattering cross section

ps e pt e Zp4e Zps e
X — — + . (111.4)

ps k pt k ps k ps k

The inelastic scattering cross section can be calculated
by using the formula

EyE2 1 f
dgb ——(2tr)' d psd psd k

L(p, p,) —
tabb M )'* 4 ~

X5(ps+ ps+a pt ps)— —

XZ (Mbl +Mbs ) (Mbt+Mbs) ~ (IU 5)
spin

In the above formula, one has to perform the integration

o. —28 13 —q'
+— +—ln

9 6 m'
(II.13)

where
(III.6)

p dsPs p dsk r dsPs
A= ~ (ps+ p4+& pt ps)X', — —

E3 ~ 2(o ~ E4

III. INELASTIC CROSS SECTION

The Feynman diagrams for the matrix elements con-
tributing to the inelastic cross section to order n' are
shown in Fig. 3. Since we are interested only in the soft
photon emissions, the vertex function connecting the
real photon k and the proton current may be approxi-
mated by y„. Thus the matrix elements M~~ and %~2
may be written as

e' mMZ - Ps+k+ttb
Mgg= u(ps) e 7p

(2sr)'~' (2coEtEsEsE4) & 2Ps k

Pr —ft+ttb
7 e N(p)&(p)i' N(p)

2pt k

X$1/(pt —ps —0)'], (III.1)

Mg2= ~(ps)V.N(pt)
(2sr)'" (2coEtEsEsEs) &

ps+0+M
Xtb(Ps) e

2ps k

ps —%+M N(Ps)—I'„ e . (III.2)
2ps k (pt-ps)'

Ps Pt ZP4 ZP&
+

ps k pt k p4 u p, k
(III.'/)

"For choice of the coordinate system when Eq. (Q$.3) js not
satisfied see Sec. VII.c of reference 9.

The range of this integration is determined by the
experimental conditions. One can perform this inte-
gration in any coordinate system provided the experi-
mental conditions are transformed into those in the
coordinate system in which the integration is carried
out." The procedure we shall use here is somewhat
involved. In Stanford experiments k and ps are unde-
tected and for ps the entrance slit and the spectrometer
determine the angular range (0;„,0,„)and the energy
range E3&E3 '", respectively. This experimental con-
dition is shown in Fig. 4. The curve AD corresponds to
the energy-angle relation of the elastically scattered
electron obtained from Kq. (I.2). Only the electrons
which are scattered into the area ABCD are detected.
As mentioned in the introduction, due to the recoil
effect the maximum energy of a photon which can
be emitted is very anisotropic. Uery roughly speaking,
the maximum energy of a photon which can be emitted
in the forward direction is much larger than the
maximum energy of a photon which can be emitted in
the backward direction when there is a big recoil. Thus



YUN G —SU TSA I

Thus instead of integrating with respect to E3 and 0,
we can integrate with respect to x and 8. Equation
(III.10) can then be written as

one has to perform the k integration in Eq. (III.6) in a
very elongated ellipsoidal volume. We avoid doing this
by choosing a special Lorentz frame in which this
ellipsoid becomes a sphere and do the k integration in
this frame. We then transform everything back into
the laboratory system and use some other trick to do
the ps integration. The p4 integration is eliminated at
the beginning by using the 5 function. We will show
more precisely in the following how this is done.

We first perform the p4 integration by using the 3

function and obtain

Es
t

™*xdx
t dQ— '

disci,

x2 (III.13)
4M& . .. 2(*+M) &

where x;„=2AM, which corresponds to the value of
x along the curve CD in Fig. 4, and x, is the value of
x along BC. The infrared divergence occurs just under
the curve AD. Since relatively few electrons are scat-
tered near the curve BC, we may replace the curve BC
by 8'C' where the curve 8'C' is obtained by

r dsPs r dsk
A = I I S(E4)5((i—P)2—M2)x' (III.8)

E2 aj 4o x=x . =—2214'+2M(E —E '")
—2E1E2 'n(1 —COS0, ) =2MrlhE, (III.14)

where
(III.9)

where
t =P4+I4+—Pi+Ps Ps, —

and
&av —= ( max+&min)'y

hE =—Es'(ti, )—E;„,
S(y)=1, y»

=0, y(0. (III.15)

(III.16)

and

Es"(8. )=
1+E1M '(1—cos9. )

With this modification of the region of integration, x,
is now independent of 8, thus we can finally writeL(m) —)i i27&

PsdE2
p

Emax

dQ
~2Mrfh E

A =dQ — I dQgP (III.17)
4M' ~ 2241, 2(xyM2) "XS(P 3 '))~dQ—i,y2 . (III.10)

In the special frame" p4+k=0 or t= (to,0), the 3

function in Eq. (III.8) is independent of the angle in
which the photon is emitted. Thus we perform the
photon integration in this special frame:

where
i; '= M'+2Mli+k2 =M'+2Mli, (III.11)

Using Eqs. (II.3), (III.S), and (III.17), we can express
the inelastic scattering cross section as

and the tilde represents the quantity in the special
frame. After the photon angular integration, we trans-
form all the quantities in the special frame back into
those of the laboratory system and perform the ps
integration. For the ps integration we use the following
trick. From Eq. (III.9) we obtain

x =p —M2 = 22122+ 2M (Et—Es)
—2E1E2(1—cosg). (III.12)

(do i fdai Q
ta

" xdx

~did~ b ~did) Rosenbluth 82l II212r 2(x+2m')

X d QgP. (III.18)

The photon angular integration can be carried out in
the following way

(p p) r' 1 dQy,
=(P'.p)

la
1 dy

Js
)
k~' 2+X2E '

~l t'dy
=4 (O' P;) '

t (k t)' —X't'7P„'+V[(P,"t)y+ (1—y) (p; t)7'

~1 (x+M2)dy
=162r(p; p, ) ' (III.19)

al 0 (x2 4$2M2)P 2++2(P ' «)2[1+y(P '' i p '' i) (p ' ~) 172

16 This coordinate system is often used in the calculation of processes in which two of the three anal particles are undetected; for
example, p —+ e+v+v or e+p ~ e+P+~.

'2 37o&e added 414 proof. Strictly speaking, this angular integration is incorrect when i =j =4, since pa k= (a—X l/2 and is independent
of photon direction. However, it can be shown that the same result is obtained by using the correct method as long as one considers
only the emission of a soft photon.
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Emax

Eel
(8~„)

8pin ~av

,
C
C,

I
I
I
I
I
I

8mex

The integration with respect to x can be carried out
easily and we obtain

xdx
( (p; p;)
'

dQI,
2(x+Ms) ~ (p,'k)(p,"k)

p' (p" &)
=4n. (p;.p;) ln——2 ln

M~aE

—2»L1+y(p' 1—p' l)/(p" ~))

where p„=p,y+ p, (1—y). We have made the quantities
in the special frame covariant by using to= (k t)/(ts)'*,

E,= (P,'l)/(t')*, and (k t) =-', (@+X'). Notice that the
quantities (p t) in Eq. (III.19) are important only in
the infrared limit and therefore we can replace l by P&,

and we can express them in terms of lab quantities as
follows:

pt 3 —+MEp, ps t —&MEs,

P p 1 —& MEit, P4 t —+ M'. (III.20)

FM. 4. 8; and 8, dehne the width of the entrance slit.
B3 ' de6nes the spectrometer threshold. The curve AD corre-
sponds to the elastic scattering. Only those electrons going into
the area ABCD are detected. We approximate the number of
electrons going into the area ABCD by the number of electrons
going into the area AB'C'C.

(p" &)

=4n-K(p, ,p, ) 8'(p;—p;) ln
MslhE ~p P„'

-8 (p; p;)
Jo

in[1+ y(p,'1—p,"~)/(p,"1)]

pw
(III.21)

The first term is the infrared term and it cancels out
completely with the similar term in the elastic scat-
tering cross section. The integrations of the second and
third terms are straightforward, the results are listed
in Appendix B.

The observable cross section is obtained by adding
elastic and inelastic scattering cross sections. We have

where

do (do i (do i (do i
+ I

—
I
=

I

—
I (1+»

dQ (dQ) elastic tdD) p tdQ) Rosenbluth

(111.zz)

—n 28 13 (—q'q ( -q' Et ) (Es Et) E—s
it= ———lnl I+ I

ln —1+2Z lnsi I I
2 ln —3 in' I

—C
I

—

I

—Z' ln-
7r 9 6 (eP & ( m' )( ~E ) E E,

M (1 1+Ps p Z' 1 1+P, Es+M
+Z'ln

I

—ln —2 I+——ln In
tlAE &ps 1—p4 ) p4 2 1—p4 2M

(E4—Mq & (1+P4q &~-

&E,+M) &1—p, ) )
2EE, ME, (M )—

ln
(2E,)Et (M—2Es)

( M Epi ( M—(M E,) i (2E—, (M—E,) i
+z e

I

——
I

—el I+4'I I+»
Et ) l 2EpEs MEt) I 2E—sE4 MEi)—

2EgE4 —3fE3( E4 Ep) ( M(E—4 Es) y (2Et—(Es—Ep) )
I+4'I I+»

E, 3 l 2E,E4 MEs) &2E—tEs ME, ) Es(M ——2Ei)
lnl

E2Et)

( M Et) (M Ey'l —(2(M——Ey) ) M ( M q
I+4'I I+»

Ei ) E Et ) 4 M ) 2Ei M(2Et)—
(2

+z c'I —
I

—c'I I+4'I I+» lnl
I

. (III.23)
Es ) ( Ep ) ( M ) 2Es M(ZE,)—

4 (x) is the Spence function"

(III.24)

and p4 is the ratio of the velocity of the recoil proton

"K.Mitchell, Phil. Mag. 40, 351 (1949).

to that of light,

P = (E ' M') :/E„E,=—E,+-M E,. —

We have kept Z in our formula for convenience of
discussion. Z is equal to +1 for e +p scattering and
is equal to —1 for e++p scattering. The terms propor-
tional to Z come from the interference terms between
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3fw and M~~ and the terms proportional to Z' come
from M~2~Mq~. If we neglect the radiation from the
proton current, i.e., letting Z=O in Eq. (III.23), we
obtain Eq. (I.4), except for a small term 4L(E3—E,)/E, j,
which we guessed on intuitive physical grounds. We
notice that the radiation from the proton current
increases (or decreases) the radiative corrections to
e +p (or e++p) scatterings.

IV. NUMERICAL EXAMPLES

Examp/e A. Consider the radiative corrections under
the following conditions':

E~=900 Mev, 0=145', g=2.75,

E3=327 Mev, E4= 1511Mev, AE= 13.1 Mev,

P4 =0.783 q'= —2M(Ei —E3)= —1.075X10' Mev'.

Equation (III.23) gives 8 = —15% for e +p and
8= —8.6% for e++p scatterings. If one neglects the
radiation from protons, one gets from Eq. (I.4)
8 = —11%.

ExumpIe B. Consider an example at a higher energy:

slit and the magnetic spectrometer, will have a typical
energy spectrum shown in Fig. 1. The shape of this
spectrum is in general due to (1) the energy spread of
the incident beam, (2) the finite thickness of the target,
(3) the finite width of the entrance slit, and (4) the
radiative corrections which we have treated in this
paper, The eRect due to the finite thickness of the
target is also a radiative phenomenon and thus one
should be able to calculate it along lines similar to the
present treatment. This eRect may cause as much as
10% correction to the cross section at 900 Mev under
typical experimental conditions. "The smearing of the
energy spectrum due to the energy spread of the
incident beam and the finite width of the entrance slit
do not cause any appreciable trouble as long as AEi is
chosen sufficiently larger than the energy spread of the
scattered electrons due to these two eRects. Suppose the
initial beam has an energy spread AE&,' then the
energy spread of the scattered electron due to AE& can
be calculated from Eq. (I.2):

(BE3/BEi)AEi ZEiri '. ——(V 1)

E~=5 Bev, E3=500 Mev, g= 10, AE'= 10 Mev,

P4 =0.975.

Similarly the energy spread of E3 due to the finite
width of the entrance slit is

Equation (III.23) gives 8= —21.0% for e +p and
5= —9.9% for e++p scatterings. Equation (I.4) gives
5 = —12.84%.

Notice in both examples given above that the
condition (III.3) is satisfied.

V. PRACTICAL CONSIDERATIONS

In applying Eq. (III.23) to the actual analysis of
data some precautions are necessary. When an electron
beam is scattered by a liquid hydrogen target, the
scattered electrons, after going through an entrance

(~En/~0) +0= (E /M'Il ) Slilgdg.

Thus one should choose hE such that

hE))DEgg —'
and

(V.2)

(a)

DE) (E3'//M) sin%8. (b)

The condition (a) is necessary because the shape of the
spectrum near E3e'(8, ) is mainly due to the energy

' R. Hofstadter |,'private communication). See reference 6, Eq.
(34). This formula needs a reexamination at energies with which
we are concerned here.
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spread of the incident beam, which has nothing to do
with the radiative effect. Condition (b) is necessary
because we have replaced the area of integration ABCD
by AB'C'D in Fig. 4 in order to simplify the calcu-
lation. This approximation breaks down unless con-
dition (b) is satisfied. ' Experimentally these two con-
ditions are equivalent to taking AE&)lV, where t/t/' is
the width of the spectrum to the right of Es"(0, ) as
shown in Fig. 1.

Conditions (a) and (b) give a lower limit for hE. On
the other hand hE should not be too large, otherwise
condition (III.3) will not be satisfied.

VI. DISCUSSION

A. In this paper we have amply demonstrated the
power of the technique of infrared extraction developed
by Yennie et ut. We have assumed the noninfrared parts
of the matrix elements M2, M3, and M6 to be negligible.
This has to be somehow justified. Drell and Fubini~
have considered the mesonic contributions to M2 and
M3, especially the resonance eGect of the nucleon
Compton scattering. They estimated the contribution
on the cross section to be about 1% in the energy range

1 Bev. It is very desirable to extend this kind of con-
sideration to higher energies. "One could of course try
to treat the proton as a structureless Dirac particle and
calculate these matrix elements exactly and show that
the noninfrared parts are indeed negligible. "However,
in an electron-electron scattering' it was explicitly
shown that the noninfrared parts of Ms+Ms are neg-
ligible. Thus one would expect that this must also be
true for e+p scattering if protons are structureless. The
order of magnitude of the contribution to the cross
section from Ms can be estimated by using Eq. (II.5)
with ns' replaced by M2. It can be shown that even at
E~=10 Bev, and 83=500 Mev, the contribution to the
cross section from Ms is only about +0.5%. Thus the

"In electron-electron scattering when one of the initial electrons
is at rest, the extreme opposite condition to (b) was used. See
reference 9, Sec. V.

"The noninfrared parts of %2+Kg, including the mesonic
effects, can be evaluated experimentally by comparing the cross
sections of e++p with those of e +p scatterings performed under
identical experimental conditions. After applying the radiative
corrections given by Eq. (III.23), the difference in two cross
sections must be exactly twice the contributions from the non-
infrared parts of &2+&3. (We assumed that the difference in the
eGects due to the Gnite target thickness for e +p and e++p
scatterings is riegligible. ) Such an experiment is being performed
at Stanford by J. Pine and D. Yount."In this connection it is interesting to notice that McKinley and
Feshbach have calculated the second Born approximation to the
Coulomb scattering and found that the Qrst Born cross section is
altered by a factor (1+6), where 8 =Znx Lsin (-',8) —sin'(-', 8)g
&(cos '(-', 8). In a later paper Dalitz confirmed this result. This
correction is independent of energy and has different signs for
e +p {Z=1) and e++p (Z= —1) scatterings. At 145' this cor-
rection gives 5=0.015Z and at smaller angles the correction is
smaller. In view of the lack of exact calculation for the noninfrared
parts of M&+Ms, we may add this correction to Eq. (III.23) for
practical analysis of the e++p scatterings. See W. A. McKinley,
Jr., and H. Feshbach, Phys. Rev. ?4, 1759 (1948); and R. H.
Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).

neglect of the noninfrared parts of 3IIs is probably
justified up to about 10 Bev. In summary, our Eq.
(III.23) is good up to about 1 Bev within &2% of the
cross section. (Of the 2% error, 1% is from the approxi-
mation used in our integration and 1% from the non-
infrared parts of the contributions from Ms+Ms+Ms. )
If one can prove that the noninfrared parts of Ms+Ms,
especially the mesonic resonance effects, are negligible
(&1%) even at higher energies, then our result is good
up to about 5 Bev within 2% of the cross section.

B. In this paper we have considered the radiative
corrections to the e+p scattering when only the scat-
tered electrons are detected. In part of the Cornell
experiment4 the recoil protons are detected instead of
the scattered electrons. Our formula is not applicable
under this experimental condition. Under this experi-
mental condition, very hard photons can be emitted
along the direction of the scattered electrons and thus
one would expect the radiative corrections shouM be
much smaller than the result of the present calculation.

APPENDIX A

We have neglected the photon momentum k in the
numerators of Eqs. (III. 1,2). We investigate here under
what experimental conditions this procedure is justified.
For this purpose it is necessary to consider everything
in the center-of-mass system. (We denote the quantities
in the c.m. system by a tilde in this section. ) It is easily
seen that for the above-mentioned, approximation to be
applicable, the maximum energy of a photon co,
which can be emitted in the c.m. system must be smaller
than the momentum of all the particles. Thus in the
center-of-mass system,

+m~&(&i. (A.1)

To determine the value of co, we transform experi-
mental conditions as specified by Fig. 4 into those in the
c.m. system. The result is plotted in Fig. 6. B& can be
obtained by considering the invariant

pl 'p2 M+1 +1+2++1 @I[(+I+M ) ++1]~

Hence

Similarly,

Ei——Ei)1+(2Ei/M)] —*'.

Zs= (Ei+M)$1+ (2L~'i/M)] —'*.

(A.2)

(A.3)
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I'"IG. 7. The geometry
for calculating the maxi-
mum energy of a photon
which can be emitted in
the center-of-mass sys-
tem. p3is on the xs plane.

M+2E,For the elastic scattering, E3——Ei, which corresponds
to the straight line AD in Fig. 6. The lower bound of

™--7~ ~
M+E, (1 cos8)

E3 can be obtained by considering the invariant

Fio. 6. Experimental conditions (Fig. 4) expressed iii term& Of Similarly along the p2, p3, and p4 directions we have,
quantities in the center-of-mass system.

respectively,

p3 p2=ME3 '"=E3(E2+Eicos8).
(AE(1+2EiM '), (A.9)

Hence,

E3 ME3 '"(E——2+Ei cos8) ' (A 4)
and

co„„(8,0)=hE, (A.10)

which corresponds to the curve BC in Fig. 6. The
relation between 0 and 0 can be obtained by considering
the invariant

~, (n.—8, ir)

M+2Ei=DE (AE(1+2EiM '). (A.11)
M+Ei sin'8

M'(p, p,) M'(1 —cos8)= (1—cos8) =
1 2 3 2 (Ei+E.) (F2+E, cos8)

Hence,

From Eqs. (A.6, g, 9, 10 and 11) we have

(o, &ri(1+2EiM ')*DE. (A.12)

cos8= [(Ei+M) cos8—Ei)ii 'M ', (A.5)

and from this we obtain 0™;„,0, , and 0,„corresponding,
respectively, to 0;„,0, , and 0, of Fig. 4. Using an
argument similar to that in the discussion of Fig. 4,
we may replace the area ABCD by the area AB'C'D.
The length DC' is defined as hB. Then from Eqs.
(A.2, 3, 4, 5) we have

AE=Ei ME3 '"(E2+Ei c—os8, ) '

=ri(1+2EiM ') 'DE. (A.6)

The maximum energy of a photon which can be emitted,
(n, p), can be calculated by using the equation

(pi+ p~ —p3 —k)'=M' and letting E3 E3 '". We have——
then

~max (ar 0')
d,E(M+2Ei)

(A.7)
M+Ei+Ei(cos8 cosn+sinn cosy sin8)

where n and p are defined in Fig. 7. If the photon k is
emitted along the direction of pi, we have

~, (O, q) =AEii.

Thus condition (A.1) can be written in terms of lab
quantities [using Eq. (A.2)] as

AE(1+2EiM ')«E3. (III.3)

This result is very important experimentally. In
example 8 of Sec. IV, the maximum energy of a photon
which can be emitted along the pi direction is DEEP
=1 Bev in the lab system. Our consideration here
shows that even in this case the approximation we used
is not bad.

~2MqAE gdg ~ (p .p )
~ dQI,

Sir &2g~ 2(x+M') ~ (p,"k)(p; k)

+lE(p, p'p ).

Then the following results can be obtained from Eq.

APPENDIX B

We list here the results of all the integrations which
appeared in Eq. (III.21). The invariant products (p.; i)
in Eq. (III.21) are reduced to lab quantities by using
Eqs. (III.20). I.et us define
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(III.21):

+1 ~4
Iy, y=ln — E2 g=ln

~2aB ~ zE

E'
I3,3

——ln
AE

M
J4,4

——ln-
~aE

E, E i q iE Ei
q3AE d,EJ 4333 ( E3 )

E3 4E33 t' M E,i-
2I3,3= ln ln —C

I

——
AE 433' ( Eg

( M(M —E3) ) t 2E3(M—E,) )
!I+~i

i2E,E4 ME, j — t 2E3E4 MEy)

E& 4E33 P M E—3i (M E3—i!+c'I—
vPAE 4»33 i E3 2 i E3 )

i2(M —E3)q M M
+c'I I+in 1n

M ) 2E3 M—2E3

E3 4E»3 P M—E»i f M —E,i
~E & E, j (E, &

(2(M—E,) i M
+C'I I+ln ln

M ),2E» M2E—,

1+P» M 1 1 1+P» E4+M
2I3,4=—ln —ln +——ln ln

p4 1—p» qDE p» 2 1—p4 M

( (E» M i
'* )1+—p»q 'p

&E,+M j &1—p, j j
2J"384—MEg M

+ln ln, The following identity was found to be useful in many
E& (M 2E3) 2E3- of the above integrations:

4EP ( E4—E3i
2I, =ln ln —Cl-

~3~E m3 0 E,

M (E4 E3) & P 2E, (E4—E,)
I+~l

(2EiE» ME3 j —E2EiE» ME»)—

J' ln (1+cy) dy

Jo e''+by

11 +»
C(—c)—Cl !I+c'I

b E b —(a/c) I 41—(a/bc) j
2EgE4 —3fE3

+ln
E3 (M—2E»)

1n
2E]

pc»+bi
+in! (bc/a) —1

I
lnl—
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