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where e is the principal quantum number of the outer-
most s electron in the core. Now g„,(r) —+ const and
V(r) —& —~ as r —+0, so that V+ Vtt contains an un-
cancelled spike —Ze'/r of radius rx. Now ric is approxi-
mately ao/Z, where ao is the Bohr radius, so that in
first-order perturbation on P the spike contributes an
energy of about 4n.

~
g(0)

~

'Zrx2 1/Z rydbergs which is
unimportant for large Z.

Table I also shows how the radii r of the alkali
atoms increase significantly with Z. Part of this is due
to the decreasing e, since Pi. exp) —(e,):rj at large r,
giving r, o- e, :.However, the observed increase in r, is
considerably greater than this, and must be due to the
fact that good cancellation inside the core pushes @ out
to the regions of negative potential energy outside the
core.

We turn now to the other monovalent series, the
noble metals. Their e, ionization energies are rather
larger than those of the alkalis:

Ag, 7.57 ev; Cu, '7.72 ev; Au, 9.22 ev. (32)

The reason for this is as follows. In copper, for example,
the 3d shell is rather loosely bound compared with the
cores of the alkali atoms, and consequently extends out
to a considerably larger radius than the 3s function.
Thus the 3s function in (31) is incapable of cancelling
oG the potential in the outer regions of the core, leaving

a large negative potential which produces a tightly
bound 4s level, i.e., a large e, . Thus the looser the d
shell, the tighter the next s shell is; and if we take the
order of increasing looseness of the d shells as Ag, Cu, Au
as evidenced by their color and chemical valencies, we
note that this is indeed the same as their order of in-
creasing e, in (32).

A rough theory has already been given in reference 1

relating the electronic band structures of the alkali
metals to the a'tomic parameters e,—e„and r, and the
argument seems to be applicable qualitatively also to
groups IIA and IIIA of the periodic table. In Na, Mg, Al,
the band gaps appear to be very small. "As Z increases,
e, ( ~ r, ') decreases more rapidly than e,,—e„, resulting
in an increasing band gap with the s-like state at the
gap being the lower one. In Li and Be, however, there
are large band gaps with the p-like state lowest. , due to
the small r,, and the abnormally low t,—e„which we
have seen is in turn due to the absence of a 1p shell.
As Ziman" has pointed out, these systematic trends in
the band structures are directly rejected in the elec-
trical resistivities and Hall coe%cients32 of these metals
as well as in other properties.

' F. Ham, J. M. Ziman, and other contributors, in The Fermi
Surface, edited by W. A. Harrison and M. B.Webb (John Wiley R
Sons, Inc. , New York, 1960)."J.M. Ziman, Electrons and Phonons (Oxford University Press.
New York, 1960), p. 488.
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The ground-state wave functions of the helium, lithium, and beryllium atoms were approximated by a
superposition of configurations with expansion lengths ranging from 35 for helium to 55 for beryllium.
The discrepancies in the total energy are 0.014 ev for helium, 0.026 ev for lithium, and 0.17 ev for beryllium.
A 19-configuration function was also applied to the lowest S state of helium, with a resulting accuracy of
0.0005 ev. The calculations were also made on all the isoelectronic series of ions through Z=8, the dis-
crepancy remaining of the same order of magnitude but increasing with increasing Z. A lower bound to the
electron affinity of lithium is set at 0.4773 ev, with the most probable value, obtained by extrapolating the
isoelectronic series, being placed at 0.62 ev.

INTRODUCTION

' PROBABLY the most widely used and most gener-
ally successful approach to many-particle quantum

mechanics is the independent-particle model, which at
its best is represented by the Hartree-Fock approxima-
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by a grant from the National Science Foundation.
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f Present address: National Bureau of Standards, Washington
25, D. C.

tion. Physically, this approximation amounts to treat-
ing the interparticle interactions in only an average
fashion, i.e., each particle is assumed to move in only
the average field of all the other particles of the system.
Mathematically, the method consists of approximating
the state function as an antisymmetrized product of
one-particle functions (spin orbitals). Subjecting such a
function to the variational principle leads to the well-

' D. R. Hartree, The Calculation of Atomic Structures iJobn
Wiley R Sons, Inc, , New York, 1957).
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known self-consistent-field (SCF) equations for the
one-particle functions.

While this model is extremely useful for many pur-
poses, it has a fundamental shortcoming. Since the
wave equation is not separable in the individual par-
ticle coordinates, the many-electron eigenfunction can
never be written as an antisymmetrized orbital product.
Physically, this means that the details of the way in
which the particles mutually correlate their motions is
not adequately represented. There are two general
methods of surpassing the basic approximations of the
independent-particle model: (1) Explici'tly introduce
the interparticle coordinates r;, into the trial wave
function. (2) Write the trial wave function as a linear
combination of antisymmetrized products of one-
electron functions (commonly called configuration in-
teraction). The first procedure has met with great suc-
cess for two-electron systems such as helium-like atoms
and the hydrogen molecule. '' It has established the
energy eigenvalues for the helium isoelectronic series
within the current limits of experimental error. ' How-
ever, it suGers from the extreme computational diK-
culty involved in extending it to larger systems. One
attempt has been made to do the exactly analogous type
of calculation for the lithium atom, ' which gave good
results, although nowhere near the accuracy obtained
for helium. The second method (configuration inter-
action), while it can be readily applied to any system
within reach of ab initio calculations, has always been
plagued with the difhculty of slow convergence.

The primary purpose of the present research is to
make a thorough investigation of the method of con-
figuration interaction to see just how well one can
expect to do with expansion lengths which are still
tractable on present-day computing equipment. The
systems chosen were the lowest 'S and 'S states of the
helium atom, the lowest 'S state of lithium, and the
lowest 'S state of beryllium, and the respective iso-
electronic series through Z=8. The list thus includes
an excited triplet and several systems with more than
a single closed shell.

A second purpose, of course, is to produce wave
functions which should be a reasonable compromise be-
tween accuracy of approximation and usability, and
hence useful for studying properties like diamagnetic
susceptibilities, hyperfine splitting, transition proba-
bilities, etc. A third purpose grew up in the course of
the investigation, namely an attempt to predict the
stability of the isoelectronic negative ions.

'E. Hylleraas and J. Mitdal, Phys. Rev. 103, 829 (1956);
T. Kinoshita, ibid. 115, 366 (1959);W. Kolos, C, C. J. Roothaan,
and R. Sack, Revs. Modern Phys. 32, 178 (1960).' H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933);
W. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 32, 219
(1960).

4 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959).' H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).

)jcjcjS'jj
where

H,j=(c,IscIc,); s,j=(c,Ic,).

The condition for the energy to be an extremum, 58=0,
is the well-known matrix eigenvalue equation:

P, H,,c;=8+, S;,c,. (3)

The Hamiltonian used here is the nonrelativistic, spin-
independent, infinite-nuclear-mass, Schrodinger Hamil-
tonian

Zq 1
&=2

I

———I+ 2
2 r„) m(n r~„

It is the eigenvalue of this Hamiltonian which is re-
ferred to as the exact energy throughout this paper.

The specific forms of the configurations used for the
systems studied here are the following linear combina-
tions of Slater determinants.

2 electrons ('S,'S):

(~x) = Lv2v'»j ' Z.
x{g»„(1)«"(2)PI +

I x~.(1)~~"(2)J3I)

3 electrons ('S):

XZ.{I P~„(1)«~.(2)f3' (3)~
I

+
I ».(1)~v.(2)N(3)~ I ),

(5)
(~x)'SW= L3~2v'»j '

XQ„{2I ~i,„(1)«i,„(2)nk(3)& I

—
I ~"(1)«~.(2)J3tt (3)~I

—I4 (1)~@~.(2)0».(3)~ I )
4 electrons ('S):

(It)'ex=I +~(»»)'j '

XQ„„{IPi,„(1)«i,„(2)PIIi, „ (3)ay), „ (4)PI
+ I

x .(1) v ,(3)PA , (3) 4 , (4)PI)

The symmetry species of each orbital is labeled by X,
the degeneracy by Dz, and the subspecies by p, . The
bars over the orbitals x, p, or It indicate the complex

' Unless otherwise specified, atomic units (a.u.) are used
throughout this paper. Energy units are 1 a.u. =27.210 ev, length
units are 1 a.u. =0,52915 A, and m, =h=e=1.

GENERAL THEORY

In the method of configuration interaction, the state
function is approximated as a linear combination of
many-electron functions,

O'=P, c,4,,

where each of the C,'s (configurations) is an antisym-
metrized product of one-electron functions (spin orbi-
tals), and the coefficients c; are taken as those which
minimize the total energy. The total energy for such a
function is
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conjugate. The phases of the spherical harmonics in
these orbitals t see Eq. (6)j are chosen such that
Yq, „=Yq, „.Summing over the subspecies p from —A,

to +X then yields the 5 state appropriate for each case.
The minus sign in the two-electron functions, of course,
is for the '5 state. The two types of configurations that
can be constructed for the three-electron case are
linearly independent and correspond respectively to a
'5 and '5 coupled E shell. Two such functions could
have been constructed for the four-electron case if four
distinct orbitals had been used. However, for simplicity
of the computer programming and because the approxi-
mation used was expected to be adequate, the four-
electron configurations were always constructed with at
least one of the orbitals doubly occupied.

The basis set of one-electron functions chosen con-
sisted of the normalized Slater-type orbitals defined by

(6)

While the nonorthogonality of this set of functions
would rapidly make it impracticable with increasing
numbers of electrons, the problem was still tractable
for four electrons, and the results should remain very
nearly the same as if an orthogonalized set were used.
If one were to go to still larger systems, it would, no
doubt, be necessary to use some orthogonalized set of
functions.

'S TWO-ELECTRON SYSTEMS

The lowest '5 state of the helium atom has been
studied by numerous authors' using the configuration
interaction approach, and it is included here for the
sake of completeness as well as a testing ground and
starting point for subsequent calculations on larger
systems. Since much that can be said about the two-
electron '5 state is applicable to the rest of the systems
being reported on, it will be dwelt on to some extent.
The set of s-functions that was finally settled on is
is, 2s, is', 2s', 3s'. ' Except for the added 3s' function,
this is the same basis set as was needed for the helium
Hartree-Fock function. ' Even the f''s were fairly similar
(/=1.48, 3.7, as opposed to 1.4, 3.0 for the Hartree-
Fock, i, (f,'). All possible configurations (15) that
could be made from these s-functions were included in
the wave function. The f's were determined by straight-

7 G. R. Taylor and R. .G. Parr, Proc. Natl. Acad. Sci. U. S. 38,
154 (1952); H. Shull and P. Lowdin, J. Chem. Phys. 30, 617
(1959); E. Holgien, Phys. Rev. 104, 1301 (1956); D. H. Tycko,
L. H. Thomas, and K. M. King, ibid. 109, 369 (1958); R. K.
Nesbet and R. E. Watson, ibid. 110, 1073 (1958).' Priming on functions of the same symmetry refers to different
values of t, e.g., 1s, 2s, 1s', 1s"means a set of Slater type orbitals
with exponentials of gI, =&&,/gl, '&pl, ". To avoid an overly
cumbersome notation, this convention is not adhered to when
going to a different symmetry, e.g., 2p is understood to have a
different f than ns.' C. C. J. Roothaan, L. M. Sachs, and A. &, &eiss, Revs.
Modern Phys. 32, 186 (1960).

forward numerical minimization of the energy over a
two-dimensional 1 -grid.

The above basis set was settled on only after a fair
amount of numerical experimentation. The set is, 2s, 3s,

, es with a single i reproduced, of course, the re-
sults of Holgien and Shull and I owdin. Independent
variation of the f's in this set, as well as the set
is, is', 2s", 3s", , Ns", was tried but soon aban-
doned, in view of the ratio of paucity of results to
amount of labor required for the f variation —a ratio
that seemed to approach zero rather rapidly. One also
runs into problems of linear dependence and multiple
minima with a large number of nonlinear parameters.

As the results indicate (Tables II and III), it is
necessary to add in higher angular configurations
(np', md', etc.) to account for most of the correlation
error. As with the s functions, a "double (" set of p
functions was found to be the best compromise between
amount of labor and accuracy of results —the final set
being 2p, 3p, 2p', 3p'. All possible configurations (10) of
these functions were added to the s-function substruc-
ture. Single ( sets of each symmetry were used for all
higher angular configurations, since their contributions
are small and become negligibly different from multiple

t sets. The ('s were optimized numerically in a progres-
sive fashion by holding all lower /-value terms fixed-
a procedure that was verified by a few spot checks which
reminimized the lower set.

The upshot of all of this is the following 35-configura-
tion function put forward as an approximation to the
lowest '5 state of helium.

'4', s——(1s,2s, 1s',2s')3s')+( 2p3p)2 p', 3 p')

+(3d,445d)+(4f»f)+(5g) (7)

The bracket notation here is shorthand for a linear
combination (variationally determined coe%cients) of
all possible configurations that can be made from the
functions in the bracket, e.g. ,

(3d 4d 5d) =—c (3d)'+cs(3d4d)+cs(4d)'
+c4(3d5d)+cs(4d5d)+cs(5d)'.

This type of function determined for helium was also
applied to the isoelectronic series of ions for Z ranging
from 1 through 8 (Table I). The ('s were optimized
along the entire series by straightforward minimization
at a few selected points, with. the remaining points
being read off from the resulting f' vs Z curves. No
doubt, better results could have been obtained in
di6'erent regions of the isoelectronic series by adjusting
the basis set. However, this procedure was not followed,
partly to avoid the extra work, and partly to insure
some consistently uniform behavior along the series,
which is of importance for estimating the error for the
negative-ion end of the series. In particular, it should
be noted that the error in the total energy decreases
with decreasing Z, taking a rather sharp dip at H (see
Table I). This is a trend which appears to be quite
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TABLE I. 'S two-electron systems —35 con6guratioTIs.

Energies
Computed
Exact'
Error

g's

ga
gs'

4

fu

Coe%cients -.

1$
is2s
2$
isis'
2sis'
1$"
is2s'
2s2s'
1s 2$:
2$"
1$3$'
2$3$'
1$'3$'
2s'3$'
3S 2

2P'
2P3P
3P',
2P2P',
3P2P'
2P",
2P3P',
3P3P',
2P,'3P'
3P"
3d
3d4d
4d'
3dSd
4dSd
Sd'
4f2
4fSf
Sf2

Sg2

—0.52751.—0.52775
0.00024

0.3
1.05
0.96
1.8
1.9
2.3
2.5

0.09243—0.08983
0.02180—0.75813
0.08886—0.01312
0.05199—0.04463—0.12684
0.20378—0.2283g
0.10745—0,05400—0.25226
0.15331
0.5331g—0.48239
0.1432g—0.12255
0.06364
0.03555—0,48351
0.22807
0.16493
0.15965
0.05073—0.16718
0.17595
0.0g481—0.20000
0.06998
0.01448—0.02709
0.01680
0.00177

—2.90320—2.90372
0.00052

1.48
3.7
2.7
5.4
4.5
5.2
6.2

0.30709—0.58623
0.14117—0.59306
0.12052
0.07324—0.29466
0.05457
0.05529
0.07434—0.55471
0.16365
0.14812—0.00026
0.14627
0.34907—0.38838
0.14147—0.08323
0.05171
0.01409

—0.24336
0.12920
0.01274
0.06653
0.03533—0.11962
0.13109
0.06117—0.15148
0.05356
0.01137—0.02110
0.01295
0.00127

—7.27924—7.27991
0.00067

2.52
5.75
4.45
8.9
7.2
8.2
9.9

0.51545—0.76338
0.15375—0,74523
0.19361
0.10743—0.393g4
0.10211
0.10123
0.07174—0.64785
0.19433
0.19574
0.04921
0.14061
0.25757—0.29719
0,11023—0.06365
0.04059
0.00948—0.17516
0.09531
0.01129
0.04530
0.02423—0.08301
0.09238
0.04287—0.10801
0.03870
0.00817—0.01522
0.00939
0.00091

—13.65481—13.65557
0.00076

3.55
7.8
6.2

12.4
10.0
11.2
13.6

0.52909—0.77925
0,14548—0.77651
0.21295
0.11900—0.41769
0.11532
0.11853
0.06726—0,63526
0.18946
0.20199
0.06600
0.12579
0.20137—0.23589
0.08811—0.05043
0.03252
0.00714—0.13560
0.07461
0.00939
0.03425
0.01796—0.06216
0.07000
0.03244—0.08280
0.03006
0.00633—0.01181
0,00731
0.00070

—22.03016—22.03097
0.00081

4.56
9.85
7.95

15.9
12.8
15.2
17.3

0.46506—0,74102
0.13445—0.75189
0.21196
0.11866—0.40700
0.11571
0.12075
0.06176—0.59439
0.17777
0.19356
0.06968
0.11181
0,16481—0.19469
0,07300—0.04156
0.02696
0.00572—0.11039
0.06113
0.00793
0.02752
0.01426—0.04967
0.05633
0.02609—0.06709
0.02455
0.00463—0.00893
0.00573
0.00057

—32,40540—32.40625
0.00085

5.57
11.9
9.7

19.4
15.5
18.2
21.0

0.32657—0.64641
0.11446—0.67076
0.18788
0.10760—0.36513
0.10329
0.11070
0.05472

—0.51865
0.15280
0.17141
0.06365
0.09605
0.13932—0.16542
0.06216—0.03528
0.02297
0.00478—0.09303
0.05172
0.00683
0.02300
0.01200

—0.04182
0.0474g
0.02197—0.05656
0.02070
0.00397—0.00763
0.00488
0.00048

—44.78057—44.78145
0,00088

6.58
14.0
11.45
22.9
18.3
21.2
24.7

0.23469—0.59240
0.10398—0,61327
0.17385
0.09914—0.33476
0.09582

. 0.10271
0.04915—0,46881
0.13866
0.15587
0.05950
0.08522
0.12053—0.14361
0,05405—0.03061
0.01998
0.00410—0.08029
0.04476
0.00599
0,01974
0.01023—0.03577
0.04075
0.01885—0,04g71
0.01790
0.00348—0.00666
0.00424
0.00041

—59.15570
—59.15660

0.00090

7.6
16.0
13.2
26.4
21.0
24.2
28.4

0.16845—0,54611
0.09318—0,57454
0.16146
0.09423—0.31444
0.08933
0.09828
0.04569—0.42973
0.12536
0.14483
0.05659
0.07687
0.10626
0.12693
0.04782—0.02703
0.01768
0.00359

—0.07068
0.03949
0,00533
0.01730
0.00901—0.03150
0.03589
0.01660—0.04289
0.01575
0.00309—0.00590
0.00375
0.00036

a See reference 4,

general and is the exact opposite of the behavior of
isoelectronic series SCF calculations. ' lt will show up in
all the other systems studied in this research.

This entire calculation was repeated for a smaller
(20-configuration) wave function, which was used as a
starting point for the four-electron atoms and ions.
The 35-configuration function was used as the E shell
starting point for the three-electron systems.

As a side interest, some attempts were made to pin
down for helium the limiting values of the energy im-
provements arising from the addition of each class of
angular configurations. This was done by adding a
successively larger single-t set of functions to the lower
angular substructure of the final 35-configuration func-
tion (see Table III). AE„was obtained by extrapolating

TABLE II. Breakdown of 'S two-electron calculations
(35 con6gurations).

Hartree-Fock'
Sb

S+P
S+P+D

S+P+D+F
S+P+D+F+G

Exact'

—0.48793—0.51439
—0.52647—0.52730—0.52747—0.52751—0.52775

—2.86168—2,87896—2.90039—2.90258—2.90307—2.90320—2.90372

—7.23641—7.25242—7.27575—7.27845—7.27908—7.27924—7.27991

—59.11114
—59.12595—59.15130—59.15467—59.15549—59.15570—59.15660

a See reference 9.
b The notation here is S = I 1s,2s, 1s', 2s', 3s' },

D = {3d,4d, 5d}, F = f4f Sf },6= [Sg}.' See reference 4.

P = (2p, 3p, 2p', 3p' },

AK The s-function limit has been determined already
by Shull and Lowdin' to be —2.87900 a.u. , giving an
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S+{2P)

S+f2P 3P)

S+{2p, 3p,4p)

S+{2P3P 4P 5P}

S+{2P3P 4P 5P 6P)

—2.87896

—2.89839

—2.90002

—2.90026

—2,90037

0.01943

0.02106

0.02130

0.02141

0,02146

2.41

2.9

3.2

3.5

—2.90042 3.7
Limit AE =0.02150+0.00001

TABLE III. Helium angular limit study. far along the angular series one must go. This investiga-
tion terminated at 35 configurations, through g func-
tions. It is clear that one could slowly approach the
eigenvalue by adding more configurations and higher
angular terms (h, i, , etc.), but it was felt that the
point of diminishing returns had been reached if not,
indeed, passed. The results are discouraging if one is
looking for Pekeris-type accuracy, however they are
somewhat encouraging in terms of somewhat larger
systems where one might settle for a reasonable com-
promise between accuracy and simplicity.

'S TWO-ELECTRON SYSTEMS
S+P'

S+P+ f3d}

S+P+(3d,4d }

S+P+{3d,4d, 5d)

S+P+{3d,4d, 5d, 6d)

S+P+D'

S+P+D+ {4f)

s+P+D+(4f, 5fl

S+P+D+ f4f,5f,6f)

—2.90039

—2.90216

—2.90250

—2.90258

0,00177

0.00211

0.00219

0.00223

3.6

—2.90258

—2.90297

—2.90307

0.00039

0.00049

0.00053
5.2

—2.90311 5.6
Limit AE„=0,00056

—2.90262 4.8
Limit AE =0.00225%0.00001

e

A similar search for a configuration interaction basis
set was made for the lowest 'S state of helium. This
search did not need to be as exhaustive as for the '5
state, since the orbital product approximation is quite
good to begin with, Putting the two electrons in spa-
tially different functions and with parallel spins already
has the effect of crudely representing the "way the
electrons tend to avoid each other. "Configuration inter-
action here, then, is simply a way of representing the
still finer details of the eigenfunction.

The function finally settled on as an approximation
to the eigenfunction is the following 19-conhguration
function:

a S—= (1s,2s, 1s',2s', 3s'}, P = (2p, 3p, 2p', 3p'I, D = I3d, 4d, Sd I. These are
the same sets of configurations (t's) as in the 35-configuration function of
E(1. (7).

energy increment over the Hartree-Fock for s functions
of 0.01732.

The necessity of higher angular terms and their
slow convergence can be understood in terms of the
singular behavior that the eigenfunction must have as
r12 —& 0."It can be shown that the eigenfunction should
have a cusp-like behavior at r12 ——0 such that

(1 8+)
4% 8'r12) r12 =0

and piling up higher and higher (s,p, d, ) angular
terms is attempting to represent the details of this
behavior much like representing a sawtooth function
by a Fourier series (Table II). To some extent, at
least, the convergence of the energy with such functions
is an indication of how important, energetically, the
details of this cusp are. As might be expected from the
increasing spatial compactness of the wave functions,
these angular terms become more and more important
for large Z.

As is clear from the results, the configuration inter-
action procedure is slowly converging from the stand-
point of reaching a particular limit as well as of how

"C.C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32,
194 (196O).

'%2~ = L1s,2s,3s,1s,2s ]
+L2p, 3p, 2p', 3p']+ L3d,4d, 3d']. (8)

The square bracket notation here means a linear com-
bination of all possible triplet combinations of the en-
closed orbitals, e.g. ,

L3d,4d, 3d'] =—cg(3d4d —4d3d)+cg (3d3d' —3d'3d)

+ ca(4d3d' 3d'4d). —

The doubling of the &'s here has perhaps a little
more physical significance in that they correspond
roughly to the two different electrons.

As with the '5 state, once helium was settled, this
function was applied to the isoelectronic series through
Z=S, keeping the same form of the function but mini-
mizing with respect to the ('s along the series. The
error trend along the series (see Table V) is not as
obvious as in all the other calculations. The correct
Schrodinger energy for helium is taken from Pekeris
(second paper in reference 3).

A rough estimate of the nonrelativistic Schrodinger
energy of the rest of the isoelectronic series was made
by adding to the Schrodinger one-electron atom energy
the relativistically adjusted experimental ionization
energy. "This adjustment was made by looking at the
experimental 2s ionization energy as the energy of a
one-electron atom in the 2s'5 state and applying the

"Atomic Energy Levels, edited by C. E. Moore, National Bureau
of Standards Circular No, 467 (U. S. Government Printing Ofhce,
Washington, D. C., 1949).
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TABLE IV. 'S two-electron systems —20 configurations.

Energies
Computed
Exact'
Error

f's

gs'

4
tg'

CoeKcients
1s'
1$2$
2s2
isis'
2sis'
1s"
1$2$'
2$2$'
1$'2$'
2$'2

2P',
2P2P'
2P",
2P3P',
2P,'3P'
3P'2
3d
3d4d
4d'
4f2

—0.52707—0.52775
0.00068

0.45
1.1
O.g5
1.2
1.7
1.8

0.36392—0.36241
0.08739—0.73912—0.15100
0.06447—0.47403
0.13327
0.05506
0.18344
0.29026—0.06097
0.08194—0.44443—0.0442 g
0.25885
0.02952—0.04880
0.03231
0.00441

—2.90270—2.90372
0.00102

1.52
3.3
2.4
4.3
4.1
4.7

0.33482—0.72953
0.18820—0.69063
0.16905
0.10337—0.60201
0.17657
0.16481
0.13980
0.09325—0.01985
0.01919—0.08940—0.01867
0.05922
0.02009—0.03432
0.02344
0.00299

—7.27862—7.27991
0.00129

2.55
5.4
3.95
7.1
6.5
7.6

0.11236—0.61207
0.1504g—0.53776
0.15519
0.08417—0.46916
0.14584
0.13646
0.10270
0.06786—0,01524
0.01186—0.06569—0.01049
0.04043
0.01413—0.02432
0.01673
0.00210

—13.65412—13.65557
0.00145

3.6
7.4
5.5
9.7
8.9

10.5

0.03996—0.56969
0.12823—0.48704
0.14867
0.07955—0.41584
0.13187
0.12821
0.08755
0.05598—0.01397
0.00927—0.05604—0.00674
0.03287
0.01083—0.01871
0.01292
0.00161

—22.02943—22.03097
0.00154

4.62
9.4
7.05

12.3
11.3
14.2

—0.06489—0.49185
+0.10725—0.41996

0.13085
0.06977—0.35556
0.11365
0,11200
0.07384
0.04736—0.01253
0.00761,—0.04823—0.00476
0.02755
0.00877—0.01518
0.01051
0.00122

—32.40464—32.40625
0.00161

5.65
11.4
8.6

14.8
13.7
17.0

—0.13554—0.44032
0.09247

—0.37138
0.11703
0.06245—0.31176
0.09997
0.09977
0.06400
0.04191—0.01184
0.00663—0.04349—0.00337
0.02428
0.00737—0.01276
0.00884
0.00104

—44.77979—44.78145
0.00166

6.68
13.4
10.1
17.4
16.1
20.0

—0.19161—0.39922
0.08107—0.33207
0.10532
0.05629—0.27696
0.08893
0.08958
0.05639
0.03581—0.01007
0.00568—0.03722—0.00295
0.02084
0.00635—0.01100
0.00763
0.00090

—59.15490—59.15660
0.00170

7.7
15.4
11~ 7
20.0
18.5
23.0

—0.24264—0.36099
0.07181—0.29750
0.09476
0.05066—0.24737
0.07955
0.08048
0.05015
0.032'?0

—0.00958
0.00506—0.03425—0.00216
0.01g77
0.00557—0.00967
0.00671
0.00079

a See reference 4.

well-known relation from Dirac theory:

t' 1 3 )n'(Z —0)'
&n irsc =~sea &+

~

4~)

where j is the angular momentum quantum number of
the electron, sz the principal quantum number, and o.

the fine structure constant. The shielding a. was chosen
as that which made the helium value agree with
Pekeris' value. The experimental error is indicated in
parenthesis in Table V and is, no doubt, responsible
for the fluctuations in the computed-energy error.

A fairly extensive search was also made for a bound
'S state of H, without success. The procedure followed
for varying the i pairs consisted of computing the
energy over a two-dimensional f grid until a minimum
was located and then homing in on the bottom of the
well. For H, however, the energies remained unbound
but gradually sloped down to —0.5 a.u. as i, —+ 1.0 and

i, ' ~ 0, with no sign of a minimum, as though the
Slater-type orbitals were trying to look like a bound
H-atom function plus a free electron. Since the accuracy
for the neutral system (helium) was 0.00002 a.u. , it
seems reasonable to assume that if H were bound by
this much it could have been picked up by the 19-
configuration function. It appears, therefore, that if the

H 'S state is stable, it is bound by no more than
0.0005 ev.

'S THREE-ELECTRON SYSTEMS

The ground state of lithium has been treated to some
extent by several authors in the configuration inter-
action approximation —Holgien s work coming closest
to the present treatment. " It has also been computed
with a 12-term function explicitly containing r,, by
James and Coolidge. ' The interest here is in extending
the entire approach described for the two-electron
systems to a system with an extra outer electron.

The starting point for this system is the 35-configura-
tion function for the 'S two-electron ion. The first 35
configurations of the lithium wave function then are
simply the E-shell configurations of I.i+, each multi-
plied by a 2s Slater-type function and properly anti-
symmetrized. The coefficients are freely determined by
the variational principle, but the E-shell configurations
and f values were taken over from the Li+ ion."The
problem then boils down to finding the best set of

'2E. Holgien, Kgl. Norske Videnskab. Selskabs, Forh. 31, 6
(1958).

"A simple example should serve to clarify this. If the two-
electron 'S state is represented by the function E= 1s'+1s2s+2s',
then the 6rst 3 configurations of the three-electron 'S state would
be E.2s' = 1s'2s'+1s2s2s'+2s'2s'.
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TABLE V. 'S two-electron systems —19 configurations.

Energies
Computed
Exact'

Error

—2.17521—2.17523

0.00002

—5.11069 —9.29713—5.11073 —9.29713
(&0.00001) (&0.00046)

0.00004 0,0

—14.73385—14.73402
(+0.00091)

0.00017

—21.42071—21.42105
(&0.00137)

0.00034

—29.35763—29.35792
(+0.00228)

0.00029

—38.54459—38.5444g
(+0.00273)—0.00011

g's

fs
fs'
gp
Cp'

Coefficients
is2s' —2s'is
2s2s' —2s'2s
3s2s' —2s'3s
is'2s' —2s'is'
isis' —is'is
2sis' —is'2s
3s1s'—1s'3s
is3s —3sfs
2s3s —3s2s
is2s —2sis
2P3P —3P 2P
3P3P —3P 3P
2P'3P'-3P'2P'
2P2P' —2P'2P
3P2P —2P 3P
2P3P-3P2P
3d3d —3d 3d
4d3d' —3d'4d
3d4d —4d3d

1.75
0.61
2.6
1.25
2.8
1.g

1.30806—0.33058
0.07243—0.01855
0.01283
0.03300—0.03446—0.04515—0.01374—0.08650—0.00499
0.01891—0.03845
0.01213—0.04038—0.01369
0,00562—0.01394—0.00824

2.6
1.12
4.0
2, 1
4.2
2.9

1.55467—0.42016
0.11369—0.05061—0.02350
0,13419—0.09254—0.04871—0.03433—0.08298—0,00248
0.02641—0.04549
0.01521—0.04718—0.01677
0.00678—0.01535—0.01010

3.5
1.63
5.4
3.0
5.5
4.0

1.70765—0.42775
0.11854—0.06182—0.49505
0.20753—0.12578—0.04463—0.04724—0.03856—0.00008
0.02888—0.04908
0.01661

—0,04808—0.01820
0.00764—0,01620—0.01151

44
2.13
6.8
3.9
6.8
5.1

1.76117—0.41916
0.11622—0.06672—0,58253
0.22429—0.13468—0.04851—0.04827—0.03272
0,00154
0.02888—0,04890
0.01651—0.04661—0.01829
0.00798—0.01623—0.01204

5.25
2.64
8.2
4.75
8.2
6.2

1.88502—0.46051
0.13406—0.09046—0.77519
0.28209—0.15927—0.04461—0.05500
0.00561
0.00191
0.02661—0.04435
0.01493—0.04268—0.01684
0.00730

—0.01469—0.01099

6.1
3.15
9.6
5.6
9.5
7.3

1.98305—0.49118
0.14610—0.10987—0.93849
0.32687—0.17395—0.04007—0.05822
0.03965
0.00207
0.02445—0.04036
0.01356—0.03908—0.01548
0.00727—0.01429—0.01093

7.0
3.65

11.0
6.5

10.9
8.4

1.99093—0.47697
0.13824—0.10580—0.96373
0.31993—0.16660—0.03948—0.05447
0.03720
0.00254
0.02335—0.03873
0.01295—0.03698—0.01490
0.00662—0.01296—0.00994

a For sources of e~act values, see text preceding Eq. {9).

extra "mixing" conhgurations which, in part at least,
represents some of the details of the correlation between
the E shell and the outer 2s electron. While one can
think of these configurations in this way, it is not en-
tirely correct, since the Slater 2s function is nodeless
and they are also acting to put a loop in the outer
electron orbital.

The search for the best extra terms was a straight-
forward, tedious, numerical task, which resulted in the
following 45-configuration function as an approxima-
tion to the '5 three-electron eigenfunction.

where

'0'3s ——E 2s"+C'i+4'2, (&0)

C,= (1s)'is"+ (1sis') fs"+ (2p)'1s"
+ (1s)'2s+ (2p")'1s+ (3d')'Is,

(~~)c,= (3p2p")'sis+ (2p"3p")'51s
+ (Sd3d')'51s+ (2p"3p")'52s.

The configurations like (3p2p")'51s are the triplet
coupled E-shell terms mentioned earlier, and the exact
form of the conhguration is the second of the three-
electron functions of Eqs. (5). It is interesting to see
from Table VI that their contribution is not negligible.
Also, they all contain two higher angular functions. It
is tempting to think of C1 as representing largely the
correlation between the outer electron and the inner

Hartree-Fock'
Holgienb

James and Coolidge'
E 2s"'"

E'2s ++I
E 2s"+@I142

Exact'

—7.43273—7.47050—7.47608—7.47402—7.47622—7.47710—7.47807

' See reference 9.
b See reference 12.
& See reference 5.
d For de6nitions see Eqs. {1G) and {11)of text.
e For derivation of the exact value, see text preceding equation (9) and

the discussion of 'S two-electron systems,

one of opposite spin, and C2 the correlation between
the outer electron and the inner one of the same spin.
However, this may be stretching the imagination too
much. Several spot checks were made on the E-shell
t's by reminimizing them for the lithium atom holding
the outer electron i's constant, with the result that
they remained substantially unchanged.

With regard to looking at the E shell in this way, as a
somewhat autonomous structure, it is interesting to
observe the energy improvements as successively higher
angular terms are added to it, starting with only s-type
E configurations. These results for Li and Be+ are
shown in Table VII and compared with the correspond-
ing two-electron ion. The comparison is, to say the
least, striking.

TABLE VI. Lithium ground-state energies.
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TABLE VII. Breakdown of E-shell energy contributions.

Two-electron 'S
Li+

S+P

S+P+D

S+P+D+F

S+P+D+F+G

—7.25242

—7.27575

—7.27845

—7.27908

—7.27924

0.02333

0.00270

0,00063

0.00016

—13.62678

—13.65096

—13.65393

—13.65464

—13.65481

0.02418

0.00297

0.00071

0.00017

Three-electron 'S
Li Be+

S 2s"

(S+P) 2s"

(S+P+D) .2s"

(S+P+D+F) 2s"

(S+P+D+F+G) 2s"

(S+I'+D+7+G) 2s"+I gb

(S+I'+D+&+G) 2s"+4 )+4,

—7.44720

—7.47054

—7.47323

—7.47386

—7.47402

—7.47622

—7.47710

0.02334

0.00269

0.00063

0.00016

0.00220

0.00088

—14.28639

—14.31047

—14.31342

—14.31411

—14.31429

—14.32211

—14.32350

0.02408

0.00295

0.00069

0.00018

0.00782

0.00139

a The notation is S =—f1s,2s, is', 2s', 3s'}, P =—f2p, 3p, 2p', 3p'I, D -=f3d,4d, sd), F = f4f,5f J, G = fSgf.
b See Eq. (11) in text for definitions.

Having settled on this function for lithium, it was
applied to the series of isoelectronic ions through Z= 8,
optimizing the f's and, of course, coeScients along the
series (Table VIII). The energies given as the exact
Schrodinger eigenvalues in Table VIII were estimated
from experimental data" by adding to the Pekeris
two-electron ion energy the observed 2s ionization
energy, relativistically corrected. Relativistic correc-
tions were estimated by treating the observed ioniza-
tion energy as the energy of a shielded Dirac 2s electron
with Slater shielding. The error trend mentioned previ-
ously should be noted.

An attempt was made to obtain binding for the '5
state of He, without success. An effect similar to that
for the H 'S state was found here also. In varying the
outer electron i, the energy remained above the com-
puted value for helium but gradually approached it as
is." was decreased, with no sign of a minimum. is,"
was taken down to 0.001, where the energy difference
between He and He was in the roundo6 error. Pre-
suming that He could be picked up with an error no
greater than that of the lithium calculation, one is led
to the conclusion that it is probably unstable, and, if it
is stable, it is bound by no more than 0.026 ev.

'S FOUR-ELECTRON SYSTEMS

There have been several configuration interaction
studies made of the beryllium atom, ""but none of the

"S.F. Boys, Proc. Roy. Soc. (London) A217, 136 (1953).
"V. V. Kibartas, V. I. Kavetskis, and A. P. Iutsis, Soviet

Phys. —JETP 2, 491 (1956).

isoelectronic series and only one that is comparable in
extent to this research. "The approach here is similar
to that applied to the lithium atom. For beryllium, the
20-configuration E-shell function for Be~ was taken
as the starting point —the first 20 configurations being
simply the E-shell functions multiplied by a doubly
occupied Slater 2s-type orbital, and the whole thing
properly antisymmetrized. Once again, the problem
came down to a straightforward but tedious search for
the best way of representing the I. shell and the best
"mixing" configurations.

The function finally settled on was the following 55-
configuration function:

where
'44 g S+P+D+F, —— (12)

5=E, (2s")'+i is",2s",is'") is'

+ (1s"2s+ 2s"2s+ is"'2s) 1s'+ (1s1s'+1s2s)1s'"
+ (is"2s"+is'" is")2s',

P=E~ (2s")'
+ (2p, 2p",3p"}1s'+ (1s"2s"+1s'"2s")2p'

+ (1s1s'+1s2s+ 2s'+ 1s2s"+'2p') 2p'" (13

+ (1s2s")3p'",
D= Ez) (2s")'+3d"1s'+ (1s"2s"+2p'")3d'

+ (1s2s+ 1s2s "+2p') 3g',
F=Es (2s")'+4f"2s'"+(is"2s")4f + (\s2s")4j's

The bracket notation is the same as before, and its
'6 R. E. Watson, Phys. Rev. 119, 170 (1960).
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TAaLz VIII. 2S three-electron systems —45 configurations.

Energies
Computed
Exact'
Error

g's
//b

//

CoeS.cients
(is)'2s//
(1s2s)2s//

(2s)22s"
(1s1s')2s//

(2sis') 2s//

(1 /)22

(is2s') 2s//

(2s2s') 2s//

(1s'2s'}2s//
(2s')'2s//
(1s3s')2s//

(2s3s') 2s//

(1s'3s') 2s//

(2s'3s') 2s//

(3 ')'2s//
(2p}'2s//
(2p3p) 2s//

(3p)'2s//
(2p2p'}2s//
(3p2p') 2s//

(2p/) 22 s//

(2p3p') 2s//

(3p3p') 2s//

(2p'3p') 2."
(3P')'2s"
(3d)'2s//
(3d4d) 2s//

(4d)'2s//
(3d5d) 2s//

(4d5d) 2s//

(Sd)~2s//

(4f )'2s//

(4f5f)2s//
(5f)~2s"
(5g)'2s"
(1s)'1s//
(is1s') 1s//

(is)22s
(2p)»s//
(2p")'1s
(3d')»
(2p"3p")3S2s
(3p2p")'S1s
(2p "3p")'S1s
(5d3d')'S1s

—7.47710—7.47807
0.00097

0.68
1.65
2.5

0.39992—0.60623
0.12431—0.56973
0.15246
0.08061—0.30086
0.08111
0.07687
0.05253—0.48815
0.15015
0.14625
0.03904
0.10306
0,18931—0.21814
0.08109—0.04648
0.02982
0.00684—0.12709
0.06975
0.00836
0.03261
0.01727—0.05913
0.06571
0.03058—0.07692
0.02762
0.00578—0.01071
0.00658
0.00064
0.03521
0.00532
0.01628—0.02050—0.00775—0.00173
0.00590—0.00100—0.02878—0.00143

—14.32350—14,32479
0.00129

1.20
2.4
3.7

0.40003—0.66540
0.12938—0.62625
0.17953
0.09338—0.33828
0.09877
0.09495
0.05127—0.49523
0.15328
0.15551
0.05410
0.09373
0.14926—0,17376
0.06519—0.03694
0.02400
0.00518—0.09859
0.05480
0.00695
0.02473
0.01284—0.04428
0.04964
0.02315—0.05879
0.02144
0.00445—0.00822
0.00503
0,00049
0.11056
0.00788
0.01529

—0.00269—0.00780—0.00181
0.00324—0.00202—0.02200—0.00151

—23.42312—23.42471
0.00159

1.71
3.18
4.9

0.32523—0.65367
0.12521—0.62099
0.18423
0.09521—0.33927
0.10271
0.09945
0.04837—0.46735
0.14566
0.15020
0.05746
0.08336
0.12163—0.14235
0.05374—0.03024
0.01978
0.00415—0.07978
0.04461
0.00580
0.01981
0.01021—0.03533
0.03976
0.01858—0.04740
0.01746
0.00324—0.00617
0.00392
0,00040
0.17003
0.00810
0.01268—0.00254—0.00703—0.00167
0.00197—0.00204—0.01753—0.00140

—34.77384—34.77573
0.00189

2.21
3.9
6.0

0.18140—0.56821
0.10581—0.55195
0.16150
0.08621—0.30239
0.09019
0.09057
0.04282—0.40310
0.12270
0.13190
0.05130
0.07102
0.10237—0.12009
0.04546—0.02552
0.01674
0.00346—0.06687
0,03749
0.00495
0.01651
0.00860—0.02972
0.03342
0.01563—0.03982
0.01467
0.00277—0,00524
0.00330
0.00034
0,20545
0,00657
0.01286—0,00232—0.00626—0.00152
0.00127—0.00224

—0.01402—0.00127

—48.37509—48.37728
0.00219

2.72
4.7
7.1

0.13862—0.57295
0.10786—0.54864
0.16747
0.08656—0.30134
0.09365
0.09185
0.04079—0.39320
0.12321
0.12934
0.05288
0.06630
0.08794—0.10335
0.03926—0.02197
0.01445
0.00296—0.05732
0.03220
0.00429
0.01412
0.00732—0.02536
0.02857
0.01337—0.03415
0.01264
0.00242—0.00454
0.00284
0.00029
0.24977
0.00661
0.00885—0.00208—0.00559—0.00138
0.00091—0.00197—0.01208—0.00114

—64.22661—64.22917
0.00256

3,22
5.5
8.2

0.00233—0.48009
0,08751—0.47383
0.13980
0.07572—0.26040
0,07819
0.08032
0.03591—0,33242
0,10049
0.11091
0.04485
0.05659
0.07692—0.09048
0.03445—0.01924
0.01268
0.00258—0.05010
0.02815
0.00377
0.01232
0.00645—0.02232
0.02512
0.01176—0.02999
0,01110
0.00215—0.00401
0.00250
0.00025
0.27268
0.00529
0.00863—0.00184—0.00503—0.00125
0.00062—0.00175—0.01054—0.00104

a See discussion of 2S three-electron systems in text.
~ The g's for all other functions are the same as for the 'S two-electron (35-configuration) calculations.

meaning here should be clear. E„E„,etc. , refer to the
corresponding angular configurations of the two-
electron function.

The results for this function are shown in Table IX
and compared with several other calculations. It is
clear that they are not very good when considered with
respect to the two- and three-electron calculations. One
reason, of course, is the smaller set of E-shell functions
used here. Another reason is the limitation of the four
electron configurations, as mentioned previously, to
always contain at least one doubly occupied orbital.
This precluded the use of a whole host of configurations
such as (1s1s') (2p3p), etc. , as well as the other class of

TABLE IX. Beryllium atom calculations.

Hartree-Foe&'
Iutsis et al. (3-conf.) b

Boys (7 conf.)'
Watson (37 conf.)d

S (22 conf.)'
S+I' (42 conf. )S+I'+D (51 conf.)S+I'+D+& (55 conf.)

Exact'

—14.57302—14.642—14.637—14.65740—14.59110—14.65722—14.66039—14.66090—14.66741

' See reference 9.
h See reference 15.
e See reference 14.
d See reference 16.
e For definition of symbols, see Egs. (12) and (13).
& See discussion of 'S four-electron systems in text.
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triplet coupled E- and L-shell conhgurations like
(isis') 'S(2pBp) 'S. The latter type of configurations
vanish identically unless all four orbitals are different.
As demonstrated by the three-electron calculations,

their effect is not negligible in terms of the desired
accuracy. At the time of writing the computer program,
it was thought that, if the electron correlation within
each shell could be adequately represented, the inter-

TABLE X. S four-electron systems —55 configurations.

Energies
Computed
Exact'
Error

g's
//b

///

//

fd'

Coe ancients
(1s)'(2s")'
(1s2s) (2s")'
(2s)'(2s")'
(is1s') (2s")~

(2s1s') (2s")'
(1s') (2s")
(1s2s') (2s")'
(2s2s') (2s")'
(1s'2s') (2s")'
{2s')'{2s")
(»")'(is)'

(is//1s"') (1s)'
(2s//1s"') (is)'
(is"')'(is)'
(2s1s")(1s)'
(2s2s") (1s)'
(2s1s"') (1s)'
(1s2s) (1s")'
(1s1s') (1s")'
(1s//2s") (2s)'
(1s//is'") (2s)'
{2p)2(2s")2
(2P2P') (2s")'
(2P')'(2"')'
(2p3p') (2s")'
(2p'3 p') (2s")'
(3p )2(2" )2

(2P )'(1s)'
(2p"3p") (1s)'
(3p")'(»)'
(2p»") (1 )
(2p3p") (is)2
(2P)'(1 )'
(1s"2s") (2p)'
(»"'2s") (2P)'
(1s1s') (2p")'
(1.s2s) (2p")'
(2s)'(2P")'
(»2s") (2p")'
(2P)'(2p")'
(is2s") (3p")'
(3d)'{»")'
(3d4d) (2s")
(4d)'(2s")'
(3d')~(is)2
(1s"2s")(3d)'
(1s2s) (3d') 2

(is2s")(3d')'
(3d)'(2p")'
(3d')'(2P)'
(4f)'(2s")'
(4f')'(2$")
(is"2s")(4f)2
(1s2s")(4f')'

—7.49561

0.42
2.0
0.48
0.70
1.5

0.93351—0.54524
0.06611—0.49069
0.15933
0.08109—0.45815
0.15026
0,13274
0.09820
0.49526—1.36905—1.42699
1.69724
0.81464
0.34009—0.33204—0.23863—0.10678—0.04208
0,10895—0.00846
0.03977—0.01367
0.01090

—0.05864—0.00983
0.03671
0.19593

—0.04896
0.01897
0.00030
0.00199—0.00001
0,02542—0.00786
0.03643
0.07606—0.03591

—0.00537—0.00951
0,00481
0.01036

—0.02215
0.01518
0.01182
0.00298—0.00189—0.00047—0.00176—0.00043
0,00090
0.00012
0.00118—0.00087

—14.66090—14.66741
0.00651

0.94
2.3
1.1
1.3
2.4

0.91165—0.65550
0.12367—0.54059
0.18505
0.08905—0.46686
0.16153
0.14407
0.09360
1.02587—1.85924—1.61620
1.44396
0.69164
0.23693—0.14418—0.18025—0.04860—0.01272
0.05337—0.01537
0.04142—0.01262
0.00902—0.05064

—0.00713
0.03113
0.06863
0.07103
0.02293—0.00226
0.00482
0.00034
0.01502—0.01021
0.02425
0.05941—0.02228—0.01606—0.00616
0.01173
0.01071—0.01766
0.01199
0.01320—0.00033—0.00105—0.00121—0.00118—0.00037
0.00172
0.00017—0.00021—0.00081

—24.34132—24.34915
0.00782

1.44
2.8
1.8
1.9
3.0

0.87754—0.63233
0,12968—0.50834
0.17823
0.08400—0.42311
0.14942
0.13390
0.08235
1.84495—2.58144—2.93374
2.10366
1.25315
0.28722—0.13654—0.24986—0.01808—0.00083
0.03242—0.01488
0.03908—0.01140
0.00754—0.04463—0.00527
0.02675
0.01148
0.09406
0.05472—0.00184
0.00639
0.00061
0.01078—0.01002
0.01799
0.04644—0.01525—0.02015—0.00443
0.01293
0.00958—0.01428
0.00960
0.01140—0.00122—0.00051—0.00164—0.00086—0,00026
0.00160
0.00010—0.00049—0.00034

—36.52621—36.53524
0.00902

1.94
3.3
2.5
2.5
3.6

0.77289—0.60914
0.12652—0.47842
0.17028
0.07944—0.38896
0.13923
0.12539
0.07406
2.43287—2.96682—3.60154
2,37362
1.40966
0.16687—0.05742—0.16372—0.00101
0.00561
0.02482—0.02081
0.03799—0.01104
0.00664

—0.04134—0.00376
0.02398—0.00457
0.08487
0.07438—0.00103
0.00778
0.00071
0,00734—0.00880
0.01449
0.04050—0.01152—0.02028—0.00343
0.01192
0.00g48—0.01191
0.00793
0.00973—0.00152—0.00010—0.00183—0.00067—0.00019
0.00154
0.00004—0.00063—0.00005

—51.21281
—51.22358

0.01077

2.44
3.8
3.2
3.1
4.2

0.54829—0.57897
0.11728—0.44629
0.16019
0.07442—0.35643
0.12857
0.11646
0.06686
2.14867—2.66161—2.60505
2.01148
0.78040

—0.13735
0.07618
0.07609
0.01015
0.00958
0.02690—0.03191
0.03501—0.00967
0.00574—0.03602—0.00314
0.02076—0.01002
0.07394
0.08595—0.00047
0.00911
0.00074
0.00431—0.00719
0.01222
0.03669—0.00926—0.01929—0.00281
0.01065
0.00756—0.01018
0.00672
0.00844—0.00160
0.0001.4—0.00187—0.00055—0.00014
0.00143
0.00000—0.00065
0.00013

—68.40009—68.41332
0.01323

2.94
43
3.9
3.7
4.8

0.05506—0.52899
0.10141—0.40414
0.14483
0.06759—0.3171.2
0.11404
0.10457
0.05912—0.68785—0.70078
3.04377
0.15512—1.95387—0.77242
0.30639
0.58992
0.01588
0.01196
0.03703—0.04g11
0.03413—0.00946
0.00513—0.03354—0.00220
0.01874—0.01143
0.06574
0.09239—0.00006
0.00997
0.00073
0.00117—0.00509
0.01056
0.03319—0.00774—0.01798—0.00235
0.00941
0.00679—0.00887
0.00582
0.00748—0.00159
0.00025—0.00185—0.00046—0.00011
0.00131—0.00002—0.00065
0.00025

& See discussion of ~S four-electron systems in text.
b All other functions are the same as for the 'S two-electron (20-configuration) calculations.



i836 A. W. WE I SS

shell eGects could be handled satisfactorily in a some-
what sloppy fashion. It seems reasonable also to pre-
sume that a beryllium wave function that is as accurate
as the 45-configuration lithium function should contain,
roughly at least, twice as many configurations. In this
regard, comparison of the 55-configuration energy with
Watson's (a 37-configuration function) and Boys' (7
configurations) shows just about what one might expect.
The results also illustrate the importance of the p-
function orbital degeneracy pointed out by Watson"
and Nesbet. "

The isoelectronic series through Z=S was also done
for the four-electron 'S ions in the same way as the
two- and three-electron systems (Table X). The same
wave function was used as for beryllium, optimizing the
f's along the series. The same error trend displayed by
the other systems also shows up here, the accuracy in-

creasing towards the negative end of the series. A re-
mark is in order concerning the estimated "exact"
total energies. They were computed by adding to the
Pekeris two-electron ion energy the relativistically cor-
rected experimental first and second 2s ionization en-

ergies. The second ionization energy was corrected in
the same way as described under the three-electron
systems. The first ionization energy was corrected by
applying the Breit. equation corrections for a shielded
hydrogenic 2s configuration, with Slater shielding.

The negative lithium ion, in particular, merits some
discussion. Since this is a variational calculation, the
computed energy of —7.4956i a.u. represents an upper
bound to the eigenvalue. Comparing with the exact
value for neutral lithium yields a lower bound to the
electron amenity of 0.4773 ev. If one assumes that the
computed Li energy is in error by the same amount as
beryllium, a value of —7.502i2 a.u. would be assigned
to the energy eigenvalue, corresponding to an electron
affinity of about 0.65 ev. In view of the error trend in
these isoelectronic series calculations, it seems reason-
able to take this as an approximate upper limit to the
electron affinity. Least-squares fitting of a cubic to the
errors in the isoelectronic series extrapolates to an
error of 0.00509 a.u. in the computed Li energy. This
yields a probable value for the electron affinity of
approximately 0.62 ev.

CONCLUSIONS

It appears clear that, in summary, one can say that
trying to obtain very accurate wave functions by con-
figuration interaction rapidly becomes a case of hope-
lessly diminishing returns. All of the results of this re-
search could easily have been improved on simply by

'7 R, K. ¹sbet,Proc. Roy. Soc. (London) A230, 312 (1955).

adding more configurations or perhaps by further
experimenting with the types of configurations, but it
is clear that the improvements would have been small,
and one would eventually converge on the correct
energy only by small bits at a time. If something
approaching Hylleraas or Pekeris type accuracy is de-
sired for systems with more than two electrons, one
will have to go to outrageously long expansions, prob-
ably too long for present day equipment. It is possible
to obtain a sizable improvement over Hartree-Fock
functions for larger systems with relatively simple
functions, as has been demonstrated by Boys on beryl-
lium and various authors on helium-like systems, but
picking up the remaining discrepancy is a long and
tedious task which appears to be simply out of range.

There are two directions that can be taken as a
follow-up to this work which appear to be of some
interest. Firstly, there are other systems than those
covered here which could be handled by these tech-
niques with comparable accuracy. Some excited states
of the atomic systems covered here are one possibility.
In particular, the lowest 'I', 'D, 'F series of states of
lithium and its isoelectronic ions can be handled very
easily, and probably with about the same accuracy as
the ground state. It might also be of interest to look at
the excited states of the same symmetry as the ground
state. They are approximated to by the higher eigen-
values of the configuration interaction matrix. Molecu-
lar systems such as H2, H3, He2, and LiH should also
be obtainable to a similar accuracy as the isoelectronic
atom.

Secondly, since the criterion of accuracy throughout
this research has been the total energy, other properties
computed with these wave functions should provide
other interesting criteria of goodness for the configura-
tion interaction type of approach —properties like
hyperfine splitting, diamagnetic susceptibility, etc. In
particular, one set of properties that bear looking at
are transition probabilities. While they require excited
states as well as the ground state, there is the nice fea-
ture that they can be computed by three diQerent
methods, the dipole length, velocity, and acceleration,
all of which would be identical for the eigenfunction.
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