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Cancellation of Kinetic and Potential Energy in Atoms, Molecules, and Solids*
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In the energy levels of valence electrons in atoms, molecules, solids, and liquids, there is a contribution
from the large negative potential energy inside the core of the atom and the large positive kinetic energy
which the electron has there. Phillips and Kleinman have shown how the kinetic energy can be represented
by a repulsive pseudopotential which cancels most of the potential energy inside the core. The explicit
representation of the pseudopotential is now developed further to demonstrate more clearly the extent of
the cancellation. The formalism justi6es the simple models which are in common use for treating valence
electrons. It is also used to relate similar atoms from diferent rows of the periodic table, and in particular
to discuss the systematic trends in the energy levels of the alkali and noble metal atoms.

I. INTRODUCTION

1
W~NE of the most interesting things about valence

electrons is the extent to which their observed
properties parallel those to be expected from apparently
very crude models or simple computational schemes.
We have in mind pseudohydrogenic models for atomic
energy levels; the point-ion approximation for crystal
and ligand fields; the nearly free electron model for
metals, alloys, liquid metals, and conjugated aromatic
hydrocarbons; and the valence bond scheme for crystal
and molecular structures. A common feature of all these
models or schemes is that either the core electrons are
ignored or their role vastly simplified. Another common
feature is that it is not readily apparent from, say, the
Hartree-Fock equations that the model should work
at all.

Let us take as perhaps the most extreme example the
fact that the band structures of metals are remarkably
nearly-free-electron-like as regards the form of E(k).
There is detailed indirect information about the shapes
of the Fermi surfaces in the alkali metals, the interpreta-
tiori of which' also agrees with detailed band structure
calculations of Ham. There is detailed direct informa-
tion for Cu, ' ' Ag, ' ' Au, ' '' Al '"""Pb," " less
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complete d'rectinformation on Sn" "Mg,"Zn" Cd"
and also numerous band structure calculations. Cer-
tainly in the noble metals and probably in lithium the
Fermi surface deviates markedly from a sphere, but the
deviation is a bulge in the direction of the nearest zone
faces, as would be expected on a nearly free electron
model with a considerable band gap. Indeed for all of
the metals listed above, the Fermi surface is recog-
nizably a moderate distortion of the free electron sphere.

The reason for such a resemblance to a free electron
band structure does not, of course, lie with the nearly
free electron approximation" —this approximation re-
quires the atomic potential to be weak compared with
the bandwidth, which is certainly not the case. The
reason lies instead in the cancellation between the
negative potential energy of the electron near an atomic
nucleus and the positive kinetic energy associated with
the rapid oscillations of the wave function within the
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region of the ion core. Mathematically the oscillations
are imposed by the requirement of orthogonality of the
valence electron wave functions to all the occupied
electron wave functions. In the past, the cancellation
has been obvious in the course of calculating matrix
elements in the orthogonalized-plane-wave (OPW)
method, numerical examples being given for instance in
reference 22. Recently, Phillips and Kleinman" '4 have
demonstrated the effect more explicitly by expressing
the terms arising from orthogonalization as a pseudo-
potential'4' and observing the cancellation in the calcula-
tion of the Fourier coeKcients. The implication of this
cancellation for the justification of the point-ion approxi-
mation has been discussed by Phillips. "

The purpose of this paper is firstly to demonstrate
the cancellation between kinetic and potential energy
much more explicitly in real space. Secondly, the theory
we develop throws light on the general validity of the
various simple valence-electron models mentioned
above. Thirdly, it provides a formalism which can
treat systems with different numbers of electrons on the
same footing, and thus leads to an understanding of the
systematic variation of the properties of the elements
throughout the periodic table. In Sec. II we start by
generalizing the OPW scheme to apply to any valence
electron problem including atoms and molecules, and
trace its relation to the Phillips-Kleinman (PK) scheme.
The demonstration of the cancellation is contained in
Sec. III, and in Sec. IV we discuss the relation of the
PK scheme to the simple valence-electron models. Sec-
tion V concludes with a discussion of the systematic
trends in the energy levels of monovalent atoms and in
the band structures of metals.

II. ORTHOGONALIZED ORBITALS AND
THE PK SCHEME

The basis of the OPW method is that the wave func-
tion of a conduction electron in a solid is nearly a plane
wave, or a linear combination of a few plane waves, in
the regions between the ion cores, but that the oscilla-
tions of the wave function near the nuclei must be
inserted. As first pointed out by Herring, "this can be
achieved by subtracting some core orbitals from the
plane waves, e.g., a 3s—3p conduction-electron wave
function in sodium is represented by a plane wave
with some 1s, 2s, and 2p functions p~ subtracted:

(()PW) &ik. r P (y &~k.r)y

(t= 1s, 2s, 2p„2p„, 2p,). (1)

This representation works remarkably well because it is
a general feature of atomic wave functions that the
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inner loops of f come at about the same radii as the
main maxima of the 1s, 2s, etc. , functions. The
coefficients

(2)

(6)

where the f„are some simple set of suitable smooth
functions and the P~, the inner core orbitals again.

Let us now define the function P

which stands in one-to-one correspondence with the
true wave function P. It represents the smooth part of
P without the inner oscillations, and from (5) and (6)
we have

The norm of P is

when P is normalized to unity. Now as Phillips and
Kleinman have shown 2' the substitution of (8) into the
real wave equation,

(10)

leads directly to a wave equation for p,

(&+I'n)4 =&4,

I'z4 =Z~(&—K) (4~,4)4 ~. (12)

The entity V~ is an integral operator or nonlocal

in (1) are chosen to make (OPW) orthogonal to the
inner orbitals pg, and the g~ are chosen" as the 1s, 2s,
etc. , eigenfunctions,

(3)

of the same Hamiltonian B as we wish to calculate the
valence orbitals P for, since we know f has to be or-
thogonal to the lower energy solutions of its own wave
equation. The expansion of P in OPW's with coe%cients
C„ leads to the secular equation

P„[(xi Hie&)
—E(rim)]C„=0,

where ~e), ~ns) represent OPW's with wave vectors
k„, k such that k„—k„ is equal to a reciprocal lattice
vector. The cancellation between the potential energy
and the kinetic energy which comes from the orthogo-
nalizing terms in (1) can be seen" easily in the matrix
elements of (4), leading to a nearly free electron band
structure with small band gaps and an expansion of P
in a small number of OPW's.

Clearly, we can apply similar ideas to the calculation
of valence orbitals P in atoms and molecules, expanding
it in terms of a few orthogonalized orbitals x„
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potential

V~g(r) = t Uii(r, r')g(r')d'r',

where g(r) is any function and

U (, )=2 (&—«)4 *( )4 ().
Ke can separate U~ into

Uii= Vii.+Uigi, +Vi~~+.

(13)

(14)

(15)

fact leads directly back to the same secular equation
(4) as found in the orthogonalized orbitals method. In
a sense therefore it does not give anything new, but it is
interesting to note in passing what happens to the
indeterminacy. "Let us consider (4) again as the secular
equation for the orthogonalized orbital expansion (5).
By taking linear combinations of the x„, we can always
set up a new set of base vectors to describe our E-
dimensiona, l function space. One such base vector (for
each t) could be

with all the inner p orbitals grouped into Vi„, etc.
Then (13) and (14) show that only Vii„operates on
functions with p symmetry, etc.

In (14), the core energies E, lie lower than E, so
that Ug behaves like a repulsive potential which has
the general e6ect of cancelling some of the negative
potential V. Our task now is to express (14) in a form
which demonstrates more clearly the details of the
cancellation.

~4 = Z~ ~id~ (17)

to p in (8), the addition to the first term is immediately
subtracted out by the orthogonalization terms. Alter-
natively, if P is a solution of Eq. (11) with energy I',
then so is p+P&n&p, . Thus we are at liberty to impose
an additional constraint on P, and this will allow us to
simplify (14) through the choice of a particular g. We
shall apply the constraint in the form of a variational
principle, and there are a number of different quantities
one might vary.

In an actual calculation, one would usually expand P
in terms of a finite number of functions f, n= 1 to 1V,

and one could then minimize the energy subject to an
expansion in this finite function space, giving a unique
set of expansion coefficients C„. Such a procedure in

Ke are grateful to Dr. W. Kohn for emphasizing this point.

III. CANCELLATION OF THE POTENTIAL

One point about the orthogonalized orbital method
is that the expansion (5) in terms of orthogonalized
orbitals p„ is actually not unique. If a set of coefficients
C„ is a solution of the secular equation for energy 8,
then so is the set C +P,n, (f„,@,) a solution for the
same energy, where the o, & are arbitrary. The wave
function itself is unaffected by the change in the co-
efficients. The reason for this indeterminacy is that the
y„are overcomplete. The f„are complete and inde-
pendent, but the eRect of orthogonalization of the f„to
the core functions is to introduce linear relations among
the y„.

Q.(f„,y~)X„(r)=gi(r) =0. (M)

Adding any amount of each function g, (r) thus changes
the coefficients of the xI, as stated without affecting the
wave function.

A precisely analogous indeterminacy of g exists in
the PK scheme. "If one adds

If S is large, these functions would have a very small
amplitude in view of (16) and their coe%cients in the
expansion of P would in general be correspondingly
large. Thus we can expect large numbers in the solution
of (4) which later cancel one another, leading to some
numerical difficulties.

A different approach is to choose $ to be the smoothest

P with the inner oscillations subtracted out as well as
possible, i.e., to minimize j'~ V'Q~ dv/($, Q). The analysis
follows closely the one for V+Vii below, and we shall

only quote the result. With the particular g mentioned,
(12) reduces to

(V+V.)e= t,Ve Z~(ei, U—e)ei]
+t (~-~') Z~(4~8)4~] (»)

Here T is the kinetic energy operator, and T the ex-
pectation value,

~= (e,7'e)/(e, ~),

using the P giving the minimum value.
Alternatively we could demand that the cancellation

between V and Vg be as good as possible, i.e., we mini-

mize
~ (P, (V+ Vii)g) ~/(P, P). The variational equation

1s

(Sy, (Vy V,)y) V(Sy,y) =—0,
where

V=(4, (V+V )4»/(4A) (2o)

using the minimum @. Substituting the variation (17)
gives

(4, (U+U )4)—U(4 A)=o (21)

Incidentally, it is not difficult to verify that a P exists
which satisfies both (11) and (21): starting with any P
that satisfies (11), a set of u~ can be constructed such
that (17) satisfies (21), as well as automatically satisfy-
ing (11).From (12) we have

(4,V 4)=(&—«)(4 A) (22)

On subtracting (21) from (22) and substituting back
into the right side of (12), we obtain

(U+U )4=LVd Z(4, V4)4 ]-
+LV E (~,~)~ ]. (23)

"We are grateful to Dr. S. F. Boys for emphasizing some of
these points; see also V. Heine, thesis, University of Cambridge,
1956.
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FIG. 1. The cancellation in the potential acting on the valence
electron in Si'+: Z=rU(r); Z'=r[U(r) —(p»„V)p», —(g»„V)P»,]
=r[U+V»», 7 V(r) i,s .the same potential' as used by Kleinman
and Phillips. ' The tTI„@2,are from Hartree et a/. "Although the
@& are not eigenfunctions of U(r) as assumed in Eq. (3), this
should not affect Z' very much. Note added in proof. The repulsive
potential in Fig. 1 of reference 24 is twice too large. When cor-
rected, their effective potential is in good agreement with ours.
(Private communication from Dr. Kleinman).

In both (18) and (23), we have separated the right side
into two brackets. The first bracket has simply the form
of a nonlocal potential acting on»t, but in the second
bracket the coeKcient V or (E T) itself requir—es a
knowledge of »t», so that it is not in a useful form for
detailed calculations. However, by taking the matrix
element with»t», we see that the second bracket in each
case is smaller than the left side of (18) or (23) by a
factor P» l (P»,»t) l' which is typically about 0.1. Thus
the first bracket represents about 90% of the net po-
tential U+V»» after the cancellation ha, s been done
rigorously. For our present semiquantitative discussion,
we shall therefore drop the second bracket in (18) and
(23). We could take it into account by perturbation
theory, in which case its first-order effect is simply to
multiply the first bracket by 1++»l (»t»»t) l', but in
practice, for accurate calculations, one would probably
revert to the orthogonalized orbital equation (4).

Retaining only the first bracket of (18) and (23), we
have as our net nonlocal potential

where we have assumed U itself is local as in the Hartree
approximation. A simple generalization of (24) can be
written down if U is nonlocal due to inclusion of ex-
change terms. Now if the»t»» formed an infinite complete
set of functions, the square bracket in (24) would vanish
identically, giving complete cancellation between U
and Un. In practice we only have a finite number of »t»»

2' J. McDougall, Proc. Roy. Soc. (London) A128, 550 (1932).
30 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.

60, 859 (1941).

in the core, but these g» are quite a good set for repre-
senting the bulk of U over the region of the ion core
because the 1s, 2s, etc., functions have their main
maxima at nicely spaced increasing values of r, so that
we get cancellation in (24) to that extent.

We can show the extent of the cancellation in a more
perspicuous though slightly approximate form by taking
»t out of the integral. Suppose»P and»t» have the sym-
metry of a spherical harmonic Y& . If the cancellation
is nearly complete as we suppose it will turn out to be,
»t varies slowly and inside the ion core can be replaced
by Ar'Y& . The A can then be taken out of the integral,
and from (23) we obtain

(V+ Vn»)»t»= IV—Q»(Q»r'Y»„, V) (»t »/r'Y»„)]»t». (25)

We have here reduced V+ Un to a semilocal potential,
i.e. ; a local potential but different for each /, since in
(25) only the»t»» having the same t as»t» contribute. The
extent of the cancellation is the exter»t to which V(r) can
be expanded in the t»notte set of fi»nctions»t»»r'Y» . Thus
the cancellation is almost complete inside the core, but
nonexistent outside the core. This is clearly illustrated
by the numerical example shown in Fig. 1.

IV. RELATION TO SIMPLE VALENCE-
ELECTRON MODELS

In Secs. II and III we have seen how an actual
Schrodinger equation H»P=E»P may be replaced by
(H+Vr»)&=E&, where»t» is essentially the same as lt

but with the rapid oscillations inside the ion core re-
moved. Thus in discussing the valence electrons in
atoms, p would be a 1s-like or 2p-like function. In
metals»t» would approximate a plane wave or a simple
combination of plane waves; the potential is fairly
Rat between the atoms and the large negative potential
inside the ion core is cancelled off by Uz, so we expect
that U+ Un can be treated by perturbation theory. In
this way then, we can justify the use of the simple
models for treating valence electrons, like the nearly
free electron model, which were mentioned in Sec. I,
and we obtain a general understanding of why they
work as well as they do.

This is satisfactory as far as it goes, but we can
develop much more precisely the relationship of our
cancellation scheme to any particular model. Let us
split H+ V»» into a simple model Hamiltonian HM and
a perturbation Up .

H+ Ur» HM+ U p = (p'/2ni+ UM)——
+ (U—UM+ Un) (26)

For instance, in a metal we might choose U~=con-
stant; this allows us to absorb the constant part of
E F in (18) or of V in (23). —In an atom or ion a useful
UM might be a cut-off Coulomb potential (see Fig. 1):
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We now use the arbitrariness of P (Sec. III), and choose

$ to minimize

TABLE I. Energy levels of alkali atoms. '

(~,H ~)/Q, ~); (ev)

—6y
(ev) (ev) (10 ' cm)

i.e., we choose the g most nearly an eigenfunction of
H~. Analogously to (21), we have

where

G= L(g,g) —Eil (4i,g) I'3/(~E)'(4A)&&1, (29)

g= (v—vm)p. (30)

Whenever the criterion (29) is well satisfied, g is close
to f, an eigenfunction of the model Hamiltonian H~.
It is sufficient, therefore, to require that

G'= L(g', g') —Zil ((i,g') I'3/(&E)'(f f)«1, (29')

where
g'= (V—

V iver) f. (30')

Thus a knowledge of the solution of the real problem g
is not required to test the accuracy of the model. If U~
contains adjustable parameters, these can be chosen in
such a way as to minimize G', which is the same as
requiring optimum cancellation of the difference be-
tween V and V~ by the orthogonalization terms. It is
interestin0; to note that in this vg, riational principle the

(e„H~e) E~-(y„y) =0,

where E~ is the value of (p,H~p)/(g, p). From (3) we
have

(e,HV) -«(@,e) =0.

Subtracting these two equations gives an expression for

Eight, g), which when substituted into (11) and (12)
gives

(H+ VIi)y

=H~e+L (v v~)4—Zi(4—i, (v —v~)4)ki]
+(E E)2-(~,~)e =E~ (28)

We shall take the square bracket as our perturbation
V&, if we have chosen V~ to represent V fairly well

outside the core, then the cancellation of V—V~ by
the Vg should be almost complete, so that V~ is really
small. The term following UI can be neglected com-
pletely; alternatively, as remarked in connection with

(18) and (23), (E—E~) in first order is (p, vrp) and
the expectation value of the whole term is

(y, v y) p I (y A) l2=0.1(y,v y),

so that it can be taken into account correctly to first
order by multiplying V& by 1++iI (Pi,P) I'=1.1 in a
typical case.

A criterion which can be used to test whether Vi g
may be regarded as small compared with (AE)p, where
AE is of the magnitude of a typical separation between
valence-electron energy levels, is suggested by the
standard criterion for convergence of generalized
Fourier series:

H
Li
Na
K
Rb
Cs

(1s) —13.60
(2s) —5.W
(3s) —5.14
(4s) —4.34
(5s) —4.18
(6s) —3.89

~ ~ ~

(2p) —3,54
(3p) —3.04
(4p) —2.73
(5p) —2.60
(6p) —2.45

~ ~ 0

1.85
2.10
1.61
1.58
1.44

~ ~ ~

1.72
2.10
2.61
2.81
3.04

a —c. and —e& are the energies of the levels relative to the ionized state
of the atom. e~ represents the average for the j=q and j=) levels. Values
of es, e~ are taken from reference 31, values of the atomic radius ra from
reference 21.

model Hamiltonian itself is varied to approximate
closely to the actual Hamiltonian H+Vz, it contrasts
with the usual uses of model Hamiltonians, when the
parameters of the model are varied to minimize the ex-
pectation value of the true Hamiltonian with the model
wave function.

V. ATOMIC ENERGY LEVELS

N

vyv, = v—p (y„„v)y„
v=j,

(31)

Consider the ground states of the alkali atoms
(Table I). By using the cancellation theorem and Eq.
(11),we always reduce the wave function of the valence
electron to a 1s-like function. We have therefore a
basis for comparing the different alkali atoms, and the
energy levels just depend on the goodness of the can-
cellation. The erst thing we note is that in the s series,
the first level H 1s has a very low energy compared with
I.i 2s, Na 3s, etc. ; this is because in the case of H 1s
there are no lower core orbitals to do any cancelling.
The same effect can be seen in the Li 2p level, though
to a much lesser extent because here the centrifugal
l(1+1)/r' term in the radial wave equation to some
extent makes up for the lack of a 1p function. After
that, Table I shows that the levels in both the s and p
series get progressively more weakly bound: On the
one hand, the number of functions increases approxi-
mately as the square root of Z so that the cancellation
gets better and better; on the other hand, the potential
itself gets deeper rather less rapidly than proportional
to Z. The facts show that the erst tendency dominates
over the second, as is hardly surprising since from (25)
the net potential left in the region of the core after
cancellation is the remainder after expanding V(r) in
the series of e functions, and due to the rounded shape
of the functions we might expect the series to converge
at least as fast as 1/e', i.e., as 1/Z. These remarks are
at present, of course, no more than qualitative comments,
but they show how Eqs. (25) and (28) open the way for
a quantitative comparison between diferent atoms.

Incidentally, we note from Fig. 1 that the potential
is not cancelled o8 for r(r~, the radius of the E shell.
For functions of s-like symmetry, (25) reduces to
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where e is the principal quantum number of the outer-
most s electron in the core. Now g„,(r) —+ const and
V(r) —& —~ as r —+0, so that V+ Vtt contains an un-
cancelled spike —Ze'/r of radius rx. Now ric is approxi-
mately ao/Z, where ao is the Bohr radius, so that in
first-order perturbation on P the spike contributes an
energy of about 4n.

~
g(0)

~

'Zrx2 1/Z rydbergs which is
unimportant for large Z.

Table I also shows how the radii r of the alkali
atoms increase significantly with Z. Part of this is due
to the decreasing e, since Pi. exp) —(e,):rj at large r,
giving r, o- e, :.However, the observed increase in r, is
considerably greater than this, and must be due to the
fact that good cancellation inside the core pushes @ out
to the regions of negative potential energy outside the
core.

We turn now to the other monovalent series, the
noble metals. Their e, ionization energies are rather
larger than those of the alkalis:

Ag, 7.57 ev; Cu, '7.72 ev; Au, 9.22 ev. (32)

The reason for this is as follows. In copper, for example,
the 3d shell is rather loosely bound compared with the
cores of the alkali atoms, and consequently extends out
to a considerably larger radius than the 3s function.
Thus the 3s function in (31) is incapable of cancelling
oG the potential in the outer regions of the core, leaving

a large negative potential which produces a tightly
bound 4s level, i.e., a large e, . Thus the looser the d
shell, the tighter the next s shell is; and if we take the
order of increasing looseness of the d shells as Ag, Cu, Au
as evidenced by their color and chemical valencies, we
note that this is indeed the same as their order of in-
creasing e, in (32).

A rough theory has already been given in reference 1

relating the electronic band structures of the alkali
metals to the a'tomic parameters e,—e„and r, and the
argument seems to be applicable qualitatively also to
groups IIA and IIIA of the periodic table. In Na, Mg, Al,
the band gaps appear to be very small. "As Z increases,
e, ( ~ r, ') decreases more rapidly than e,,—e„, resulting
in an increasing band gap with the s-like state at the
gap being the lower one. In Li and Be, however, there
are large band gaps with the p-like state lowest. , due to
the small r,, and the abnormally low t,—e„which we
have seen is in turn due to the absence of a 1p shell.
As Ziman" has pointed out, these systematic trends in
the band structures are directly rejected in the elec-
trical resistivities and Hall coe%cients32 of these metals
as well as in other properties.

' F. Ham, J. M. Ziman, and other contributors, in The Fermi
Surface, edited by W. A. Harrison and M. B.Webb (John Wiley R
Sons, Inc. , New York, 1960)."J.M. Ziman, Electrons and Phonons (Oxford University Press.
New York, 1960), p. 488.

PH YSI CAL REVIEW VOLUME 122, NUM BER 6 JUNE 15, 1961

Configuration Interaction in Simple Atomic Systems*t

A. W. Wzrssf.
Laboratory of 3/Iolecular Structure and Spectra, Department of Physics, University of Chicago, Chzcago, Illinois

(Received February 8, 1961)

The ground-state wave functions of the helium, lithium, and beryllium atoms were approximated by a
superposition of configurations with expansion lengths ranging from 35 for helium to 55 for beryllium.
The discrepancies in the total energy are 0.014 ev for helium, 0.026 ev for lithium, and 0.17 ev for beryllium.
A 19-configuration function was also applied to the lowest S state of helium, with a resulting accuracy of
0.0005 ev. The calculations were also made on all the isoelectronic series of ions through Z=8, the dis-
crepancy remaining of the same order of magnitude but increasing with increasing Z. A lower bound to the
electron affinity of lithium is set at 0.4773 ev, with the most probable value, obtained by extrapolating the
isoelectronic series, being placed at 0.62 ev.

INTRODUCTION

' PROBABLY the most widely used and most gener-
ally successful approach to many-particle quantum

mechanics is the independent-particle model, which at
its best is represented by the Hartree-Fock approxima-

* This work was assisted by the Office of Naval Research and
by a grant from the National Science Foundation.

f Submitted in partial fulfillment for the degree of Doctor of
Philosophy, Department of Physics, University of Chicago.

f Present address: National Bureau of Standards, Washington
25, D. C.

tion. Physically, this approximation amounts to treat-
ing the interparticle interactions in only an average
fashion, i.e., each particle is assumed to move in only
the average field of all the other particles of the system.
Mathematically, the method consists of approximating
the state function as an antisymmetrized product of
one-particle functions (spin orbitals). Subjecting such a
function to the variational principle leads to the well-

' D. R. Hartree, The Calculation of Atomic Structures iJobn
Wiley R Sons, Inc, , New York, 1957).


