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A number of corrections are made to the simple Lande formula
for the g values of levels deriving from the ground term of con-
figurations of the type 4f".These include (a) the Schwinger correc-
tion, to give an accurate value of the gyromagnetic ratio for the
electron spin; (b) a correction to allow for the deviations from
perfect ES coupling; (c) a relativistic correction, which is directly
related to the kinetic energy of the electrons; (d) a diamagnetic
correction, depending on the electron density of the core. In order
to calculate (b), the spin-orbit coupling constants and the Coulomb
integrals FI, are estimated either from existing spectroscopic data
or from a process of interpolation or extrapolation. An argument
is presented for taking ratios of the integrals FI, corresponding to a
hydrogenic eigenfunction. The various radial integrals required in

the calculation of (c) and (d) are derived from a modified hydro-
genic eigenfunction of the form r"e "cosht e(ar —n)g. The
parameter ff in this expression is estimated to be approximately
0.42 over the rare-earth series by comparison with available
Hartree self-consistent field eigenfunctions. The second parameter
a is chosen to give a fit with the spin-orbit coupling constants. The
result of calculating (a), (b), (c), and (d) is to give atomic g values
which agree remarkably well with the experimental data. This
confirms that the ground configurations of Prx, Ndi, Pmz, Smz,
Eur, Dyr, Hor, Err, and Tmr are of the type 4f", and that such a
configuration is very low-lying in Tbz. Tables of spin-orbit coupling
constants and (r ') for both neutral and triply ionized rare earth
atoms are given as well as of other radial integrals.

INTRODUCTION

' 'N the last few years a number of experiments have
~ - been set up to investigate the magnetic properties of
beams of free rare-earth atoms. ' Of the various nuclear
and magnetic properties of the atoms obtained by these
techniques, we shall direct our attention here to the
interactions between the external field II and the elec-
trons, and in particular to those contributions to the
Hamiltonian which experimentally can be described by
the effective Hamiltonian gJpoH J, where tts is the Bohr
magneton, J is the total angular momentum of the
electron system, and gJ a suitably chosen constant
referred to as the atomic g value. The elementary way of
finding a theoretical value for gJ is to equate the eigen-
values of the operator gqJ to those of L+2S, where L
and S are the total orbital and total spin angular mo-

menta, respectively, of the electron system. When I.and
S are good quantum numbers, the value of gJ so ob-
tained is the Lande g value.

This simple approach is complicated by a number of
factors, which, although comparatively small, must be
considered in any attempt to fit the accurate atomic
beam data. These corrections to the elementary pro-
cedure have been described in detail by Abragam and
Van Vleck, in their examination of the microwave
spectrum of the oxygen atom, ' and we shall simply
enumerate them at this point.

To begin with, we must replace the factor 2 for the

*Work done under the auspices of the U. S. Atomic Energy
Commission and the Swedish Atomic Energy Commission.

t Present address: University of Uppsala, Uppsala, Sweden.
' A. Y. Cabezas, I. Lindgren and R. Marrus, preceding paper

LPhys. Rev. 122, 1796 (1961)j. In addition to the work on radio-
active isotopes reported in that paper, we mention here the
extensive experiments of Smith and Spalding on stable rare-earth
isotopes at Cambridge; the examination of Sm by Sandars and
Woodgate at Oxford; and the work on Tb by Penselin and
Sch]upmann at Heidelberg. Some results for Ku have already been
reported [P. G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc.
{London) A257, 269 (1960)).' A. Abragam and J. H. Van Vleck, Phys. Rev. 92, 1448 (1953).
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gyromagnetic ratio of the electron spin by

g, =2 (1+et/2m+ ~ ) = 2.00232,

where 0. is the fine-structure constant. This will be called
the Schwinger correction.

Next, it must be recognized that in order to find the
eigenvalues of L+2S, we must have some knowledge of
the eigenfunctions of the electron system. It has now
become clear from the available experimental data that
the lowest electronic configurations outside closed shells
of the rare-earth atoms are nearly always of the type
4f", and we shall confine our attention to these con-
figurations. This allows us to extrapolate and interpolate
the various radial integrals that occur in the calculations
along the rare earth series. The lowest term in a con-
figuration is given by Hund's rule, and is described by
the two quantum numbers $1.. When the spin-orbit
interaction is included, however, these quantum num-
bers are separately not good quantum numbers, but only
their resultant, J. For oxygen, it is a simple matter to
allow for the departures from pure ES coupling, but for
the rare-earth atoms, it is considerably more complex.

Also, for heavy atoms such as those considered here,
the relativistic and diamagnetic effects become quite
important. By the relativistic effect we mean here the
correction, depending on the kinetic energy, which is a
direct consequence of the Dirac equation for a single
electron. The diamagnetic effect is caused by modifica-
tions in the interactions between the electrons due to the
external field, and depends essentially on the electron
density in the core. In contrast to oxygen, these effects
for the rare-earth atoms usually predominate over the
Schwinger correction.

The correction to the orbital gyromagnetic ratio
caused. by the motion of the nucleus, which was con-
sidered by Abragam and Van Vleck for oxygen, ' is for
the rare-earth atoms negligible compared with the ex-
perimental uncertainties.

02
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is very much greater than the spin-orbit interaction

dV
h.= Q/ —

/
s,"I;.

2m'e' r Lr dr ); (2)

The function V in (2) is the central field potential. We
are obliged to perform this calculation because no ex-
perimental results are available on the positions of
excited terms in the configurations 4f" of neutral rare-
earth atoms, and it is the admixtures of these excited
terms in the ground term that produce the departures
from ES coupling. To find the eigenvalues of (1), we
write

r&~
F i, (cosa)),

k+j.

where r& and r& are the lesser and greater, respectively,
of the two radii vectors r; and r;, and co is the angle be-
tween them. This equation separates the radial and
angular parts of the operator. The angular part can be
treated exactlya and the energy of an SI. term is ex-
pressed as a certain function of the radial integrals

oo ao ~ fg

F'=e' ~ I Lg(i)g(j) jsdr;dr;
r i+i

for & =2, 4, and 6. The function (1/r)R is the radial part
of the 4f eigenfunction. In practice, it is more con-
venient to use the parameters F~, where'

F,=F'/225, Fg ——F'/1089, Fs——P"/7361.64.

It often turns out that the quantum numbers f"SL are
not sufhcient to specify a term, ' and the eigenfunctions
are further classified according to their transformation
properties under the groups G~ and R7. Irreducible
representations of the first are specified by the two
integers (siigs) = U, where

Ng&ug&0,

and of the second by the three integers (wiwsws) =P',
where

mg&m2&m3&0.

For terms of the highest and next-to-highest multi-
plicities of the configurations 4f", the quantum numbers
f"WUSLS,J, completely specify a state. Unlike S and

' G. Racah, Phys. Rev. 76, 1352 (1949).
4 E.U. Condon and G. H. Shortley, The Theory of Atomic Spectra

{Cambridge University Press, New York, 1935).

STRUCTURE OF THE CONFIGURATION 4f"

Before we can begin an examination of the departures
from ES coupling we must obtain the energy-level
scheme in the RS limit; that is, in the limit where the
Coulomb interaction between the 4f electrons,

P e'/r;;,
i&j

Q Ai, 'r "I i, &(0 p )
i, k, q

(4)

in the Hamiltonian. It can be seen that the splittings in
the J levels produced by the crystal field involve the
products A i, '(r~), where (r") is the mean value of r" for
a 4f electron. Now A i, ' depends on the distance d from
the nucleus of the rare-earth ion to neighboring lattice
charges as the function d ~ ', but in spite of the internal
nature of the 4f electrons, which makes the theoretical
values for Ai'(r") decrease with k, it has been found
experimentally' ' that in some cases these products
actually increase. This result has been attributed to a
screening effect by the closed shells of the rare earth
ions, which increases in severity as k decreases. ' '

' R.J.Klliott, B.R. Judd, and W. A. Runciman, Proc. Roy. Soc.
(London) A240, 509 (1957).' B.R. Judd, Proc. Roy. Soc. (London) A241, 414 (1957).' K. C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (1960).' R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London)
A219, 387 (1953).' R. A. Satten, J. Chem. Phys. 27, 286 (1957).

@B. R. Judd, Proc. Roy. Soc. (London) A251, 134 (1959),

I., the irreducible representations 8' and U are not good
quantum numbers, so that in general a term is defined
by a certain linear combination of pure 8'USI. terms.

Elliott, Iudd, and Runciman' have calculated the
energies of all the terms of f"possessing the highest and
next-to-highest multiplicities on the assumption that
the integrals F6, F4, and F2 bear the same ratio to one
another as they would if the radial eigenfunctions were
hydrogenic, namely

F4/F s= 0.138, Fs/Ps =0.0151.

Although their work was directed at triply ionized rare-
earth atoms, it seems unlikely that the ratios of these
integrals would be appreciably different for the neutral
atoms, particularly since the 4f electrons lie deep inside
the atom and should be only slightly disturbed when
outer electrons are removed. The use of hydrogenic
ratios has met with considerable success, ' a result which
is rather surprising since it is quite clear that the actual
radial eigenfunction has a much broader peak, and for
this case the F~ ratios are significantly less than the
hydrogenic ones. For example, Ridley, 7 in a recent
Hartree self-consistent field (SCI') calculation for Pr'+,
gives

P4/Fs 0.129, F——s/Fs 0 0137. —— .

Since we intend to use eigenfunctions of the broader
kind in the determination of other radial integrals, we
shall now give qualitative reasons for our present
preference for F& ratios based on a hydrogenic eigen-
function.

To begin with, we must recognize that electrons in
closed shells can be polarized by electric fields and
thereby produce screening effects. When a rare-earth ion
is situated in a crystal, the electric fieM of the lattice is
taken into account by including the expression
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Returning to the problem of the integrals PI„one sees
that the electrostatic field of one 4f electron at another
is likewise subject to these screening eRects, though in a
less striking manner, owing to the proximity of the
electrons. In fact, we can write

Pi, (coscu) = P U—i (~,,gati;) Ui Q,A i) *
i;+1 2/+1 na ri +i

where
1 t" (1dU)zI-

2m'c'~o Lr dr ) (5)

In addition, A couples together states of the same J but
different S and L, thus producing deviations from pure
RS coupling. Elliott et al. ' have given a general formula
for the matrix elements

&4f"WUSLJ
I
A

I
4f"W'U'S'L'J)

where the first term applies to the region r, (r;, the
second to r, &r, . If, in the 6rst term, we regard electron
j as moving in the potential produced by electron j, this
expression takes the form of a term in the summation

(4); hence we must include a reduction factor fi, in the
calculation of the associated integral Ii I,. A similar argu-
ment applies to the second term. Moreover, that the
screening increases as k decreases implies

f6)f4) f2)0.

The effect of these factors is to increase the ratios F4/F~
and F;/Fg from the values given by Ridley for the
Hartree SCF calculation, and also to bring her nu-
merical value for Ii2 nearer to experiment. We feel that
the success of the hydrogenic ratios for the triply ionized
rare-earth atoms makes them the most appropriate for
our work.

The energies of the terms of the configurations 4f"
can now be expressed as multiples of F~. As is seen in the
next section, we are interested solely in those excited
terms which diRer at most by one unit in S and L from
the ground term. As an example, we give the energies
and eigenfunctions for relevant terms of Prr 4f', for
which the ground term I is the zero of the energy scale:

~E 48.5F,
I
f'(210) (21)'E&

77.5F2
I
f'(210) (20)'I),

88.1F~ 0.3878
I
f'(210) (21)'H)

+0.9217
I
f'(210) (11)'H),

32.9F, 0.9217If'(210)(21)'H)
—0.3878

I
f'(210) (11)'H).

The eigenvalues of all the terms we shall need have been
tabulated. '

DEPARTURES FROM RUSSELL-SAUNDERS
COUPLING

The eRect of the spin-orbit interaction is to split the
terms up into levels, distinguished by the additional
quantum number J. For a configuration of equivalent
electrons, (2) can be written as

A=i. P s. l,

in terms of a sum over the product of two 6-j symbols
and the fractional parentage coefBcients connecting the
configurations f" and f" '. The dependence on J is
contained in a third 6-j symbol,

(—1)'
S/ LI

which may readily be evaluated from the formulas of
Edmonds. "For our example, Prr 4f', we find

&f'(111)(20)'I9(2
I
A.

I
f""(210)(21)'H», )= (70/11)',

and

&f'(111)(20)'I»g
I
A

I
f'(210) (11)'H»&)= —(13/22) l.

All but a few of the configurations 4f" are extremely
complex, and it would be a tedious process to diagonalize
the combined Coulomb and spin-orbit interactions
exactly. Fortunately f' is sufficiently small to allow us to
calculate the corrections to gJ by perturbation theory.

Near the ES limit, S, L, and J are good quantum
numbers. Within a manifold of states of constant J we
can replace L+g,S by gJ, where g is the Lande factor,
given by

g=&SIJI glSL,J)=1+(g, 1)—
J(J+1)+S(S+1)—L(I.+1)

X
2J(J+1)

This is the zeroth-order contribution to gJ. There is no
first-order contribution, since L+g,s cannot couple to
any excited level. The second-order contribution is

2&0 I
A

I m)(mI g I m&&mI A
I
0&/Z„

—(o I g I 0&Z(o I
A Im&&mIi1I 0&/z. , (7)

where
I 0) denotes the ground level and

I m) an excited
level at an energy E above it. Since these energies are
calculated as multiples of Ii2, and the matrix elements
of A depend linearly on f', (7) can be expressed in terms
of (P/Fg)'.

To estimate these parameters we make use of the
corresponding values for the triply ionized atoms, which

"A. R. Edmonds, Angl/ar Momentlm in QNantgm 3IIechanics
(Princeton University Press, Princeton, New Jersey, 1957).
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TABLE I. Spin-orbit coupling constants and Coulomb integrals (in cm ').

Nuclear
charge

57
58
59

60

Ion

Ce3+
Prs+

Nd'+

Triply ionized atoms
f' from Ref.
expt. No.

640
711
737
781
860
906

g' from
Eq. (10l

619
754

895

P2'

298
310

322

Atom

La
Ce
Pl

Neutral atoms

g from |from
expt. Eq. (11)

350
482
619

770g

273
285
298

310

61
62
63
64
65
66
67
68
69

70

Pm'+
Sms+
Eu'+
Gd'+
Tb3+
Dy3+
HO3+
Er'+
Tms+

Qb3+

1180
1360

1720
1920
2080
2471
2575
2709
2940

1043
1196
1361
1534
1720
1921
2139
2380
2648

2951

335
347
360
372
384
397
409
422
434

Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm

106ig

2506"

909
1065
1228
1402
1587
1787
2004
2242
2507

322
335
347
360
372
384
397
409
422

a R. J. Lang, Can. J. Research 14, 127 (1936).
"See reference 6.
& W. A. Runciman and B. G. Wybourne, J. Chem. Phys. 30, 1154 (1959).
d See reference 12.
& B. G. Wybourne, J. Chem. Phys. 32, 639 (1960).
f H. Gobrecht, Ann. Physik 31, 300 (1938).
g These values are taken from Table II of this paper.
h From reference 13.

we shall distinguish here by primes. Judd" has given the of the type
empirical formula

Fg' 12.4 (Z—34——),

and the various experimental values of i' are set out in
the third column of Table I. Values are not tabulated
if they have been unquestionably superseded by later
work. In the case of the neutral atoms, suitable data for
calculating l are available for Ndr, Smr, and Tmr only.
The electronic configuration of TniI consists of a single
hole in a full 4f shell, and only two levels, F5~2 and 'Fq&2,

occur. Their separation of 8771.25 cm ' quoted by
Meggers" yields at once )=2506 for this atom. The
experimental data for the other two atoms are set out in
Table II. It can be seen from this table that appreciable
departures from the Lande interval rule occur, and these
must be ascribed almost entirely to second-order effects

When one knows the matrix elements of A, which are
needed in the calculation of the corrections to gJ, it is a
simple matter to write down the second-order displace-
ments of the levels as functions of t alone. The integral
Ii2, which is required in calculating the energies E, can
be taken initially from (8), and preliminary values of i
obtained for Ndr and gmI. The first is found to be quite
similar to the experimental value of i' for Prrv, and the
second to the interpolated value for Pmrv. This corre-
spondence between i and i' suggests we take

F2= 12.4(Z —35),

as a better approximation for Ii2. We can now fit the
experimental positions of the levels quite closely with

TABLE II. Energy levels of the lowest multiplets of Ndi and Smr in cm '.

Level

'Is
51
5I6
'Is
5I4

Ndi;
Pure RS
coupling

5005
3465
2117
962

0

g=770 cm '
Corrected
positions

5051
3676
2343
1102

0

Experi-
ment'

5049
3682
2367
1128

0

Level

7Ps
7PS
7P4
7P
7I'2
7P1
7P

Smi;
Pure RS
coupling

3714
2652
1768
1061
530
177

0

&=1061 cm '
Corrected
positions

4017
3146
2288
1489
798
280

0

Experi-
mentb

4021
3125
2273
1490
812
293

0

' Ph. Schuurmans, Physica 11, 419 (1946).
b W. Albertson, Phys. Rev. 52, 644 (1937).

'2 B.R. Judd, Proc. Phys. Soc. (London) A69, 157 (1956).
'3 W. F. Meggers, Revs. Modern Phys. 14, 96 (1942).
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3000-
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60
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65
z

70

I'ro. 1. Spin-orbit
coupling constants.
The full lines repre-
sent values taken
from Kqs. (10) and
(11) for the triply
ionized and neutral
atoms, respectively.
The points are the
experimental values
given in Table I.

tion" that will be found in Table III.This completes the
calculation to second order of contributions to gg
produced by departures from pure ES coupling.

RELATIVISTIC AND DIAMAGNETIC CORRECTIONS

Z= psH (Ly2S). (12)

For a single electron the second-order correction to this
operator can be obtained in a straightforward way from
the Dirac equation by including terms of the order of
s'/c', where v is the velocity of the electron. This has
been done by Breit" and Margenau, "and the result can
be written as the following correction to the g value,

In the first-order theory the Hamiltonian for the
interaction between the electrons and an external mag-
netic field is written

the values 770 and 1061 cm ' for |(see Table II);
indeed, the remaining discrepancies are only slightly
larger than spin-spin effects, which also produce devia-
tions from the Lande interval rule. "These results sup-
port the assumption of hydrogenic FI, ratios and also
Eq. (9). The lowest 5D term in Smr 4f' possesses an
exceptionally extended multiplet structure, and allow-
ance was made for this by including diagonal spin-orbit
matrix elements in estimates of the energies E . Strictly
speaking, this accounts for some, but by no means all,
of the third-order e6ects; but since the agreement be-
tween experiment and theory is improved by including
it, it was felt better to do so, particularly since our
present aim is to obtain the best value for f'. Fortunately,
('Dg

~ g )
'D~) is identical to (rFq

~ g ~

rIiq), so that the
spread of 'D has no effect on the calculations of gg based
on Eq. (7).

Values of f for other rare-earth atoms must be ob-
tained by interpolation. It is to be expected that the
curve of f against Z will follow fairly closely the
corresponding curve for the triply ionized atoms; for the
latter we have used

f'= 77.4(Z—66.29)+28720(80.78—Z) ', (10)

which fits the experimental data rather better than a
curve of the type A (Z—a)'. Values of Eq. (10) are set
out in Table I. It can be seen that f (Ndr), l (Smr), and
f(Tmr) lie between the pairs f'(Priv), f'(Ndrv);
t'(Pmrv), i'(Smrv); and |'(Errv), f'(Tmrv), respec-
tively, advancing slowly towards the second member of
a pair as Z increases. We have assumed a linear shift
with Z to obtain the formula

f'=81.2(Z—66.90)+27380(80.72—Z) 1. (11)

Values of Eq. (11) are given in Table I. The data on t
and f' are illustrated in Fig. 1. The expression (7) has
been calculated for all levels of the lowest multiplets of
the configurations of the type 4f" (irrespective of the
fact that in some rare-earth atoms, e.g., Lar and Gdj,
they may not necessarily be the ground configuration)
and entered in the column headed "spin-orbit correc-

which is usually called the Breit-Margenau correction.
The kinetic energy T of the electron and all other
quantities in this section are expressed in atomic units.

The many-electron problem has been treated by
Perl" and Abragam and Van Vleck. ' The part of the
correction to the classical Zeeman operator (12) which
corresponds to the Breit-Margenau correction becomes

bZt —— n'pop —LH (I;+2s,)T;—s; (V'.V;&(A;)], (14)

in a uniform magnetic field, where

Z 1
V;= ——+Q —,

1&i ~is

and A; is the magnetic vector potential for electron t
The first part of (14) can be regarded as a relativistic
mass correction and the second part as a correction to
the spin-orbit coupling. It is shown below that both
these corrections depend essentially on the kinetic
energy of the electron, and (14) is therefore referred to
as the relativistic correction.

Like the spin-orbit coupling, the interactions between
the electrons are modified in a magnetic field and there-
fore give rise to another correction to the classical
Zeeman operator. This can be derived from Breit's equa-
tion for electron-electron interactions" and written"'

( 1 ) At'pt
Szs ——'ngtao2s, '~ V't,—)&At,. ~—

;st
'

L r, „

(r'~ A~)(r, s.p.)

The first term in this expression is a correction to the

"G. Breit, Nature 122, 649 (1928)."H. Margenau, Phys. Rev. 57, 383 (1940).
'6 W. Perl, Phys. Rev. 91, 852 (1953)."G. Breit, Phys. Rev. 34, 553 (j.929).
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TABLE III. Atomic g values: theory and experiment.

Atom

(Lat)

(Cez)

Ndr.

Pml

Smr

EuI

(Gdi)

Tbr

Dyr

HOI

Err

TmI

Level

'F5/2
'FV/2

3H4
'H5
3H6

Ig/2
I11/2

'I13/2
I15/2

5I4
'I5
5I6
'IV
5I8

6H5/2
'HV/2

Hg/2

H11/2
'H13/2
H15/2

7P1
7P2
7P
VF4

7P5
7P6

'SV/2

7P1
7P2
VF3
7p
7P 5

VP6

'H5/2
HV/2

Hg/2

H11/2
'H13/2
H15/2

5I4
'I5
5I
'IV
5I8

'Ig/2

I11/2
'I13/2
I15/2

3H4
3H5
3H6

P5/2
'PV/2

Lande value
with

Schwinger
correction

0.85681
1.14319

0.79954
1.03341
1.16705

-0.72664
0.96495
1.10794
1.20046

0.59907
0.89977
1.07159
1.17899
1.25058

0,28406
0.82499
1.07087
1.20327
1.28271
1.33411

1.50116
1.50116
1.50116
1.50116
1.50116
1.50116

2,00232

1.50116
1.50116
1.50116
1.50116
1.50116
1.50116

0.28406
0.82499
1,07087
1.20327
1.28271
1.33411

0.59907
0,89977
1.07159
1.17899
1.25058

0.72664
0.96495
1.10794
1.20046

0.79954
1.03341
1.16705

0.85681
1.14319

—6/35
8/63

—348/2025
17/1350
7/54

—212/1089—1258/42471
628/8775
94/675

—25/99—23/396
713/13860
149/1260
29/180

—398/945—1156/14175
1526/22275

13972/96525
326/1755,

28/135

7/18
103/270

10/27
16/45
91/270
17/54

2/3

7/18
103/270

10/27
16/45
91/270
17/54

—398/945—1156/14175
1526/22275

13972/96525
326/1755

28/135

—25/99—23/396
713/13860
149/1260
29/180

—212/1089—1258/42471
628/8775
94/675

—348/2025
17/1350
7/54

-6/35
8/63

Spin-orbit
correction

0.00675
0—0.00021

0.00500
0.00126—0.00045—0.00098

0.00461
0.00178—0.00020—0.00182—0.00320

0.00967
0.00358
0.00055—0.00136—0.00281—0.00405

—0.00203—0.00233—0.00279—0.00340—0.00416—0.00507

—0.00729

—0.00304—0.00349—0.00418—0,00509—0.00623—0.00759

0.02214
0.00821
0.00127—0.00312—0.00643—0.00928

0.01653
0.00638—0.00072

—0.00653
—0.01180

0.02948
0.00743—0.00265

—0.00578

0.0709
0

—0.00219

Relativistic
and

diamagnetic
corrections

—0.00084—0.00079

—0.00090—0.00092—0.00092

—0.00095—0.00100—0.00103—0.00104

—0.00098—0.00106—0.00112—0.00115—0.00117

—0.00091—0.00110—0.00120—0.00125—0.00129—0.00133

—0.00138—0.00140—0.00141—0.00143—0.00146—0.00149

—0.00175

—0.00159—0.00160—0.00162—0.00164—0.00168—0.00171

—0.00119—0.00145—0.00157—0.00165—0.00171—0.00175

—0.00149
—0.00162
—0.00168
—0.00174
—0.00178

—0.00167
—0.00177—0.00182
—0.00205

—0.00184
—0.00190
—0.00192

—0.00204
—0.00198

Theoretical
gJ

0.8560
1.1424

0.8054
1.0325
1 ~ 1659

0.7307
0.9652
1.1065
1.1984

0.6027
0.9005
1.0703
1.1760
1.2462

0.2928
0.8275
1.0702
1.2007
1.2786
1.3287

1.4978
1.4974
1.4970
1.4963
1.4955
1.4946

1.9933

1.4965
1.4961
1.4954
1.4944
1.4932
1.4919

0,3050
0.8318
1.0706
1.1985
1.2746
1.3231

0,6141
0.9045
1.0692
1.1707
1.2370

0.7544
0.9706
1.1035
1.1926

0.8048
1.0315
1.1629

0.8548
1.1412

Experimental
gz

(Ref. 1)

0.7311 ~0.0002

0.6032 &0.0001
0.9002 ~0.0002
1.0715 &0.0020

0.831 &0.005
1.068 &0.004

1.49838%0.00005
1.49777&0.00003
1.49705&0.00003
1.49623~0.00004
1.49531&0.00006
1.49417~0.00010

1.99337a0.00007

1.3225 &0.003

1.24166+0.00007;
1.2414 &0.0003

1.19516~0.00010

1.1638 %0.0002

1.14122~0.00015
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spin-other-orbit coupling and the last two terms are
corrections to the orbit-orbit coupling. These corrections
depend essentially on the electron density in the core
and we refer to (15) as the diamagnetic correction.

In order to calculate the matrix of (14) and (15) we
shall, in principle, follow the approximate method which
Abragam and Van Vleck used in their discussion of the
Zeeman effect in atomic oxygen. We transform the two-
electron operators appearing in these expressions into
single-electron operators by integrating over one of the
electrons. Of course, in doing this all exchange integrals
are dropped as well as all elements between states that
differ by two single-electron states. In this approxima-
tion it is also assumed that the charge density from all
electrons is spherically symmetric. It turns out that
these approximations have only a small effect on the
final result. One may note here the close relationship
with Hartree's SCF method.

Integration over electron k yields for V, in (14)

where

Y(r) = —- ~ r"p'(r')dr'+ dr' .

Here p'(r') =4vrr"p(r') is the radial electron density.
Now

VX[AY(r)]=HZ(r) ——',(rX (HXr)/r')U(r),

where
1 f"

U(r) = '—r"p'(r')dr',
r3 J,

and (12) becomes

( (s r)rq
8Z, = —n'ppH. Q (I+2s)P'—

i
s — iU . (18)

Except for the radial parts this is identical to the
relativistic correction operator (16), and therefore the
total correction can be written

* ')
r, 0 ag

~
r,—r'~ 8Z=SZi+8Z2 —n'pp—H—Q (1+2s)(T+7')

where

Z r p (r')
= ——+ ' ' dr)

r; ~ r;—r —
i

s—(s r)r)
i(T+U) (»)

r2 )

p(r') =Z 4'*(r')4 ~(r')

is the density of all electrons except i. If p, is spherically
symmetric, V, becomes exactly the central potential
used in the Hartree method.

We then have, dropping the subscript i,

We have here replaced -', r(d V/dr) by T, which, from the
virial theorem, is correct as long as we stay within a
given configuration. Obviously, only electrons outside
closed shells contribute in this summation.

In a state defined by only one determinantal product
of single-electron states the expectation value of (19)
becomes

1dV
s (V'VXA)= — s [rX(HXr)]

2r dr
rdV

His—
2 dr

and Eq. (14) becomes

(8Z) = —n'NOH P [(mi+2m, )(T+Y)
—m, (sin'8)(T+ U)]. (20)

(sr) ) 8 is here the angle between r and the magnetic field and
r' ) hence we have

(sin28) =2[l(l+1)—1+mP]/(2l —1)(2l+3).
1 t' s' r & dV The off-diagonal elements of (19) between two single-

) d„electron states are

In the same way we get from (15)

(,
8,Z= 'n, pro)~ 2s

)
V' XA'

)

/
r—r'/

A' (r—r') .A'

, +, (r r) I'& p(r)dr (17)
& [r—r'/

f
r—r'/' )

(elm, m~~bZtnl m, &1 m~&1)

1
=n'poH —

~

8(lm~)8(lm~&1) sin'8 cos8d8(T+ U)
2 p

=n'@OH[(2mga1)/2(2l —1)(2l+3)]

X[l(l+1)—m((m(W1)]l(T+U), (21)

with the notations of Condon and Shortley. The integral
Abragam and Van Vleck have shown that if p is has been evaluated by means of Gaunt's formula. "

spherically symmetric the operator (17) is equivalent to If all electrons outside closed shells are equivalent,

8Z2=n'po P(—2s. [V'XAV(r)) —H B'(r)), "J.A. Gaunt, Phi1. Trans. Roy. Soc. A228, 151 (1929).
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the total correction to the g value obtained from (19) is
of the form

(22)bg = s—[g(r+ F) h(—Z+ U&],

where g is the classical g value and h is another factor,
depending only on the angular part of the eigenfunction.
Jt turns out that the first term in (22) usually predomi-
nates, which means that an estimate of the correction is

obtained directly from this expression if the radial
integrals (T) and (1') are known, without the usually
lengthy calculation of h.

The operator (19) is very similar to the magnetic
hyperfine-structure operator and can therefore be con-
veniently treated by tensor operators. " In the case of
equivalent electrons and a Hund's-rule ground state, the
factor b in Eq. (22) is given by

2 (2l—2m+1) L(I-+1)rJ(J+1) L(L+1)+S(S+1)3
3N (2L—1)(2l —1)(21+3)' 2J'(J+1)

3 LJ(J+1)—L(I-+1)—S(S+1)jP(J+1)+L(L+1)—S(S+1)j ' 1 J (J+1)—L(L+1)+S(S+1)+- (23)
4 J(J+1) 3 J(J+1)

Here n is the number of electrons or holes in the unhlled
shell, whichever is the smaller. This expression is very
similar to the corresponding formula for the magnetic
hfs," the reason being that both operators involve the
tensor (sC&'&)&'&, with the notations of Edmonds. " For
J=L+S, Eq. (23) simplifies to

h = riL12l (l+ 1)—3e(2l+ 1)+2n' —5$/6 J(21—1)(2t+ 3).

Relevant values of h for the rare-earth atoms are given
in Table III.

EVALUATION OF THE RADIAL INTEGRALS

The evaluation of the various radial integrals ap-
pearing in the relativistic and diamagnetic corrections
discussed above requires some approximate radial
eigenfunction for the 4f electrons. No SCF calculations
are available for any rare-earth atom, but a good esti-
mate of the shape of the eigenfunction can be made
from calculations in the triply ionized atoms of Pr and
Tm and in heavier atoms like W and Hg. ' For inter-
polation and extrapolation from the existing SCF eigen-
functions it is very convenient to have an analytic ap-
proximation of these functions. A simple form, which has
been used by Cabezas and Lindgren ' in the examination
of the Zeeman effect in thulium, is

R(r) =Nr"e "cosh/a(ar —e)], (24)

which is a modification of the hydrogenic eigenfunction
for e=3+1.The extra factor has the effect of broadening
out the eigenfunction without shifting the position of its
maximum. With suitable values of the parameters, good
agreement is obtained between Eq. (24) and the corre-
sponding SCF functions. "

As mentioned above, the shape of the 4feigenfunction
is expected to differ only slightly between the neutral

and triply ionized atoms; and for the same reason we
expect a similar result between neighboring atoms in the
series. By comparing eigenfunctions of the type (24)
with available SCF functions, in this region, we have
obtained the I(: values given in Table IV. These values
have been determined so that the values of (r '), (r '),
and (r ') become approximately the same for the two
functions. Exact fo'rmulas for these integrals with the
eigenfunction (24) are given in reference 21. Of course,
one can fit only two of these integrals exactly with a
two-parameter eigenfunction, but the difference in I(,

.

value for diR'erent pairs is very small, which indicates
that the approximation is satisfactory. We have chosen
these negative powers of r to determine I(, since all the
radial functions that we want to average are decreasing
with r.

It is seen from Table IV that I(: is a very slowly varying
function of Z, but, as one would expect, decreases with
increasing atomic number. This reQects the fact that the
functions become more hydrogen-like deeper inside the
core. Quite accurate values of a can therefore be ob-
tained by interpolation from this table.

Although the other parameter of the wave function
(24), a, could also be easily obtained by interpolation,
we prefer to determine it from the experimental spin-
orbit coupling constant. This probably gives more re-
liable eigenfunctions than if they were entirely based on
SCF functions. For the calculation of the spin-orbit
coupling r Eq. (5)J one also needs an estimation of the
central potential V. The Thomas-Fermi potential is
quite accurate for heavy atoms such as those considered
here, but can probably be further improved by writing'
V(r) = Zs(r/b), where b =0.88534Z: and the function n

is determined so that V agrees with a suitable SCF

TABLE IV. Values of ~ from Hartree functions.

"J. C. Hubbs, R. Marrus, W. A. Nierenberg, and J. L.
Worcester, Phys. Rev. 109, 390 (1958).

ro D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935);M. F. Manning and J. Millman, Phys. Rev. 49,
848 (1936).

"A. Y. Cabezas and I. P. K. Lindgren, Phys. Rev. 120, 920
(1960).

Atom or ion

Pr3+
Tme+
W
Hg

59
69
74
80

0.432
0.418
0.382
0.343
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2.0

0.5

0 t I I t

0 0.2 0.4 0.6

gZ (cm')

Fro. 2. Variation
of the kinetic energy
T with the spin-orbit
coupling constant t.

integrals, corresponding to a small change in the spin-
orbit coupling constant.

We are now ready to calculate the relativistic and
diamagnetic corrections to the g values, and from Kqs.
(22) and (23) and Table V we get the results shown in
Table III for all levels of the ground terms.

Although they are not needed for the calculations
here, the values of (r ') have also been determined with
the same type of eigenfunction for the neutral as well as
the triply ionized atoms, and are given in Table VI. The
eigenfunctions have been chosen to reproduce the spin-
orbit coupling constants given by (10) and (11),and the
corresponding u values are included in the table. YVe

have used ~=0.42 in all cases.
Figure 4 shows, for the neutral atoms, the variation of

Z, with the spin-orbit coupling constant for two values
of a, where Z, is defined by

0.06-
I 1 I I

0.05 "
P
E
P

l~ 0.04-
(u)

FIG. 3. Variation
of the radial integrals
U and P with the
spin-orbit coupling
constant g.

0.03-

I I
0.2 0,4 0.6

fZ (cm')

potential. We have here used tungsten for this purpose,
since this is the nearest atom for which SCF calculations
have been made. The difference between this potential
and the Thomas-Fermi potential is, however, quite
small. "

We have determined the radial eigenfunctions of all
the rare-earth atoms in this way, using the spin-orbit
coupling constants given by Eq. (11).For convenience
we have used the same value of a throughout the whole
series and have chosen ~=0.42 as a reasonable value in
view of Table IV. The corresponding values of the
integrals (2'), (U), and (I ) are given in Table V. (T) is
calculated from the formula given in reference 21, and
(U) and (I') have been integrated numerically with the
electron density from the Thomas-Fermi model. The
variation of these integrals with the spin-orbit coupling
constant is shown in Figs. 2 and 3. The quantities in-
volved are here divided by appropriate powers of Z,
which makes the same diagram valid for all elements.
The values are given for two different ~ values, 0.40 and
0.44, which shows the dependence on the shape of the
eigenfunctions. For comparison we have also marked a
point for a hydrogenic eigenfunction. From these dia-
grams it is easy to estimate the corrections to the

TAax, E V. The radial integrals (in atomic units) for ~=0.42.

Atom

La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Yb
Dy
Ho
Er
Tm

57
58
59
60
61
62
63
64
65
66
67
68
69

9.2
10.5
11.8
13.1
14.4
15.6
16,8
17.9
19.1
20.3
21.5
22.7
24.0

5.8
6.4
7.0
7.6
8.2
8.8
9.4

10.0
10.6
11.1
11.7
12.3
12.9

iU)

8.3
9.0
9.7

10.4
11.1
11.7
12.4
13.0
13.6
14.2
14.8
15.4
16.0

DISCUSSION OF RESULTS

The experimental and theoretical values for gJ are
compared in Table III. It can be seen that the agree-
rnent is extraordinarily good for the early members of
the rare-earth series, but less so for the later members,
particularly DyI. The large second-order contributions

"B.Bleaney, Proc. Phys. Soc. (London) A68, 937 (1955).

and some results with a Thomas-Fermi potential are
also given for comparison. As one would expect, the
values of (r—') determined in this way are quite insensi-
tive to the shape of the eigenfunction, and it is also seen
from the figure that the actual choice of potential is not
critical either.

The values in Table UI differ considerably from those
given by Bleaney, 22 which were calculated by use of
hydrogenic eigenfunctions. We believe, however, that
our values are much more accurate, since our assump-
tions about the spin-orbit coupling and the eigen-
functions have been very successful in our calculations.
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to gg due to departures from pure RS coupling make it
seem likely that higher-order effects are not negligible in
these cases. This hypothesis is consistent with the good
agreement which has been obtained for the early mem-
bers of the series. In the case of Hor 4f", for example,
third-order effects are

(2004/619) '(298/397) '= 14.5

times as large as for Pn 4f', so that the discrepancy of
0.0023 for gi5/2 would be less than 0.0002 for the corre-
sponding atomic g value in PrI. Fortunately, it is not
difficult to include third-order effects for levels that
satisfy 1=L+S.This is because all possible linkages of

Element

Atoms

(rc =0.42)

Ions

(.=0.42)

La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb

57
58
59
60
61
62
63
64
65
66
67
68
69
70

(4.95)
(5.37)
5.73
6.04
6.32
6.58
6.82

(7.05)
7.27
7.49
7.71
7.93
8.16

(2.34)
(3.00)
3.63
4.25
4.87
5.50
6.13

(6.78)
7.44
8.14
8.87
9.66

10.51

~ ~ ~

5.73
6.03
6.30
6.54
6.78
7.00
7.22
7.43
7.63
7.84
8.05
8.27
8.50

4 ~ ~

3.64
424
4.83
5.42
6.02
6.64
7.27
7.92
8.60
9.32

10.10
10.95
11.89

TAnLE VI. Values of a and (r ') for neutral and triply ionized
atoms (in atomic units).

0@-

Frc. 4. Variation
of Z; with the spin-
orbit coupling con-
stant g. The open cir-
cles represent values
obtained with a
Thomas-Fermi po-
tential.

the type

.OgiO ~

0
I s I I r

O.a o.e o.e

(Z'(cm')

the ground state. In these cases it is easier to set up the
2)&2 secular determinants and solve them exactly than
attempt to use higher-order perturbation theory. By the
former course, a number of higher-order effects are
taken into account, and the problem for Err, for which
'H& and 'I6 are the only levels in the configuration with
J=6, is solved completely. For Hot and Dyi there are
other states with the same J value as the ground level,
and the results are correct only to third order. The
ground-level eigenfunctions are

0.9959~ sHs)+0.0917~'Is) for Err,

Q.986Q
~

lis(s) —0.1669[ Kisses) for Hor,

0.9698~ sI,)—0.2438~ 'Es) for Dyr,
0

libel

m)(ml alrs)(isl gl e)(rsIA
I
0

which includes three spin-orbit matrix elements, involve
very few states ~its) and ~N). To produce the proper
value of J while at the same time having a nonzero
matrix element with the ground level, the quantum
numbers 5 and L of a state of this type must be re-
spectively one unit less than and one unit greater than
the corresponding quantum numbers of the ground
state. The large value of L favors the occurrence of very
few terms of the same kind (i.e., terms with the same
S and L); for Err and Hor there is only one, while for
Dyr there are but two, one of which possesses an ex-
ceptionally small matrix element of A connecting it to

where

~

s&s) =Q.4596
~
(211)(21)'Es) —0.8882

~
(211)(30)'Ks).

It is to be noted that the coe%cients in these states de-

pend on our choice of the integrals Ps and t The fin. al
theoretical values for gJ, taking into account the
Schwinger, relativistic, diamagnetic, and spin-orbit
corrections (to third order), are set out in Table VII for
these atoms.

The agreement between experiment and theory can be
seen to be excellent. When these results are taken with
others in Table III, there can be no doubt that the
ground con6gurations of PrI, Ndr, PmI, Smz, EuI, Dyr,

TABLE VII. Atomic g values including third-order spin-orbit coupling effec'.s.

Atom

DyI

Box

Err

Level

I ande value
with

Schwinger
correction

1.25058

1.20046

1.16705

Spin-orbit
correction

—0.00743

—0.00371

—0.00140

Relativistic
and

diamagnetic
corrections

—0.00178

—0.00205

—0.00192

Theoretical

1.2414

1.1947

1.1637

gz
Experimental

1.24166&0.00007
1.2414 &0.0003

1.19516~0.00010

1.1638 &0.0002
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Hor, Err, and Tmr are of the type 4f". Apart from Lar
and Gdr, which are known to have 4f" 'Sd as the ground
configuration, "there remain Cex and Tbr. The work of
Smith and Spalding' on Cet and of Penselin and
Schlupmann' on Tbr indicate that the simple configura-
tions of the type 4f" are not sufficient to account for the
experimental results in these cases. For Tbr, however,
we can at least say that 4f' is very low-lying.

The good agreement also gives us a great deal of
confidence about the various radial integrals required in
the calculations. The values of the spin-orbit coupling
constants given by Eq. (11) should be accurate to at
least S%%uq along the whole rare-earth series. The integrals
F2, which to some extent depend on the choice of the
ratios F4/F2 and F6/F2, are probably given to within
10% by Eq. (9). The error in the relativistic and
diamagnetic corrections should also be quite small,
probably not exceeding 10%%uo. This shows that the ap-
proximations made in the latter case are justified and
also supports the type of eigenfunction used. It is easy
to see, for instance, that if a hydrogenic eigenfunction
is used instead of the modified type (24), the agreement
would be poorer in almost all cases. As mentioned
earlier, the shape of the eigenfunction has only a small
effect on (r '), and we estimate that the errors in the
tabulated values of these quantities are not greater
than S%.

In all the calculations it has been assumed that the
electronic configuration is a pure 4f" configuration. This
is not so restrictive as it might appear at first sight. The
Coulomb interaction is chieRy responsible for admixing
other configurations, and it commutes with S, L, and J.
The Lande formula, with the Schwinger correction, re-
mains valid, and no corrections are necessary. The
spin-orbit interaction can couple only to configurations
of the type 4f" 'Sf, 4f" '6f, etc. These configurations
are far removed from the ground configuration, and
matrix elements of A between 4f and nf states are
certainly small. The virtually perfect agreement that

"C. E. Moore, Atomic L'eergy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Office,
Washington, D. C., 1958); W. E. Albertson, Phys. Rev, 47, 370
(&935).

has been obtained for TmI,"where there are no correc-
tions to gJ- due to spin-orbit coupling effects within the
ground configuration, supports the view that the effects
of configuration interaction are negligible. It also indi-
cates that the residual discrepancies between the theo-
retical and experimental g values of other rare-earth
atoms are chiefly due to higher-order spin-orbit effects
within the ground configurations, rather than to ap-
proximations made in estimating the relativistic and
diamagnetic corrections. This conclusion is supported
by the excellent agreement obtained for Err, where the
complete J=6 matrix is diagonalized.

It is interesting to note that when the Schwinger,
relativistic, diamagnetic, and second-order spin-orbit
corrections to the various gJ- values of the levels of a
given multiplet are made, the final calculated values
satisfy an equation of the type

where a and b depend on the multiplet under examina-
tion and are independent of J.In deriving this equation,
which is of a quite general validity, use was made of the
detailed form of the 6-j symbol (6) and also the S, I., J
dependence of h.

Finally, we should like to point out that some neg-
lected corrections and errors in parameters such as f
may produce effects which to some extent cancel, and
therefore the remarkable agreement we have obtained
between the experimental and theoretical gJ values may
be partly accidental. However, since the results depend
in so many ways on our various assumptions, and are so
well checked by experiment, we feel that this could
occur in only one or two instances, and our general
conclusions concerning the accuracy of the spin-orbit
coupling constants and other radial integrals should not
be affected.
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