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The effect of electron-electron scattering processes due to
Coulomb forces on the transport phenomena in nonpolar isotropic
solids is treated in the framework of Kohler’s variation principle.
By considering the conduction electrons as a Fermi-Dirac gas of
noninteracting free quasi-particles, each with charge —e and
mass m*, electron-electron scattering is taken into account as a
small perturbation, as is electron-phonon scattering in nonpolar
solids. A shielded Coulomb potential which depends on two
parameters—the effective dielectric constant and the shielding
constant—is used as the interaction potential. These two parame-
ters, for small concentrations of electrons, may be assumed to be
independent of the distance between two electrons during a
scattering process.

A general qualitative result is that electron-electron scattering
causes the electrical conductivity to be reduced less than the
electronic heat conductivity. The conductivities and the Wiede-

mann-Franz ratio will be reduced by an amount determined by
the energy dependence of that perturbation of the electron dis-
tribution which is induced by primary scattering sources such as
electron-phonon  scattering or electron-impurity scattering.
Quantitative results for nondegenerate semiconductors are
obtained in terms of the variational method. With electron-phonon
and electron-ion scattering assumed in turn as the primary scat-
tering mechanism, the influence of electron-electron scattering on
the electrical conductivity, the heat conductivity, and the Seebeck
coefficient is calculated as function of temperature. The results
are discussed with respect to the experimental situation.

The effect of electron-electron scattering on transport phe-
nomena in metals is briefly considered. The applicability of the
results obtained for isotropic semiconductors to an important
class of anisotropic semiconductors is shown.

1. INTRODUCTION

N the modern theory of electrons in nonpolar solids,
the Coulomb interaction between conduction elec-
trons is, for the most part, neglected. By a conduction
electron we have in mind a free quasi-particle, of charge
—e¢ and mass m*, according to the free electron approxi-
mation. In this approximation, the periodic potential
field of the fixed lattice particles and of all the other
electrons is replaced by an almost constant potential
field in order to describe the independent motion of a
conduction electron (Hartree approximation). The
ordinary theory of the electric transport phenomena is
based upon the free-electron approximation. However,
if the Coulomb interactions between conduction elec-
trons are taken into account, some consequences of
significance are obtained.

A first consequence is a change of the one-electron
energy eigenvalues for a given momentum: When the
Coulomb interaction between conduction electrons is
taken into account, the one-electron excitation energy
spectrum is somewhat altered.!? The modification of
the single-electron energy levels, via a corresponding
change of the density of states, has some influence on
the values of the transport coefficients but, even in the
case of the monovalent metals, the corrections are
temperature-independent and the Wiedemann-Franz
ratio is not changed at all® Thus, in calculating the
transport coefficients we may neglect the influence of

1D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953); D. Pines,
Phys. Rev. 92, 626 (1953).

2 P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1960); 109,
762 (1960).

3 F. J. Blatt, Phys. Rev. 99, 1735 (1955); R. Barrie, Phys. Rev.
103, 1581 (1956).

Coulomb interactions on the one-electron eigenstates.
Furthermore, we assume that the influence of Coulomb
interactions on the momentum distribution under
thermal equilibrium conditions may be neglected. The
momentum distribution of an interacting electron gas
has been studied by several authors in recent years.*

A second consequence of Coulomb interaction be-
tween conduction electrons is the scattering of electrons
by each other. The effect of this interaction on the
transport phenomena in isotropic nonpolar semi-
conductors is the subject of this paper. The usual
argument, that the total electric current is not changed
because of the momentum conservation in an electron-
electron scattering process, is correct only if the
distribution of the electrons is the unperturbed dis-
tribution fy due to thermal equilibrium. However,
when an external electrical field is applied, the electron-
lattice interaction causes a perturbation of fo such that
the steady-state distribution is f= fo+f1 (f:<Kfo for
all electron energies E). Furthermore, when one takes
electron-electron scattering into account it is exactly
the perturbation fi; which itself induces a further
perturbation f.. The perturbation fi+ f, determines
the electrical conductivity. In the case of heat con-
duction, however, the pertinent quantity E;vi+E.vs
is not conserved in a single scattering process and,
therefore, even if electron-phonon scattering is neg-
lected, the electron-electron interaction itself will
result in a nonzero heat resistivity.

In Appendix A it is shown that there exists an im-

4J. M. Luttinger, Phys. Rev. 119, 1153 (1960) ; W. Kohn, Proc.
Midwest Conf. Theoret. Phys.; Purdue University, Lafayette,
April, 1960 (unpublished).
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portant class of anisotropic semiconductors for which
the above considerations also apply in principle.?

In restricting ourselves in this paper to isotropic
conductors, we assume the free-electron approximation.
The influence of all the interactions on the single-
electron excitation spectrum is taken into account only
to the extent that it is contained in the effective mass.
The distribution of electrons on the one-electron states
is given by the Fermi-Dirac statistics of noninteracting
particles. The individual electron-electron scattering
processes induce transitions between one-electron
states. For the interaction potential we assume a
screened Coulomb potential, first proposed empirically
for a metal by Landsberg® and later determined
systematically by Bohm and Pines.! The interaction
potential and the ground state together determine
another important physical quantity, the differential
cross section.” In some cases the differential cross
section can be expressed in terms of a transition proba-
bility calculated by first-order perturbation theory,
which corresponds to the first Born approximation.?
Even though this approximation may not be applicable,
the change of the electron energy levels can still be
neglected in nonpolar solids. Such a situation occurs in
monovalent metals, where the cross section must be
calculated by an exact method (see Appendix B). Some
numerical values, applying to the conduction electrons
in sodium, were calculated by Abrahams’; from these
he estimates a mean free path of 2.5 cm at 4°K for
electron-electron scattering.

In this investigation we avoid the concept of a free
path or a relaxation time. This avoidance, according
to our final results, turns out to be necessary, since it
is impossible to define.a uniform relaxation time for
both charge and heat transport.’® Thus, if both trans-
port phenomena are superimposed (Peltier-effect), it

5 The vector e(vi+vs) is conserved in an individual electron-
electron scattering process, provided one is concerned with non-
degenerate energy surfaces in the wave vector space which are
representable by a diagonalized quadratic form with energy-
independent effective mass components. An example is 7-ger-
manium, where electron-electron scattering between energy
surfaces belonging to the same energy minimum cannot change
the electric current. Furthermore, if two electrons belonging to
energy surfaces of two different equivalent energy minima
(n-germanium) are scattered by each other, the vector e(vi+4vs)
is conserved in normal (non-Umklapp) scattering processes.

6 P. T. Landsberg, Proc. Phys. Soc. (L.ondon) A162, 49 (1949).

7L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), p. 96.

8 M. Born, Z. Physik 38, 803 (1926).

9 E. Abrahams, Phys. Rev. 95, 839 (1954).

10 This can easily be shown. An electric field may be applied to
an isotropic conductor. If this field is switched off at ¢=t,, the
distribution for ¢> £, is given by

O = fot+-Lf(t)— fo] exp[ (t—t0) /7],

provided electron scattering can be described by a relaxation
time 7. Now, assuming electron-electron scattering only, one finds
f(@®) = f(t) because of the momentum conservation in each scat-
tering process, and, thus, a relaxation time 7,_, cannot be defined
i.e., its value is infinite; however, if no electric field but a tem-
perature gradient is applied, one finds f(£>t) = fo, since in this
case 7.-s has a finite value.
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is senseless to speak of a relaxation time for electron-
electron scattering processes. Therefore, the theory of
electrical transport phenomena is formulated by the
variational method, first introduced by Kohler.!! An
important advantage of the variational method lies in
its physical significance: The transport coefficients in
the absence of a magnetic field are obtained by re-
quiring that the steady-state distribution makes the
rate of entropy production caused by all the scattering
processes a maximum. A second advantage, connected
with the mathematical procedure of the variational
method, is the fact that different scattering mechanisms,
represented formally by scattering operators, are addi-
tive. This means it is unnecessary to restrict the
relative strengths of different scattering mechanisms.

The variation principle is discussed in the next
section and its solutions are given in a general form.
In Sec. 3, special questions connected with the electron-
electron interaction—such as the interaction potential
and the differential cross section—are discussed. In
Sec. 4 the quantities determining the solution of the
variation principle are given for Fermi-Dirac statistics,
and in Sec. 5, by restricting the statistics to the non-
degenerate case, explicit results are given for semi-
conductors with small electron concentrations. These
results are applied to cases of practical interest in the
last section and the numerical results are briefly
discussed.

2. VARIATION PRINCIPLE
Formal Theory

For a gas of noninteracting free particles each with
mass m* and charge —|e|, the mean occupation
numbers of the eigenstates are governed by the Fermi-
Dirac statistics,

NG

The reduced wave vector K of a plane electron wave
can be written in terms of the particle velocity vector
v=(#/m*)K. From the mathematical point of view it
is convenient to consider K and v interchangeably as
quantum numbers of the one-electron states. Thus,
the number of states per unit volume of the coordinate
space is 2dK dK ,dK ./ (2w)? or 2(m*/h)*dv.dv,dv,. The
fundamental equation determining the steady-state
distribution function f is the Boltzmann equation’
(@f/dt)=0. For convenience we write

kT de

With an electric field F and a temperature gradient

11 M. Kohler, Z. Physik 124, 772 (1948) and 125, 679 (1949);
s(tie 5&1;0 E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 75
950).
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9T/ dx in the x direction, we find the following integral
equation for & when electron-electron scattering is
included:

v, 0 fo d /¢ oT
———[ F—!—T—(—— +kB€—]
kT Oe dx\T dx

=Le(¢’)+Le—e<q))' (3)

The operators L, and L, are given below; they are
defined as linear integral operators because terms
higher than first order in ® are neglected.

The operator L, includes those interactions of the
electrons with the real crystal lattice which may be
taken into account by time-dependent first-order
perturbation theory. We may write

1
Le(<1>)=—3—T Wo(KK) fo(1— fo') (@—2")dK’, (4)

8n’kn

where f'o=fo(K’), etc.; W, is a sum of transition
probabilities, each normalized with respect to time and
volume. For two important cases, considered below,
the transition probabilities are noted explicitly. Ac-
cording to Bloch’s theory'? and its simple assumptions,
the probability for the transition of an electron from
an eigenstate defined by a wave vector K to a state K’
induced by the collision with a longitudinal acoustical
phonon of energy 7%w(q)=%csq, where q is a wave
vector and ¢, is the (g-independent) phase velocity,
can be written in terms of the Bloch constant C as

T f2C\?2
W o—pn(K,K') =—(?) q[ N6 (E'— E—fiw)
PCs

+V+1)3(E - E+hw)]. (5)

Here §(x) denotes Dirac’s delta function and p the
density of the solid. Assuming that the deviation of
the mean phonon occupation number N(q) from
thermal equilibrium may be neglected, we have N=N,
where N, is the equilibrium phonon distribution.

The second type of scattering mechanism considered
is the scattering of electrons by impurity atoms or by
other atom-sized lattice imperfections. The general
formula for the transition probability in such cases is

2w
W (KK) =" % [(RIaVIK) 65—, ()

where AV (r—R;) is the perturbation potential asso-
ciated with the lattice site R;.

Of primary interest in this investigation is the
operator L,_., which, operating on ®, gives the rate of
change of the steady-state distribution f due to elec-
tron-electron scattering. From the mathematical theory

2H. Jones, Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XIX, Part 1, p. 288.
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of Fermi-Dirac gases'® we know that this rate of change
of fis given by

(g)_=z(m7) [ [rrra-na-n

— A=) (A= f1)Ja(x.g) sinxdxdydvi. (7)

The quantity a(x,g) is defined explicitly below;
g=v—v, is the relative velocity of two electrons which
undergo an electron-electron scattering process; x is
the deflection angle for g and v is a second angle to
fix g¢'=v'—v'; with respect to g. The occurrence of
only five variable integrations in Eq. (7) instead of
nine results from the two conservation laws

etea=¢+¢€, (8a)

V4vi=v4vy, (8b)

by which four variables are eliminated. If we neglect
higher than first-order terms in ® under the integral
in Eq. (7), this equation can be rewritten in the simpler
form

Le_g(@:kj—;(%*)g [ [ [ ewte+a=aszmm

X fof oforf o1 (®+P;— D' —d'y)
Xa(x,g) sinxdxdydvi. (9)

and

It can be seen that the factor

exp(etei—2¢/ksT) fof oforf o

is invariant against interchange of v, v; with v/, v/,
when Eq. (8a) is applied. Therefore, an important
integral theorem, which for classical statistics is proved
in detail by Chapman and Cowling,'® is also true for
Fermi-Dirac statistics. For integrable functions ®; we
have

(@i,¢j)e_e=2(1zj)3 f BiLoo(®)dv= ;800 (10)

and
((I)i;q)i)e—ezo- (11)

Now, including electron-electron scattering, the
following formulation of the variation principle is
convenient: Of all trial functions ®;, the solution & of
Eq. (3) has the characteristic property of making the

18S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, New York,
1958), p. 295; E. A. Uehling, and G. E. Uhlenbeck, Phys. Rev.
43, 552 (1933).

4 The function (2/g)a(x,g)dQ, where dQ is the solid angle
element sinxdxdy, represents the effective scattering cross section
for electrons. The number of collision processes per time and
volume unit between electrons in dv and dv; such that the di-
rection of the relative velocity g’ lies in d is given by

fav fidvi2a(x,g)d.
18 See reference 13, p. 85.
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integral (9,,®;)= (®;,®;).+ (Pi,P:)e—e a maximum sub-
ject to the subsidiary condition

(CI’i,‘I%) =2 (m*/h)an’;F (V)dV,

where F(v) is an abbreviation for the left-hand side
of the integral equation (3).1¢ The proof of the variation
principle depends on the relations (10) and (11) and
on similar relations for the scattering operator L,.!!

Transport Coefficients

The general formulation of the transport coefficients
is straightforward as in the case for electron-lattice
scattering only. The difference consists of formally
replacing the operator L, by L.+L. .. To facilitate
the calculation of the transport coefficients in our
generalized case, we review briefly the mathematlcal
procedure.!* If we write

q) m*
(V)=0s Py c(e)

d /¢ 1 90T
=vx{[3F+T~—(—)]C(%)+———c(%)], (12)
ox\ T T ox

m*
L(q))=7)x‘h‘8(6) with 8=89+ge—97

and

(13)

the integral equation (3) breaks into two equations,

(ekpT) %9
ooy =L gy

(14)
kT de

To find the solutions of Eq. (14), the trial functions
¢ are conveniently written in terms of the variables
n, where n=e—{/kgT (or n=¢) for a degenerate
(nondegenerate) electron gas. By expanding the trial
functions as power series in 7,

=]
2 oMy,

r=0

(15)

the coefficients ¢ may be determined through the
Ritz procedure via the solution of a usual extremal
problem of differential calculus. The perturbation
functions ¢ determine the electric density J, and the
electronic heat current density W,. To determine the

16 The physical meaning of (®,®).—. is easily understood if we
write the entropy as

=—2kp(m*/1) [T/ Inf+(1—) In(1— v,
and the entropy flow as
=—2kp(m*/1)* | [f Inf+(1—f) In(1—f)Ivav.
Then we get [Dorn, Z. Naturforsch. 124, 739 (1957)7].
asS , .. 1 1
§+dxvs=—f(@,®)s+7@’yq’) e—es

so that (1/7)(®,®).-. represents the rate of entropy production
per unit volume due to electron-electron scattering processes.
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transport coefficients we define

6r(m)-—ﬁ( ) fv:c2(kBTE)m
B

If we also define in the usual form the symmetrical
elements,

drs = d"(e) _'_drs(e——e)

el —7dv. (16)

=2(m7*)3 [ointmr+2enn, a0

of the determinants
0 ﬁo(m) Bl(m)
Bo™  doo  doy

Bi™  dy  du

A=det(d,;) and A, .= (18)

then the transport coefficients are given by the following
formulas:

electrical conductivity

o= (Jo/F)ar/an=0=—¢*(43,5/4), (19)
heat conductivity
1 Ay Ay g
K= ( —_ (20)
AT/ dx/ 74=0 AAss
Seebeck coefficient
19¢ 1 Ays—5dss
=(F+—— = (21)
e dx/ 7u=0 el Az

To apply these formulas to concrete cases we will
approximate the determinants A and 4,,, by deter-
minants with a finite number of rows. Sondheimer"
has given explicit formulas for successive approxi-
mations of the electrical conductivity ¢©@, ¢®,

the heat conductivity «@, «®, ..., and the Seebeck
coefficient a©@, a®, (see also Wilson!'”). No
general statements can be made on the convergence of
successive approximations.

3. INTERACTION POTENTIAL, SCATTERING
FORMULA, AND ELECTRON-ELECTRON
SCATTERING OPERATOR

The electron-electron scattering operator L., (Eq.
9) must be put into a form such that the quantities
d-? and thereby the transport coefficients may be
calculated quantitatively in a fairly simple manner.
To this end, one must know the effective cross section
a(x,g), which depends on the interaction potential V (7).

17 A, H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), p. 310,
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Interaction Potential

For the interaction potential V (r=|r;—r3|) between
two electrons with space vectors r; and rs, we take the
shielded Coulomb potential

V(r)=(e¢/xr) exp(—7/X).

In a crystal which includes one of the cubic point
groups in its symmetry operations, the interaction
potential depends on two parameters: The effective
dielectric constant x and the shielding constant A.
Both these parameters take into account polarization
effects. The dielectric constant x describes what may
be called the lattice polarization. This polarization is
composed of two parts, namely, the polarization of the
ion cores when the lattice particles are fixed, and of
the displacement polarization which is associated with
the readjusting of the positions of the lattice particles
when an electron moves through the crystal. The
shielding constant A, as first pointed out by Macke,'
describes the polarization of an electron cloud sur-
rounding a given electron. For a nondegenerate electron
gas the above formula for V (7) results from the classical
paper of Debye and Hiickel.*?

For semiconductors, there is no clear-cut theory of
the dielectric constant for arbitrary electron concen-
tration and arbitrary degree of polar bonding. Re-
stricting ourselves to nonpolar semiconductors with
small electron concentrations, we make the fairly
reasonable assumption x=ko, where xo is the static
dielectric constant. The dependence of « on the veloci-
ties of two interacting electrons plays an essential role
only if one is concerned with semiconductors char-
acterized by polar bonding.® In nonpolar semicon-
ductors, because of the small effective charge of the
lattice particles, the lattice displacement polarization
may be neglected. Thus, one assumes k™., (k.,= optical
dielectric constant). We are left with the question of the
r dependence of k. According to Kohn,* for distances
7 large compared to the lattice constant d, one has
k=ko. Now, indeed, the minimum distance 7min of two
electrons which undergo a scattering process is in general
much greater than d. Assuming the extreme case of
large angle scattering, namely, g=v,—v,, we may
estimate the value of 7nmj, from

(22)

(32/K07min) exp(—'rnlin/)\)z%mred*g2; mrcd*z%m*- (23)
Substituting on the right for g its thermal average g
and assuming reasonable data (z=10'"% cm™3, k=16,
and T=300°K), we find 7min~75N. The shielding
constant A is approximately 10~% cm. At lower tem-
perature, too, we have 7,i.(g)>>d. Hence, for the bulk

18 W, Macke, Z. Naturforsch. 5a, 192 (1952).

19 P, Debye and E. Hiickel, Z. Physik 24, 185 (1923).

2 H, Frohlich, H. Pelzer, and S. Zienau, Phil. Mag. XLI, 221
(1950).

21 W. Kohn, Phys. Rev. 105, 509 (1957).
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of the electron pairs which undergo a scattering process
in a nondegenerate semiconductor, it is reasonable to
assume « independent of » and equal to 0?2 Further-
more, we may expect, as for electron-ion scattering,?
that small-angle scattering is the dominant effect of
electron-electron  scattering on the transport
phenomena.

The second parameter entering V (#) is the shielding
constant A. For a nondegenerate electron gas, A is given
by the Debye length,

Ap= (KokgT/‘lﬂ'ne?)%. (24)

Scattering Formula

The quantity (2/g)a(x,g) sinxdxdy is the effective
scattering cross section in the center-of-mass coordinate
system. It is calculated by solving the Schroédinger
equation for the two-particle scattering problem in
relative coordinates. As usual the equation

/3 w
7(x,8)=——— 2 (2+1)[exp(2idr)—1]Pi(cosX) (25)

21mredg * 1=0

defines the scattering amplitude in terms of partial
waves. Here P; denotes the Legendre polynomial of
order /; the §; are phase constants which depend on g
and V(r). The scattering amplitude determines the
function «, given by

a(Xyg)=%g[%I T(Xag)+ 7'(7"_70 g) 12
+%] T(Xyg)_T(ﬂ'—X: g) I 2],

when indistinguishability and spin of the particles are
taken into account.

The calculation of the &; constitutes the mathe-
matical problem. When 6;<<1 the Born approximation
applies, i.e., EXV (r) for > rmin. Obviously, then, the
amplitude of the scattered wave is small compared to
the amplitude of the plane wave. The criterion of the
validity of the Born approximation is

(Ameea®g/B)>>1. (27)

Assuming nondegenerate semiconductors, putting A=Ap
in Eq (27) and replacing g by its thermal overage
§=0.730, where 0= (8%ksT/mmwea™)?, we see that the
Born approximation holds for almost all electron pairs
in the distribution fo(g). The Born approximation

(26)

22 In nearly degenerate semiconductors the above arguments do
not hold. Since in such a case 7min may be of the order of the lattice
constant, the dependence of x and A on 7 has to be taken into
account. The theory must be revised by investigating electron-
electron scattering in coordinate and momentum space together.
In principle, the same is true for strong impurity scattering, a
problem which is by no means settled [C. Herring, J. Phys. Chem.
Solids 8, 543 (1958)].

21, Spitzer, Jr., and W. Hirm, Phys. Rev. 89, 977 (1953);
C. Herring, Bell System Tech. J. XXXIV, 237 (1955).

#N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, 1952); N. F. Mott, Proc.
Roy. Soc. (London) A126, 259 (1930).



TRANSPORT PHENOMENA

scattering amplitude is, with Eq. (22), given by
7(x,8) = — (2mmrea’™e*/ ko)

X[Ap~?+ (2hmrea*g/B)*(1—cosy) ™. (28)
Thus, the scattering formula reads
a(X,g)=[e'/ 2k’ (mrea®)g’]
XL(B*+1—cosy) >+ (8*4-1+4-cosx) ™
— (B*4+1—cosx) 7 (8+1+cosx) '], (29)
where
B= 1/ 2"\ ptirea™g. (30)

Electron-Electron Scattering Operator

When a(x,g) is given, it is possible in principle to
calculate the scattering operator which describes
electron-electron scattering in the framework of the
variational method. Using a transformation, first
introduced by Landshoff,?> by which the x components
of the velocity vectors under the integral in Eq. (9)
are eliminated, the final form of the electron-electron
scattering operator is given by

2 sm*\%1
£eﬁg(c)=—~—(——— —
kBT h 72

x f ) [ expteta=2/ED fuf oS

X[v-ve(n)+v-vic(n) —v-Ve(n)—v-vic(n'1) ]
Xa(x,g) sinxdxdydvi. (31)
This form of ¥._.(c) has some advantage for introducing
relative velocity coordinates, as shown below.

4. ON THE SOLUTION OF THE
VARIATION PRINCIPLE

In this section a formal calculation of the 8, and
d,—{*9 is carried out. For a degenerate electron gas,

IN NONPOLAR SEMICONDUCTORS
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we use n=e¢— {/kpT, and the B,{ can easily be written
in a form such that well-known results apply:

wll
sx2t i J. T o

32 (m*)r pte
Br(n) =

n=%,%. (32)

The integral alone is denoted by ™ by Wilson,'” who
has given numerical values for it. Our value [Eq. (32)]
is different by a constant factor, just the same as in
the case of the d,,(?, because of the formulation of the
variation principle in v space instead K space (Wilson).
Both descriptions are correct and equivalent when
considering free quasi-particles. Here the v space is
more convenient. Then, relative velocity coordinates
can be introduced which describe conveniently the
dynamics of binary scattering processes. From Egs.
(17) and (31), we have

i ()
X£ _[lfxj;CXP(€+61—Zf/kBT)foMf'of'm

-\ 2
X(“) 7 Lvevy - vevm—vev' (n') —v-v'1(n'1)*]

?

Xa(x,g) sinxdxdydvidv. (33)
This is an eightfold integral because the twelve velocity
coordinates are reduced by four because of energy and
momentum conservation. The introduction of relative
velocity coordinates consists of relating the velocity
vectors v, vi; v/, v/; to the center-of-mass velocity G
as shown in Appendix C. After the transformation, the
drs*"9 can be written in terms of the center-of-mass
velocity and the relative velocity as integration
variables:

0 <e_e>_;$ ’”) (”“*T) f . f f¢ ) fg ) f f " f f expL2( &g — ¢ /EsT) Ifof oforf o

,n?'
X[ cosf—g(cos? cosf+sind sinf cosg) P—{ ens+ (G2 —
€

¢=0

g2)n1a_ @2_|_g2 cosxy— g@ (COSI?"I‘COS'&’)] ("7’) ¢

—[©?— g2 cosxy— g (cos?—cosd’) ] (n'1)*}a’ (x,8) sinxdxdy&*dS sinfdfdpg?dg sindddd o, (34)

where &’ (x,8) =a(x,£), cosd?’ = cosd cosx-+sind siny cosy.
As a consequence of momentum conservation [Eq.
(11)] we have

drst9=0, (35)

Now, the corresponding quantities for the interaction

if 7 or s is zero.

25 R. Landshoff, Phys. Rev. 76, 904 (1949) and 82, 442 (1951);
an explicit deviation of this transformation is given by H. Schirmer
and J. Friederich, Z. Physik 151, 174 (1958).

of electrons with phonons or with point imperfections
do not vanish. Therefore, electron-electron scattering
in isotropic conductors is to be considered a higher-
order effect in the following sense:

The electron-electron scattering processes will affect
only the energy-dependent terms in the series for the
perturbations ¢ ; thus the zero-order term co7° is
not influenced at all. However, this term to a great
extent determines the electrical conductivity. There-
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fore, with respect to the variational method, the
electrical charge transport is denoted as a zero-order
transport phenomenon. The electrical resistivity would
be zero if there were no other scattering mechanism
besides electron-electron scattering. The thermal heat
conduction, in the same sense, is a first-order transport
phenomenon; it is primarily determined by the second
term of the power series in 7, ¢1n'. However, this term
is affected by electron-electron scattering processes,
because (vp+vimi) is not conserved in an electron-
electron scattering process, so that di;=9>0. Thus,
the electronic heat resistance is different from zero even
if only electron-electron scattering is taken into account.
The heat conduction is influenced in zero order because
it itself is a first-order transport phenomenon.

We have emphasized the difference between charge
and heat transport, which has also been pointed out by
Keyes.? In our investigation the differing physical
aspects of both transport phenomena come out quite
naturally by applying an exact and straightforward
mathematical method.?” From this consideration we
may conclude generally that, because of electron-
electron scattering processes, the heat conductivity of
isotropic conductors and of a certain important class
of anistropic conductors (Appendix A) is reduced more
than the electrical conductivity, and that the
Wiedemann-Franz ratio is affected.

A quantitative calculation of the d,,® for the
general case of Fermi-Dirac statistics is difficult, since
after integrating in Eq. (34) over 6, ¢, and ¢, which
results in a factor (8x%/3)¢, we are left with five further
integration variables and { as a parameter.

5. NONDEGENERATE SEMICONDUCTORS

For small electron concentrations, our calculations
have a solid foundation with respect to the interaction
potential [Eq. (22)] and the effective scattering cross
section [Eq. (26)]. Furthermore, the calculations can
be carried out avoiding numerical methods, since the
Maxwell-Boltzmann function describes the unperturbed
distribution, given by

fo=exp(—e+/ksT),
¢=kpT In[n/22em*kpT/h)¥].

(36)
37)
The perturbations ¢ here are conveniently written in

26 R. W. Keyes, Bull. Am. Phys. Soc. 5, 150 (1960).

27 There exists an interesting analogy to electron-electron
scattering processes and their influence on the electronic heat
conductivity. The laitice heat conductivity of an isotropic di-
electric solid has a finite value if four-phonon normal scattering
processes are taken into account. These four-phonon processes
correspond directly to electron-electron scattering processes, if
we think of phonons as of quasi-particles of the lattice. Not much
is known about the lattice heat conduction, especially at higher
temperatures (720p), and therefore the variational method
seems to be a reasonable one to use to treat the insulator heat
conductivity problem. I am indebted to Professor M. Kohler,
Braunschweig, for a stimulating discussion concerning this point.
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terms of n=e¢, and it follows from Eq. (16) that

g (r+n) ! n(kpT) 3
T

Electron-Electron Scattering

—3 5.
n=2,2;

r=0,1,2---.

(38)

—

The important quantities d,{*"® can be calculated
analytically, since we have the identity

exp[2(&*+g2—¢/ksT) 1fof o forf o1
=exp[ —2(&*+g*—{/ksT)].  (39)

Using this identity, we finally get, after considerable
algebra, as the first few terms

dn9=0, r=0,1,2---,
dn~9=C(T)L.(%),
I+ =D)L @)+ TL @),
a9 =C(T)[(77/4) L1(8)+7L2(8)+ Ls(8) ],
where the factor C(T') and the parameter §2 are given by
27t n2et 72

c(T)=— , B= :
3 ('m*kg T) %Ko2 2}\D2m*k3T

(40)

(41)
The parameter integrals are defined by the formula
L.(8®)= f exp(—a?)a?ntl

0

X{[S(1+48/#%)— (146%/4%) 1]
XIn(14242/8)—10}de.  (42)

In general §°<1, so that the L, can be fairly well
approximated by simple formulas given in Appendix D.

Electron-Ion Scattering

The shielded Coulomb interaction potential for an
electron and an ion is conveniently written in terms of a
three-dimensional Fourier series:

4w exp[iq- (r—R;)]
—, (43)
q2 + )\ D2

Introducing Eq. (43) into Eq. (6), we find the corre-
sponding transition probability, and after some calcu-
lations the scattering operator is given by -

Qe—i(c) =[2we*Nm* foc (e) /ko ks TK? )
X{In[14-(2\pK)*]—[1+4(2pK)* 1},

where NV;is the concentration of ionized impurity atoms.
Transcribing this equation from the K to the v space,

V(I‘—'Rj>=

Ko 4

(44)

28 TIf one writes L.i(c) in terms of a relaxation time r—
Le—i(c) xc—one has 71=K,8:(c)/(fo—f). The so-defined
re(le;xation time is identical with the Brooks-Herring formula for
7(e).
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we get the desired quantities:

4 (27!') btV P
Al V=M 1 (8), (45)
3K02(m*kBT)§
where the parameter integrals are defined by
M@= [ exp(yprt o n(1445%/2)
0
— (1+8%/4y*) Jdy.  (46)

The interaction potential for electron-ion scattering
[Eq. (43)] is assumed to be characterized by the same
parameters (shielding constant A and dielectric con-
stant «) as is the interaction potential for electron-
electron scattering. Thus, 8? is the parameter given by
Eq. (41); with 62«1, approximation formulas given in
Appendix D apply to the M ;.

Electron-Phonon Scattering

By specializing the formula (5) for the transition
probability W._,n to nondegenerate semiconductors,
neglecting the deviation of the phonon distribution
from thermal equilibrium, and assuming elastic elec-
tron-phonon scattering processes, we find the corre-
sponding scattering operator?

&»,_ph (C) = ﬁKfoc(e)/m*kBTle,
where /, is given in terms of Bloch’s constant C by
le=9mpli%ct/4C*(m*)?%kpT. (48)

Transcribing Eq. (68) from the K to the v space, we
obtain the d, " in terms of I.. However, with
{=L,_,» the perturbation ¢(e) can, of course, be calcu-
lated directly from Eqgs. (3) and (47). Then, the electrical
conductivity can be calculated at once; the mobility
pe=0/ne is thereby defined and we can write /, in terms
of p.. Finally we get

drse ™ =[16me/9m (m*)2u, | (r+s+2) 1.

(47)

(49)

6. QUANTITATIVE RESULTS FOR
SEMICONDUCTORS

Electron-Ion and Electron-Electron Scattering

In this section the case in which electron-ion scat-
tering predominates over electron-phonon scattering
is considered. Let us assume an isotropic one-band
semiconductor with only one kind of impurity atoms
with a single energy level in the forbidden zone. The
concentration of ionized impurity atoms is then equal
to the concentration of conduction electrons. If we
assume that ko and A have the same values for electron-
electron scattering and for electron-ion scattering, the
quantities d,*"? and d.,{*"? have almost the same
temperature dependence. Therefore, the temperature

2 J. Appel, Z. Naturforschg. 13a, 386 (1958), Eq. (5a).
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TaBiE 1. Values of 8= (%2/2\2pm*kgT).

T (°K) n (cm™3) m*/m Ko Ap (cm) 82
300 1018 1 16 1.5%10-5 5.6X10-5
10 1010 1 16 8.8X10* 5.6X10°7

dependence of the transport coefficient for electron-ion
scattering remain almost unaffected when electron-
electron scattering is taken into account, but the
numerical values of the coefficients are more or less
changed. We define the quantities

erszdrs/dﬂo(e—i), (50)
where dr,=d.¢"? when electron-electron scattering is
neglected, and where d,s=d, " ?4d,(*"9 when elec-
tron-electron scattering is taken into account. In both
cases the temperature dependences of the e,, are
exactly the same in the limit 8=0. In practical cases
82 is usually small (Table I). We calculate the transport
coefficients in the limit §2=0, i.e., the Debye length is
much larger than the electron wavelength. To this end,
we need the values of e, listed in Table II, the 3,
for r=0, 1, 2 [Eq. (38)], and doo*® [Eq. (45)]. For
the electrical conductivity, ignoring and including
electron-electron scattering (denoted by no subscript
and the subscript e, respectively), we find

0O = 2(8uD)2/dog(=9, 7,0 =00,
cW=23.25¢0, 00 =1.93c0,
c®=3.3900, 00 =1.9400,

QY

Successive approximations for the electrical conduc-
tivity show rapid convergence after the first-order
correction.® This convergence behavior of the o™
reflects the energy-dependence of the perturbation ¢(e).
For electron-ion scattering only, we have roughly
ce—i(€) « €. Therefore, more than one term in the series
expansion for ¢(e) must be taken into account. Similar
considerations apply to the lowest-order approxi-
mations of the electronic heat conductivity. For the

TABLE II. Values of e,.

e;s  Without e—e scattering  Including e—e scattering

€00 1 1

€10 1 1

é11 2 2—f—2i

€20 2 2

€21 6 6+ 1 1/29
€22 24 24—{-—157/2i

% In first-order approximation the electrical conductivity is
given by
S —M1/M,)?
W) =50 PRkl ] *2<1.
e [1+M2/M0— QUi 2 L N, ) ° <
Assuming #>>N;, we have ¢,V =(1/3.25)c®.
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zero and first-order approximation we have
41 (@)

KO = —

13 T dogte’
kW =6.50¢® kD =1.64x©,

Here too, rapid convergence is to be expected after the
first approximation. This statement may be shown to
be correct by considering the Wiedemann-Franz ratios
of successive approximations L{®» = /T¢® for which
we find

L®=192(kp/e)?, L,©=1.33(ks/e)?,
LW=384(kp/e)?, L, V=1.64(kg/e).

Already L® is very nearly 4(xp/e)?, which is the value
to be expected for L in the limit §8=0. Also L.® is
probably close to L., as may be inferred from the
work of Spitzer and Hérm on the transport phenomena
in a plasma.?® The absolute thermoelectric power of a
nondegenerate semiconductor depends primarily on the
Fermi energy of the conduction electrons. Indeed, in
zero-order approximation there is no influence of any
scattering mechanism. Let us define successive approxi-
mations of the thermoelectric power by

ke ®=0.695¢©,
(52)

(83)

a(n)=_(kB/e)(fy(")—-g'/kBT). (54)
Then we find
yO=5 PACEVOR
yD=3.65, v,0=3.31, (55)

y®=402, v,2=322.

We see that electron-electron scattering has some
influence on y®. This is to be expected physically since
electron-electron scattering tends to bring the distri-
bution of the current over the different energy shells
(y*=4) toward the uniform distribution (y®=3§).*
In case of electron-phonon scattering as primary scat-
tering source (y®=2) the effect of electron-electron
scattering is in general negligible.

Electron-Phonon and Electron-Electron
Scattering

Let us now assume that electron-phonon scattering
predominates over electron-ion scattering. Here, it is
convenient to define the quantities

8rs= drs/dOO(e—ph), (56)

where drs=d.s¢ ™ or d,s=d P44, for elec-
tron-electron scattering omitted or included, respec-
tively. We find doo’e® from Eq. (49). The values of
grs are given in Table ITI, where

B= femile*(m*)np./ (k1) ], (§7)
and the L, are given by Eq. (40) in Sec. 5. With these

31 C, Herring (private communication, in which v, =0.8y¢
is suggested).
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TasBLE III. Values of gys.

Without e—e Including e—e
grs scattering scattering
800 1 1
S10 3 3
gu 12 124-BL,;
820 12 12
31 60 60+4-B(Ly+17L/2)
go2 360 360+4-B(77L;/44T7Lo+ L;)

values of g, it is possible to obtain the electrical and
the heat conductivities up to the second- and first-order
approximations, respectively. However, we restrict
ourselves to the calculation of ¢©@,. ¢®, and «©@. The
reason is that due to the energy-dependence of ¢, « e
there is already rapid convergence after the zero-order
approximations. The electrical conductivity, ignoring
and including electron-electron scattering (denoted by
no subscript and subscript e, respectively), is given by3?

O =e2(8y)2/dgo D), ¢, O=gO

1 (58)
o'c(l)=0'(°)(1—f——— )
12+4BL,

The heat conductivity in the zero-order approximation
is given by

oW =—g®

12

41 (B®) ®
—_— kO=— (59)
1+(4/13)(BLy)

KO =—

13T doo(e—ph)’

With the following data,

T=350°K, pe=10% cm? v—! sec™,

#n=10"% cm=3 Ap=6X10"% cm,
m*/m=1, §2=2.4X10"2,

ko= 16,

we find ¢,0=0.991¢® and &, =0.89x®. Here too, the
heat conductivity is reduced more than the electrical
conductivity and the Wiedemann-Franz ratio decreases.
For the thermoelectric power the influence of electron-
electron scattering processes may be neglected (see
Sec. 6). We see that electron-electron scattering affects
the transport coefficients less when electron-phonon
scattering, and not electron-ion scattering, is the
pertinent scattering mechanism. This difference is
caused by the fact that the energy dependences of the
perturbation ¢,y (€) and ¢._;(€) are different.

At higher temperatures, in the intrinsic range, all
kinds of intercarrier scattering processes must be taken
into account. Here we shall get some insight into the

2Tf one assumes electron-electron scattering to be much
stronger than electron-phonon scattering, i.e., BL;>>1, one has
0. W=(12/13)c ™. From successive approximations for the elec-
trical conductivity one may extrapolate that ¢, = (97/32)c ).
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roles of eletron-electron and hole-hole scattering. To
this end we assume that in either case (electron-electron
scattering and hole-hole scattering) the presence of an
equal number of charge carriers with opposite sign can
be taken into account via the shielding constant. Then,
the screening of the potential field of an electron is
enhanced by the holes. The shielding constant for
electrons is given by Eq. (24) with # replaced by 2.
Therefore, in the intrinsic range the presence of holes
reduces electron-electron scattering and vice versa.
Supposing as electron parameters

T=500°K, pe=2X10% cm? v sec,

n=55X1017 cm=3, Ap=9.3X10~7 cm,
m*m=1, 52=2.7X10-2,

ko= 16,

we find as the electrical and heat conductivities, due
to electrons, ¢, 0=0.9770" and «,©=0.73«O,
respectively.

In the intrinsic range the third kind of intercarrier
scattering mechanism, namely electron-hole scattering,
is probably more important than electron-electron
scattering and hole-hole scattering.®

Discussion of Results

As an important consequence of electron-electron
scattering processes, the electronic heat conductivity
of isotropic conductors is reduced much more than is
the electric conductivity. This difference arises because
it is impossible to describe the influence of electron-
electron scattering on the steady-state distribution of
electrons in terms of a frue relaxation time, ie., a
relaxation time which is independent of external force
fields and which, up to a factor of the order of unity,
is equal to the time between two electron-electron
scattering processes of a given electron. The breakdown
of the relaxation time concept is to be expected from
physical reasons. Howarth and Sondheimer** have
pointed out that, as a necessary condition for the

3 To include electron-hole scattering, we have to set up two
Boltzmann equations, one for electrons and one for holes. Denoting
the perturbations of the distribution functions of electrons and
holes by &, and &, respectively, we have as scattering operator
which describes the scattering of electrons by holes

Ler@)=pg(5) S [ ewtesis

Xexp (e~ n/kBT) foe fonS 00 f on .
X (®e+Pr—b' o —P'1)a(x,g) sinxdxdydvs.

Equation (4) must be extended by this expression; a corresponding
equation holds for holes. Thus, we are left with two simultaneous
integral equations for &, and ®;. A generalized variational prin-
ciple can be constructed in order to solve the two coupled Boltz-
mann equation for electrons and holes. Here, we will not further
consider this interesting problem of electron-hole scattering
except to state one important difference between electron-electron
and electron-hole scattering processes. The latter, according to
the above equation, influences the electrical conductivity o
already in its zero-order approximation ¢©.

#E. H. Sondheimer and D. J. Howarth, Proc. Roy. Soc.
(London) A219, 53 (1953).
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existence of a relaxation time, the energy change of an
electron in a scattering process must be small compared
to the initial energy of the electron. In general, this
condition does not apply to electron-electron scattering
processes. When scattering processes cannot be de-
scribed by a relaxation time, the Wiedemann-Franz
law is no longer valid ; because of intercarrier scattering,
the Wiedemann-Franz ratio is reduced.

The reduction of the Wiedemann-Franz ratio, as a
consequence of electron-electron scattering, can be
easily understood by comparing the steady-state
distribution functions f, and f, for the charge and the
heat transport, respectively. The distribution f, arises
from the unperturbed distribution f,, in the first-order
approximation, by shifting the midpoints of all the
constant energy spheres away from K=0 by the same
amount. Thus, in the approximation ¢©®, the differ-
ences in the shifts of different energy surfaces are
entirely neglected. Therefore, electron-electron scat-
tering, which is effective in randomizing electron
energies, has no influence on ¢©®. However, the elec-
tronic heat conduction is governed by f. which is
quite different from f,.** Here, the differences in the
shifts of different energy surfaces (the energy de-
pendence of ®,) determines even the zero-order ap-
proximation «x©®. This energy dependence is directly
influenced by electron-electron scattering via the
scattering operator Lo, [Eq. (9)].

There remains the important question of how much
the electrical conductivity, the heat conductivity, and
the Wiedemann-Franz ratio are reduced by electron-
electron scattering. ” For isotropic conductors this
depends first of all on the pertinent primary scattering
source. The more strongly the corresponding per-
turbation of the electron distribution depends on’
energy, the more effective are electron-electron scat-
tering processes. Therefore, in accordance with our
results for semiconductors, electron-electron scattering
has more influence on the transport coefficients when
ionized impurity scattering is the pertinent scattering
mechanism than it has when electron-phonon scattering
predominates. This difference, as the above-stated
difference in charge and heat transport, arises from the
fact that electron-clectron scattering processes have
the tendency to randomize electron energies, but not
electron momenta. Quantitative results were obtained
for nondegenerate semiconductors with small electron
concentrations, such that the Debye length is much
larger than the electron wavelength. Assuming electron-
ion scattering as the dominant scattering mechanism,
we find that the electrical conductivity and the heat
conductivity are smaller by factors 0.58 [Eq. (51)]
and 0.25 [Eq. (52)], respectively, approximately
independently of temperature. These results are in
agreement with those calculated by Spitzer and Hrm?
and by Landshoff?® using mathematical approaches

35 See reference 29, Fig. 1.
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different from each other and from ours.?® The reduction
of the Wiedemann-Franz ratio, L.V =1.64(ks/e)* [Eq.
(54)7], could easily be verified if the phonon contri-
bution to the heat transport were comparable to the
electron contribution. Unfortunately, at low tempera-
ture the latter is several orders of magnitude smaller
than the former. For higher electron concentrations
our considerations are not appropriate—even if the
ansatz 22 for the interaction potential is assumed
to be valid—since the steady-state distributions of
electrons and phonons are not independent of each
other. Therefore, superposition effects occur which
make it difficult to separate the heat conductivity into
a phonon and an electron contribution.®” That part of
the thermoelectric power which corresponds to an
average value of the electron energies—averaged with
respect to the currents in different energy shells—is
reduced by a factor 0.80 when electron-electron scat-
tering is taken into account [Eq. (55)]. With increasing
8% the effect of electron-electron scattering on the trans-
port coefficients decreases.

Assuming again small electron concentrations, but
electron-phonon scattering as the pertinent scattering
mechanism, electron-electron scattering is less effective,
due to the slight energy dependence of ¢._pn(€). Thus,
applying our results [Eqs. (58) and (59)] to a typical
case, we see that at low temperature (7'=350°K) the
influence of electron-electron scattering on the electrical
conductivity is of the order of 19,. In the intrinsic
region (I'=500°K) electron-electron and hole-hole
scattering have a small influence on the electrical
conductivity; the heat conductivity is reduced by
about 279,. Here electron-hole scattering probably has
much more influence on the electrical conductivity;
@ would already be affected.

Finally, we want to make a brief remark on the
magnetoresistance. In zero magnetic field, electron-
electron scattering affects the perturbation ¢ more for
higher electron energies than it does for lower ones.
Now, with electron-phonon scattering only, in a mag-
netic field electrons with higher energies contribute
relatively more to the electric current than they do in
the absence of a field. Therefore, considering both these
facts, electron-electron scattering will be more effective
in randomizing electron energies when a magnetic field
is applied. As a consequence, the magneto-resistance
should be somewhat lower when electron-electron
scattering is taken into account. However, the dis-
crepancy that already exists between theory (saturation
in strong fields) and experiment (linear increase in

36 Spitzer and Hirm describe the rate of change of f due to
electron-electron scattering in terms of the Fokker-Planck equa-
tion [see also M. N. Rosenbluth, W. M. MacDonald, and D. L.
Judd, Phys. Rev. 107, 1 (1957)]. Landshoff applies the Chapman-
Cowling method (reference 11, p. 107).

37 J. Appel, Progress in Semiconductor Physics, edited by A. F.
Gibson, [ John Wiley & Sons, Inc., New York, (to be published)],
Vol. V.
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strong fields) for pure germanium at low temperatures
is in the contrary direction.?
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APPENDIX A. ANISOTROPIC SEMICONDUCTORS

With respect to the electrical conductivity in isotropic
solids, where E(K)= (#%/2m*)K?, it is shown in Sec. 4
that the influence of electron-electron scattering has
to be considered as a higher-order effect. Namely, with
electron-electron = scattering as the only scattering
mechanism, the electrical resistivity is zero.

Now, in anisotropic semiconductors the electrons
have to be considered under the K aspect, appropriate
to Bloch electrons. Thus, the conservation laws for a
single electron-electron scattering process are

Ki+K.,=K"1+K",,
E(Ky)+EK)=EX)+EK").

(A1)
(A.2)

According to whether the conservation law (A.1) is or
is not equivalent to

1
viF-ve=v'1+v’;, where vz% gradg £(K), (A.3)

electron scattering will or will not affect the electrical
conductivity.

The conservation laws (A.1) and (A.3) are consistent
with each other only if the effective mass tensor can be
diagonalized simultaneously for all different wave
vectors terminating on one energy surface and if the
corresponding diagonal elements of different energy
surfaces are the same. For electrons in a conduction
band with the energy minimum located at K=0, the
energy I can be written in terms of those harmonic
functions® which are associated with the identical
representation of the corresponding crystal point group.
In cubic crystals we have

E (K) = Z dme 2m

m=1,2.-

K. K, K.
s blKl-Hz(~,~, ) (A4)
1 K K K

8 G. Lautz and W. Ruppel, Z. Naturforsch. 10a, 521 (1955),
Fig. 5; J. Appel, H. Bruns and H. Schultz, Meeting of the German
Physical Society, Heidelberg, October, 1957 (unpublished); H.
Bruns, Dissertation, Braunschweig, 1961; C. Herring, Inter-
national Congress on Semiconductors, Prague, August, 1960
(unpublished).

#® D. G. Bell, Revs. Modern Phys. 26, 11 (1954).
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where a2, and b; are constants, H; is the cubic harmonic
of a type with order /(>4). Now, the most simple case
for which obviously Egs. (A.1) and (A.3) are not
consistent with each other is given by such isotropic
energy surfaces® that

E(K) = 02K2+ G4K4. (A.S)

On the other hand, there are anisotropic semicon-
ductors with respect to the energy-band structures for
which Egs. (A.1) and (A.3) are consistent with each
other. Such a case is given if the energy surfaces are
nondegenerate for all different K vectors of a single
band and if the energy can be represented by a diago-
nalized quadratic form with energy-independent effec-
tive mass components,

ﬁz[(Kx—Kz@)P (K~ K,
4

EXR)=— T

2 Mys™ Myy™

(K.—K.0)

k
Mz

J, (A.6)

where K© is a wave vector corresponding to an energy
extremum. Thus, it is evident that in #-germanium,
electron-electron scattering between energy surfaces
belonging to the same energy minimum (intravalley
scattering) will not affect the electrical conductivity
in zero order, although electrons of different effective
mass are involved in scattering processes. If two
electrons from different valleys are involved in an
electron-electron scattering process, such that the
electrons exchange their valleys by the scattering
process (normal intervalley scattering), the current
vector e(vi+Vs) is not changed. Only for a certain kind
of scattering process, mentioned in Appendix B as
Umklapp processes (Umklapp intervalley scattering),
may the current vector be changed in a single scattering
process. However, such Umklapp processes are expected
to occur very seldom in z-germanium. The possibility
of such scattering processes is small because the K star
representing the energy minima contains only a few
pairs of equivalent K vectors (equivalent K vectors
are two vectors which differ by 27 times a vector of the
reciprocal lattice).

APPENDIX B. METALS

To calculate the influence of electron-electron scat-
tering on the transport phenomena in metals, the
variation principle is an appropriate mathematical
method for solving the Boltzmann equation and for
determining the transport coefficients. Therefore, the
variation principle has been formulated in Sec. 4 for
the general case of Fermi-Dirac statistics. However,
there exist some difficulties of more fundamental nature.

(1) It is difficult to define a two-electron interaction
potential in terms of an appropriate dielectric constant.

“R. A. Si'vermann and W. Kohn, Phys. Rev. 80, 912 (1950).
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The usual assumption, that k=1 in Eq. (33), is based
on the work of Bohm and Pines,! where the problem of
a dense electron gas interacting via Coulomb forces is
treated assuming that the lattice is to be replaced by
a positive, continuous charge background. From more
recent work of Noziéres and Pines? it does not seem
possible to define an appropriate dielectric constant
for the Coulomb interaction between two electrons in a
metal. The concept of a dielectric constant dependent
on frequency and wave vector does not apply to a pair
of electrons, but to properly defined Fourier components
of the density fluctuations of all the electrons.

(2) Assuming that the interaction potential is never-
theless given by Eq. (22) with k=1, one finds that the
Born approximation does not apply.8 Exact calculations
may be necessary to determine at least the lowest-order
phases defined by Eq. (25).

(3) The possibility of Umklapp processes,

K1+K2=K'1—|—K'2-|—21rh, (B.l)
where h is a vector in the reciprocal lattice, occurs in
first-order perturbation theory for -electron-electron
scattering. However, electron-electron Umklapp proc-
esses probably do not occur so often that the transport
coefficients are changed to a measurable extent. The
reason is that the energy conservation law will essen-
tially restrict the possibility of Umklapp processes, in
contrast to phonon-phonon and electron-phonon
Umklapp processes. It can be seen that, in monovalent
metals where the Fermi surface does not touch the
Brillouin zone boundaries, electron-electron Umklapp
processes can occur only for certain singular cases?.
If the Fermi surface touches the Brillouin zone bounda-
ries, of course, electron-electron Umklapp processes can
occur more often.

It has been suggested that experimental evidence for
electron-electron scattering is given by the temperature-
dependence of the electrical resistivity of some tran-
sition metals at low temperatures. Baber® has made
some calculations of the electrical resistivity due to
electron-hole scattering on the basis of the Born
approximation and assuming an isotropic two-band
structure. He finds a 7 proportionality for the electrical
resistance. Approximately a 72 dependence of the
electrical resistance has been measured below 10°K
by de Haas and de Boer® on platinum, by Justi* on
indium and molybdenum, and by White and Woods*
in a systematic investigation on several transition
metals, particularly those with a relatively large
electronic heat capacity. The measured coefficients of
the 72 proportionalities have the correct order of
magnitude with respect to Baber’s results after cor-

4R, E. Peierls, Quantum Theory of Solids (Clarendon Press,
Oxford, 1956).

2 W. G. Baber, Proc. Roy. Soc. (London) A158, 383 (1937).

4 W. J. de Haas and J. H. de Boer, Physica 1, 609 (1933).

“E, Justi, Z. Metallk. 51, 1 (1960).

4 G. K. White and S. B. Woods, Phil. Trans, A251 (1959).
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recting for the Born approximation. However, the
measured heat resistivity of these transition metals
also follows a 72 law approximately.?® Unfortunately,
a T? dependence of the electronic heat resistivity may
result from phonon-scattering of electrons into hole-
eigenstates. Although we do not expect the Wiedemann-
Franz law to apply for electron-hole scattering, i.e.,
we do not expect a linear dependence of the heat
conductivity on temperature when electron-hole scat-
tering is the pertinent scattering mechanism, at this
time it is not clear whether or not electron-hole scat-
tering affects the transport coefficients of some tran-
sition metals.*® Generally speaking, up to now there is
no conclusive evidence for an experimental mani-
festation of an influence of intercarrier scattering
processes on transport phenomena in nonpolar solids.

APPENDIX C. RELATIVE VELOCITY
COORDINATES

The following transformations are used to derive
Eq. (34):
sz—%gy ,=G—% I;
V1=G+%g, V1-——G+ g

It is convenient to transform the velocities into di-
mensionless quantities with the help of

&= (m*/2ksT}G and g=3(m*/2ksT)¥. (C.2)

The vectors ¢ and g are related to the following polar
coordinate systems: &(®),0,¢), with 6 as polar angle
between @ and a fixed coordinate system ; and g(g,9,¢),
with ¢ as polar angle between ¢ and @&. Under the
integral of Eq. (48) we have

mv?/2ksT= (&2—g.)*=[ cosf—g(cosd cosh
+sing sinf cosp) 2, (C.3)
46 A, H. Wilson, Proc. Roy. Soc. (London) 167, 580 (1938).

(C.1)

JOACHIM APPEL

and, further,
€= I®—g]27 €= |®_g,|2)
a=|G+g|? 1=|G+g'[% (C4)

The angles which occur in the scalar products are
defined by

X= < (gygi);
= { (gly@);

APPENDIX D. THE INTEGRALS L, AND M,

d= { (g7®)7
cost’ = cosd cosy+sind siny cosy. (C.5)

Approximation formulas of the parameter integrals
for small & are given by

Ly=2h(8%)—34-26°1(5?),

Lo=47(5%) — 4-+6%(5%),

L;=12h(6%)—8,
Mo=3h(5/2)—5+38°1(5°/2),
M1=3h(8%/2)—5§6°h(6%/2),
Mo=h(8*/2)+3—10h(8%/2),
M3=3h(8%/2)4+5—38%h(8%/2),
M=12h(6%/2)+13—38%(6%/2).

In this approximation we have assumed 81 and,

therefore, included terms of order %(8?) and §*4(5%) only.
The function %(8%) is defined by

(D.1)

h(8*)=exp(#*/2)[—Ei(—&/2)], D.2)
where (—y)
ex
—ki(-a= | T
and for small 6> we may use the approxunation
—Ei(—2)=In(1/yx)+x, (D.3)

where v is Euler’s constant (y=0.5772157---).



