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Exponential Temperature Dependence of Young's Modulus for Several Oxides
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(Received February 3, 1961)

Young's modulus was measured over the temperature range 77'—850'K by an accurate resonance tech-
nique. Data are presented for single crystals of aluminum oxide with various orientations of the crystallo-
graphic axes and for polycrystalline aluminum oxide, thorium oxide, and magnesium oxide. The results show
that the range of validity of a T4 temperature dependence predicted by theory must be quite small. The
temperature dependence is very well described over the whole temperature range by T exp( —Tp/T), where
Tp is an empirical parameter.

I. INTRODUCTION

'HE temperature dependence of the elastic con-
stants of nonmetallic crystals should be given by

the theory of lattice dynamics in terms of a set of
parameters specifying the interatomic forces including
anharmonic terms. Unfortunately, the summations in-
volved are so complicated that apparently no general
solution has ever been given. Born and Huang' do show
that at sufficiently low temperatures the elastic con-
stants should vary as T4, but make no estimate of the
range of validity of this approximation. The third law of
thermodynamics requires that the derivative of any
elastic constant with respect to temperature must ap-
proach zero as the temperature approaches absolute
zero, and the T4 law satisfies this condition. No general
prediction has been made for the form of the tempera-
ture dependence at high temperatures, but for many
crystalline solids an approximately linear dependence is
observed. In particular, a linear temperature depend-
ence has been observed' for young's modulus of several
refractory oxides including aluminum oxide, magnesium
oxide, and thorium oxide above room temperature, with
the exception that a departure from this linearity is
observed in polycrystalline oxides at sufficiently high
temperatures (about 1250'K for aluminum oxide,
1500'K for magnesium oxide, and 1400'K for thorium
oxide) which may be caused by grain boundary slip.
Some justification for a linear behavior at high tempera-
tures can be obtained from a Gruneisen-type approxi-
mate equation for the volume compressibility given by
Born and Huang. ' This equation gives a T4 dependence
at low temperatures and at high temperatures it gives a
term linear in T multiplied by a power series in (e/T)'
which reduces to a constant for 8/T«1. These re-
fractory oxides have high values of the Debye charac-
teristic temperature (9=1045'K for aluminum oxide,
0=946'K for magnesium oxide, and 6=782'K for
thorium oxide), and offer a good opportunity to examine

E=Ep BT exp( —Tp/T). — (2)

This equation gives E=EO at absolute zero and ap-
proaches this value with zero slope as required by the
third law of thermodynamics. At high temperatures,
exp( —Tp/T) approaches one, and the equation gives a
linear dependence.

II. SPECIMENS

the change from linear behavior at high temperature to
zero slope at absolute zero. The temperature dependence
of the elastic properties should not be complicated by
free electron effects because these oxides are all in-
sulators.

The present work has two main objectives: first, an
examination of the transition from linear behavior at
high temperatures to zero slope at low temperatures
with the particular goal of determining whether there is
an appreciable temperature range in which the T4 law
holds; and second, the discovery of a function which
accurately describes the temperature dependence over
the whole range of measurement. The following quali-
tative argument suggests a form for trial. The linear
dependence at high temperatures is probably charac-
teristic of such a high degree of excitation of the
vibrational modes that the classical specific heat of k
(Boltzmann's constant) per mode is valid. As the tem-
perature is lowered, the slope of the Young's modulus-
temperature curve must decrease from a constant value,
say 8, at high temperatures, to zero at absolute zero.
This suggests an equation of the form

E=Ep BTf(T), —

where f(T) is a function which approaches one at high
temperatures, and zero at absolute zero. We expect
f(T) to be related to the degree of excitation of the
vibrational modes and try the simplest such function, a
single Boltzmann factor exp( —Tp/T). The suggested
equation is then

' M. Born and K. Huang, Dymamicat Theory of Crystal Lattices
(Oxford University Press, New Vork, 1956).' J. B.Wachtman, Jr., and D. G. Lam, Jr., J. Am. Ceram. Soc.
42, 254 (1959).

3 The Gruneisen-type approximation for the volume compressi-
bility is given on p. 51 of reference 1.The conclusion that the exact
theory gives a T4 dependence of elastic constants at low tempera-
ture is given on p. 327.

The single-crystal specimens of aluminum oxide
(Al, Op in the corundum structure) were grown by the
Verneuil Game-fusion process and supplied by the Linde
Company. Spectroscopic analysis indicated that the
major imPurity was Si in the range of 0.01—0.1rro. The
crystals were ground into rods 6-in. long and with
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TABLE I. Properties of oxide specimens.

Specimen 8 Ep
Material No. (deg) (deg) (10"dyne/cm') +0/+25

8 &/%5
(10' dyne/cm') (10 4/'I)

Te 0
('K) (10"dvne/cm')

A1203
A1203
A1203
A1203
A1203
A1203
A1203

12
14
15
17
18
19
25

39.1
1,0

18.8
40.7
59,5
64.8
89.0

+24.5
~ ~ ~

+10.5—28.3—?9.1—0.8—3.6

3.6905+0.0004
4.6378%0.0001
4.2911&0.0001
4.1424m 0.0004
4.3714&0.0002
3.9816&0.0002
4.3015%0.0002

Single crystals
1.0215~0.0001
1,0082&0.0001
1.0131~0.0001
1.0160+0.0001
1.0129~0.0001
1.0170+0.0001
1.0117~0.0001

6.43+0.02
4.41~0.01
5.45+0.01
6.14+0.02
5.57&0.01
6.03+0.01
5.14+0.01

1.781+0.004
0.958~0.002
1.287&0.002
1.505~0.008
1.291~0.003
1.540&0.003
1.209+0.002

267&2
373&2
319&2
305a3
325~2
295~2
335~2

0.0006
0.0002
0.0003
0.0006
0.0004
0.0005
0.0002

A1203
A1203
MgO
ThO2

72.3
96.1

118.0
87.1

Polycrystalline specimens
3.4629&0.0004 1.0149&0.0001 4.83&0.02
4.0532+0.0005 1.0147&0.0001 5.60+0.03

~ ~ ~ 1.0272~0.0002
2.0416+0.0003 1.0223+0.0002 2.73~0.01

1.395w0.005 309'3
1.402~0.007 312~5
1.902~0.006 215~4
1.367&0.004 181&3

0.0005
0.0009

~ ~ ~

0.0004

diameters in the range 0.1—0.15 in. The orientations are
given in Table I in terms of the angles 0 and P. The
former is the angle between the cylinder axis and the
crystallographic c axis; the latter is the angle between
the crystallographic +a axis and the projection of the
cylinder axis on the crystallographic c plane. These
angles and their measurement have been previously
discussed.

The polycrystalline aluminum oxide specimen labeled
72.3 was made from powdered aluminum oxide by the
McDanel Refractory Porcelain Company by conven-
tional cold pressing and sintering. The density was 3.721
g/cm' (the single-crystal density is 3.986 g/cm' at
25'C), and spectrographic analysis indicated the pres-
ence of Fe, Ga, Si, and V in the range 0.01—0.1%.
Polycrystalline aluminum oxide specimen 96.1 was

made by the General Electric Company using a new

sintering process' which produced a density of 3.974
g/cm'. Spectroscopic analysis indicated Mg in the range
0.1-1%

The polycrystalline magnesium oxide specimen (MgO
in the rock salt structure) was made by hydrostatic cold

pressing followed by sintering. The density was 3.50
g/cm', and the single-crystal density determined by
x-ray lattice-parameter measurement' is 3.581 g/cm' at
25'C. Spectroscopic analysis indicated the presence of
Al, As, Fe, and Si in the range 0.01—0.1%.

The polycrystalline thorium oxide specimen (ThOs in
the fluorite structure) was made by the Norton Com-

pany by conventional cold pressing and sintering. The
density was 9.07 g/cm', and the single crystal density
determined from x-ray lattice parameter measurement'
is 9.991 g/cm. Spectroscopic analysis indicated the
presence of Al, Mg, and Si in the range 0.01—0.1%. All

4 J. B. Wachtman, W. E. Tefft, D. G. I.am, and R. P. Stinch-
6eld, J. Research, Natl. Bur. Standards 64A, 213 (1960).' J. E. Burke and S. P. Mitoff, Bull. Am. Ceram. Soc. BS, 722
(1959).

~ H. E. Swanson and E. Tatge, National Bureau of Standards
Circular No. 539 (U. S. Government Printing Office, Washington,
D. C., 1953), Voi. I.

polycrystalline specimens were in the form of rectangu-
lar bars.

III. EKPERIMENTAL PROCEDURE

The value of Young's modulus for each single-crystal
rod at 25'C was determined by measuring the density,
dimensions, and longitudinal resonance frequency. The
measurements and subsequent calculations of Young's
modulus have been described. ' For the polycrystalline
bars, Young's modulus at 25'C was calculated from the
flexural resonance frequency using Pickett's' theory and
the interpolation equation of Spinner, Reichard, and
Tefft. ' Letting 8, /, and f represent Young's modulus,
the length of the specimen, and the flexural resonance
frequency at any temperature, it follows for a specimen
with isotropic thermal expansion that

&=Rs(f/fss)'(4s/t), (3)

where the subscripts indicate values at 25'C. This
equation follows at once from writing the Young's
modulus equation at two temperatures and combining
the two equations. For the aluminum oxide single

crystals, the thermal expansion is nearly isotropic, but
the small anisotropy was taken into account as de-
scribed in Appendix I.

The procedure for determining the Qexural resonance
frequency at elevated temperatures by suspending the
specimen on two 6ne glass threads near the nodes has
been described. ' Low-temperature measurements were

made by attaching small magnets to the ends of the
specimen and suspending it in a cryostat on threads at
the nodes. Small coils in the vicinity of these magnets
served as transducers between the specimen and the
external electronic equipment. The flexural resonance
frequencies were in the range 1—2 kc/sec and were
measured with a crystal-controlled counter having an
accuracy of 0.1 cps on a 10-sec count, and 0.01 cps on a

7 G. Pickett, Proc, Am. Soc. Testing Materials 45, 846 (1945).
S. Spinner, T.W. Reichard, and W. E.Tefft, J.Research Natl.

Bur. Standards 64A, 147 (1960).
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100-sec count. In the worst case, 0.1 cps error in 1
kc/sec, an error of one part in 5000 in Young's modulus
would result from error in frequency measurement. The
average error to be expected from this source would be
about eight parts in 10' on the 10-sec count and two
parts in 10' on the 100-sec count (the latter error being
partly due to oscillator instability). The value of E» is
not this accurate, but the ratio E/Esp should be, pro-
vided the ratio (l»/l) is known this accurately. For
single-crystal aluminum oxide and for polycrystalline
aluminum oxide and thorium oxide, the thermal ex-
pansion was measured for us by T. G. Scuderi and G. W.
Cleek, of the National Bureau of Standards, using an
interferometer. ' The thermal expansion of polycrystal-
line magnesium oxide was determined by R. K. Kirby,
of the National Bureau of Standards, using a fused silica
dilatometer. In all cases, the results are believed to be so
accurate that less than one part in 10 000 error is caused
in E/Ess. For aluminum oxide, an integrated form of the
Gruneisen equation for thermal expansion was fitted to
the data with a standard deviation of 7&&10 ' in /ss/l, so
that the random error in these thermal-expansion results
is well below one part in 10000. The largest error in
E/Esp probably results from error in temperature meas-
urement, and the very small scatter in the data are
probably attributable to this cause. This can be shown
by plotting the E vs T data on a highly expanded scale.
At low temperatures, where dE/dT is very small, the
scatter in the data is just the amount to be expected
from the error in frequency measurement indicated
above, while at high temperatures, where dE/dT is
large, the scatter is proportional to dE/dT and almost

' J. B. Wachtman, T. G. Scuderi, and G. W. Cleek, J. Am.
Ceram. Soc. (to be published).

independent of whether the 10-sec or 100-sec count is
used,

IV. RESULTS

Typical experimental results are shown in the form of
points on the plot of Young's modulus as a function of
temperature in Fig. 1.The curve shown in this 6gure is a
plot of Fq. (2) using least-squares best estimates of Ep,
8, and To. The procedure for obtaining the least-squares
best estimates is given in Appendix II. Evidently, Eq,
(2) 6ts the data very well. A quantitative measure of the
fit is given in Table I, where the column headed tT gives
the standard deviation of the measured values from the
plotted curves. These values indicate a deviation of only
1 or 2 parts in 10 000 from the plotted curves which is no
larger than the estimated experimental error.

A test of the validity of various power laws is given in
Fig. 2, where the measured values are successively
plotted against T, T', T4, and T exp( —Tp/T). If
Young's modulus is correctly represented by one of these
functions, the corresponding plot should be a straight
line. The function T exp( —Tp/T) gives a continuously
changing curvature when plotted against T, and we
expect any power of T to approximate it over some short
temperature interval. Thus at suKciently high tempera-
ture, T approximates T exp( —Tp/T). At somewhat
lower temperature, T' will approximate T exp( —T/Tp)
over a short temperature range. Successively higher
powers will give approximations over successively
shorter temperature intervals centered about succes-
sively lower temperatures. The plots in Fig. 2 show this
behavior. Thus, it is hard to say whether the initial
linear portion of the T4 plot is the theoretical T4 be-
havior predicted by Born and Huang or just an ap-
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proximation to the function T exp( —T/To) over a
limited temperature interval. A more definite check
would require Young's modulus measurements with
accuracy greater than one part in 10 000 and measure-
ments at lower temperatures. In any case, significhnt
curvature in the T4 plot is evident at T=150'K and,
below this temperature, Young's modulus is so nearly
constant that any true T' term which exists must have a
small coefficient. If very accurate measurements were
made down to 4'K, it might be preferable to use a
crystal with a lower value of the Debye temperature.
Choice of a high Debye temperature has the advantage
of giving a larger range in which to look for the T' be-
havior, but from analogy to the specific heat curves, we
might expect that the coefficient of the T' term would be
smaller for high Debye temperature.

The effect of porosity on the parameters of Eq. (1) is
shown by the data on the two polycrystalline aluminum
oxide specimens. Specimen 96.1 has a porosity of 0.0030
(defined as 1 minus the ratio of the specimen density to
the single-crystal density) and specimen 72.3 has a
porosity of 0.0665. The specimen with the higher
porosity has lower values of Ep and 8 as would be ex-
pected. However, the relative change in E with tempera-
ture is the same for both specimens. That is, Eo/E2q is
the same for both specimens within experimental error
as are 8/E25 and To.

The 0.01—0.02% fit obtained for the present data with
Eq. (2) is considerably better than the 0.2% fit obtained
by Overton and Gaffney" for c44 of copper using an
exponential of the form Iie, where Ii is a function of
the volume, o. is the linear expansion coefficient, and 8
is an empirical constant.

' W. C. Overton, Jr., and John Gaffney, Phys. Rev. 98, 969
(1955).

V. DISCUSSION

Although no theoretical justification for Eq. (2) is
known, the success with which it describes the tempera-
ture dependence of Young's modulus suggests that a
physical interpretation of the parameters in this equa-
tion should be sought. The parameter Ep should be just
the Young's modulus value at absolute zero, and its
variation with orientation should be predicted by the
theory of elasticity in terms of the single-crystal elastic
constants. The qualitative argument given in the Intro-
duction suggests that Tp should show a correlation with
the Debye temperature. The parameter 8/E2q should be
related to Gruneisen's constant y. This is reasonable on
qualitative grounds; the change of Young's modulus
with temperature is an anharrnonic property and
Gruneisen's constant is a simple average measure of
anharmonicity. The relation is not likely to be one of
simple proportionality, however, because the Gruneisen-

type approximation for the volume compressibility
derived by Born and Huang' contains a linear and a
quadratic term in p. For single crystals, there is the
complication that both 8/E25 and To depend on orienta-
tion. This is reasonable; we cannot expect to describe
the anharrnonic properties for vibrations in different
directions by an orientation-independent parameter 8,
nor can we expect to specify the degree of thermal
excitation for different directions of vibration at a given
temperature by an orientation-independent parameter
Tp. Orientation-independent parameters y and 9 suKce
for the volume thermal expansion and the specific heat,
respectively, because these properties involve averages
over all directions.

In the absence of any knowledge of the exact relation-
ship of 8/E2& and To to other physical properties, we can
only compare these values for polycrystalline materials
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Material

A1203

0 ('K)

1045&6 1.18 single crystal
1.34 polycrystalline

TABLE II. Debye characteristic temperature and
Gruneisen constant.

Alsos is accompanied by increasing Ts but 8/Ts is not
constant. No correlation of 8/E» with y is apparent.
Evidently, the physical interpretation of the parameters
8/E» and Ts presents a challenging theoretical problem.

APPENDIX I

Th02 782&7

1.45 single crystal
1.52 polycrystalline

1.78 polycrystalline

The anisotropic thermal expansion may be approxi-
mately taken into account as follows: Pickett' gives as
the relation between Young's modulus E and the
flexural resonance frequency f of specimens having
rectangular or circular cross sections

with the values of p and 0, respectively. Vse of poly-
crystalline materials eliminates the problem of orienta-
tion dependence. The Gruneisen constant can be
calculated from

y= VnE/C„,

where 0. is the volume thermal expansion, C. is the
specific heat at constant volume, and V is the molar
volume. Values of the bulk modulus E for the poly-
crystalline oxides were taken from Lang" and corrected
to zero porosity using Mackenzie's" equation. The bulk
modulus for single-crystal aluminum oxide4 and single-
crystal magnesium oxide" were used to calculate values
of p also. The specific heat of aluminum oxide is given by
Furukawa et al. ,

" that of magnesium oxide by Barron
et al." and that of thorium oxide by Osborne and
Westrum. ' The Debye temperature for magnesium
oxide is given directly by Barron et al."The values of
the Debye temperature for aluminum oxide and thorium
oxide were calculated from the above-mentioned specific
heat data using

E=APf'/I, (6)

E=AP f'/ba'

where a is the cross-sectional dimension in the plane of
vibration and b is the cross-sectional dimension perpen-
dicular to this plane. Then

E(T) f'(T) P(T) bss ass'

Ess fss' 4s' b(T) a'(T)

f'(T) ( 3LU Db 3haq
I

1+ ——
f, (g)

fss' E lss bss ass )

where /= length of specimen, I=moment of inertia of
the cross-sectional area about an axis perpendicular to
the plane of vibration, and 3 is proportional to the mass
but nearly independent of the shape of the specimen.

If we assume that the same form of equations holds
for specimens of the shape used in this study (approxi-
mately elliptical, with major and minor axes nearly
equal), then we may write

where N is the number of atoms per mole and k is
Boltzmann's constant. The value of C„/T' at O'K was
determined by fitting a straight line to a plot of c„/T' as
a function of T' and extrapolating to absolute zero."

The calculated values of 0 and y are given in Table II.
A qualitative correlation of To for the polycrystalline
oxides with 0 exists. Increasing 0 from Th02 through

"S. M. Lang, National Bureau of Standards Monograph 6, 1960
(unpublished).

's J. K. Mackenzie, Proc. Roy. Soc. (London) 863, 2 (1950).
'3 H. B.Huntington, Solid-State Physics, edited by F. Seitz and

D. Turnbull (Academic Press, Inc. , New York, 1958), Vol. 7, pp.
213-351.

'4 G. T. Furukawa, T. B. Douglas, R. E. Mccoskey, and D. C.
i innings, J. Research, Natl. Bur. Standards 57, 67 (1956)."T.H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy.
Soc. (London) 250A, 70 (1959).

'6 D. W. Osborne and Edgar F.Westrum, Ir., J.Chem. Phys. 21,
1884 (1953).

rr T. H. K. Barron and J. A. Morrison, Phys. Rev. 115, 1439
(1959).

where Al/lss, Ab/lss and Aa/a» are the changes in the
length and cross-sectional dimensions with temperature.
For the symmetry of sapphire, the fractional change in
length in any direction is given by

c= ess cos'n+eii sin'n,

COSS )=COS07

cosn, = sin0 coslb,

cosn s
——sin/ sing, (12)

where &33 and eJ~ refer to the fractional changes in length
along the c axis and perpendicular to the c axis, re-
spectively, and e is the angle between the c axis and the
direction of measurement.

In order to specify e for the a and 5 directions, we
must define a new angle P, the angle between the plane
of vibration and the plane containing the c axis and rod
axis. 7Ve then obtain
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al
= 633 COS 0+611 Sill 0) (13)

Au—= E33 Sill 0 COS tp+311(1 Sill 0 COS lp))
8

(14)

Db—= e33 sin'0 sin'P+ 311(1—sin'0 sin3$ ),
b

(15)

361 Ab 36@
1+ 1 E11+(333 311)

l25 625 825

&( L3 cos'0 —sin'0(1+2 cos'P) ). (16)

where e~, e, and m~ are the values of e in the l, a, and b

directions, respectively. This gives

APPENDIX II

The least-squares best estimates for the parameters
in Eq. (2) can be determined by successive approxima-
tions using a Taylor series expansion about an initial
estimate for To. This initial estimate, denoted To~, is
obtained by using three measured values of E and T to
write Eq. (1) three times for simultaneous solution.
Using

~
—TP/T g

—(Tot+&To)/T~(1 QT3//T)~ —T01/T (17)

we have
jV~jV& 73Tg Tol/ T+—g (Q T3)g To&/ T — (18)

The least-squares best estimates for the unknowns Eo,
8, and M, TO can be found by standard least-squares
techniques. The value T33= T31+DT3 is used as a new
initial estimate and the process repeated until the
change ATO is within the standard deviation. In prac-
tice, two repetitions were sufficient.


