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Rotational Multiplets in the Spectrum of the Earth*
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The doublets in the spectrum of the free oscillations of the earth
which have been observed on the gravimetric (UCLA) and strain-
meter (Pasadena) records of the great Chilean earthquake of
May 22, 1960, are interpreted as multiplets arising from the
rotation of the earth. The phenomenon is similar to the Zeeman
effect, and is indeed a realization of the mechanical analog from
which Larmor deduced the "Larmor precession" in his interpreta-
tion of the Zeeman effect. A 6rst-order perturbation calculation
yields the result that the degenerate frequency co(n) in the ab-
sence of rotation is resolved by a slow rotation into (2m+1) lines,
0 given by

ir =o o(rt)+mr(n)to, st &—m& n,

where co denotes the angular velocity of rotation of the earth, and
m is the azimuthal number of the wave function, v (n) is deter-
minable from the zero-order solution in the case of spheroidal

oscillations, and is equal to Lrr(n+1)7 ' in the case of purely
torsional oscillations. The relative intensities within the quintet
n =2 and the septet n =3 have been determined for an observing
station at Los Angeles, on the assumption of an explosive point-
source at the earthquake focus in Chile. The strongest lines should
be the pair m= &1 for n=2, and the pair m= %2 for n, =3. These
agree in separation with the pairs observed on the strain-meter and
with the gravimetric pair at n=3, but less so with the gravimetric
pair at n=2. There are indications in the strain-meter spectrum
for n=3 of a weaker line at m=0, while the other lines are theo-
retically of an intensity not exceeding the background noise. The
separation in the observed gravimetric doublet for the first over-
tone of n=3 agrees with the interval of the strongest pair m= &2.
The intensities of the lines in the rotational multiplets of the com-
ponents of displacement for an observing station at Palisades,
New York, have also been determined.

l. INTRODUCTION

HE first attempts of Zeernan to observe an effect
of a magnetic field on spectral lines led to nega-

tive results. He resumed the experiment in 1894 when
he read in Maxwell's' sketch of Faraday's life: "Before
we describe this result we may mention that in 1862 he
made the relation between magnetisrn and light the
subject of his very last experimental work. He en-
deavored, but in vain, to detect any change in the
lines of the spectrum of a Game when the Game was
acted on by a powerful magnet. "Zeeman states'. "If a
Faraday thought of the possibility of the above-
mentioned relation, perhaps it might yet be worth-
while to try the experiment again with the excellent
auxiliaries of spectroscopy of the present time. . ."
The discovery of the Zeeman effect that followed in
1896 carne at a time when the basic concepts needed
for its interpretation had already been formulated by
Lorentz. ' Zeeman goes on to say, ' "Professor Lorentz,
to whom I communicated these considerations, at once
kindly informed me of the manner in which, according
to his theory, the motion of an ion in a magnetic field
is to be calculated, and pointed out to me that, if the
explanation following from his theory be true, the
edges of the lines of the spectrum ought to be circularly
polarized. "The splitting of the original frequency 0 o by
a magnetic field H, which Zeernan derives' on the basis
of the Lorentz theory, is

o = a p+eH//2mc
* Supported by the OfFice of Naval Research and by Project

Vela-Uniform of the Advanced Research Projects Agency.' J. C. Maxwell, Collected Works (Dover Publications, Inc. ,
New York, 1953), Vol. II, p. 790.

s P. Zeeman, Phil. Mag. 43, 226 (1897) t reprinted in Ver-
handelingen van Dr. P'. Zeeman over 3IIagneto-Optische Verschji-
nelsen (Eduard Ijdo, Leiden, 1921)j.

'H. A. Lorentz, Versuch einer Theoric der electrischen und
optischen Erscheinungen in bewegten Korpern (Leiden, 1895).

for the case where the lines are viewed parallel to the
magnetic Geld. The two lines given by (1) should be
circularly polarized, and this was confirmed already in
the first experiment of Zeeman. '

The relation (1) had been derived independently' by
Larmor. When news of Zeeman's discovery reached
him, he substituted the value of the mass of hydrogen
for m in (1) and concluded that the effect would be
inappreciable. He therefore asked Lodge to confirm the
experiment. This Lodge succeeded in doing, and on
May 20, 1897, he demonstrated the effect at a Royal
Society soiree. Lodge later published a disclaimer' of
"any intention of trespassing on the prerogative of the
discoverer. "As is well known, Larmor proves that the
effect of a uniform magnetic field H on the orbit of a
particle of charge e and mass m is to set the whole orbit
into a precession around the direction of H with an
angular velocity

oor, eH/2mc, —— (2)

provided the centrifugal force can be neglected in com-
parison with the Coriolis force. erg is called the Larmor
precession frequency. Larmor's theorem follows di-
rectly from equating to zero the sum of the Coriolis
force 2mvXta and the Lorentz force —(e/c)vXH.
Larmor then shows, as Zeeman had done, that the fre-
quency of a harmonic oscillator 0.0 is split by a rotation
co into the two lines given by (1), provided ( coo/. )(o(1.

While the Zeeman effect furnishes ample experi-
mental verification of the electromagnetic part of
Larmor's analogy, an experimental demonstration of
the mechanical counterpart has been wanting. A strik-
ing case of the splitting of the natural frequency of a
purely mechanical system by rotation presented itself

4 J. Larmor, JIathematical and Physics Papers (Cambridge Uni-
versity Press, New York, 1928), Vol. II, p. 140.

'O. Lodge, Phil. Mag. 44, 60 (1897).
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recently when the records of the great Chilean earth-
quake of May 22, 1960, w'ere analyzed. This earth-
quake excited the natural oscillations of the earth. The
gravest modes n=2 (53.7 min) and v=3 (35.5 min)
appeared as doublets in the spectra of both the gravi-
metric records' and the strain-meter records. ~ The free
oscillations of the earth are governed by gravitational
and elastic forces. Taking the distribution of density
p(r) and of the elastic constants 'A(r) and p, (r), as in-
ferred primarily from seismic as well as from other
geophysical data, we have determined the spectrum
for several proposed models of the earth. ' " The in-
vestigation was prompted originally by an observation
made by BenioQ" of a 57-min oscillation on the record
of the Kamchatka earthquake of 1952. By the time the
theory was worked out in detail and the spectrum
thoroughly investigated, several years had elapsed; and
a question began to emerge with annoying persistence
as to why no further natural oscillations had been re-
corded since 1952, in spite of the continuous improve-
ment in recording facilities. The answer to this question
came at the meeting of the International Union of
Geodesy an.d Geophysics held at Helsinki in. July, 1960,
when Benioff', Press, and Smith, and Ness, Harrison,
and Slichter announced that they had identified the
free oscillations of the earth in the strain seismograms
(52 lines) and the gravimetric records (49 lines), re-
spectively, of the great Chilean earthquake of May 22,
1960. The periods deduced from spectral analysis of
the strain-meter records agreed with the gravimetric
values to within 1%%uq, and this was also the measure of
agreement with the theoretical spectrum" for the
Gutenberg earth model, and to a lesser extent with the
spectrum for the Bullen B model. Free modes ranging
from spherical harmonic order v=2 up to v=38 were
identified seismically, and up to m=41 gravimetrically.

The free oscillations fall into two classes: spheroidut,
with nonvanishing dilatation, and torsioszot. In the
latter there is neither dilatation nor vertical displace-
ment, so that they produce no gravity perturbation.
Actually, the torsional oscillations were identified only
on the seismic records.

Press and Slichter reported that the m=2 and v=3
lines appear as doublets in the strain-meter and gravi-
metric spectra. It was then suggested" that the splitting

N. F. Ness, J. C. Harrison, and L. B. Slichter, J. Geophys
Research 66, 621 (1961);see also L. E. Alsop, G. H. Sutton, and
M. Ewing, ibid. 66, 631 (1961).

7H. Benioff, F. Press, and S. Smith, J. Geophys. Research
66, 605 (1961).

C. L. Pekeris and H. Jarosch, Contributions in Geophysics
(Pergamon Press, New York, 1958), Vol. 1, p. 171.' Z. Alterman, H. Jarosch, and C. L. Pekeris, Proc. Roy. Soc.
(London) A252, 80 (1959).

"Z. Alterman, H. Jarosch, and C. L. Pekeris, Geophys. J. 3,
JeGreys Jubilee Volume (1961)."C. L. Pekeris, Z. Alterman, and H. Jarosch, Proc. Natl.
Acad. Sci. V. S. 47, 91 (1961)."H. Benioff, Trans. Am. Geophys. Union 55, 985 (1954)."C.L. Pekeris, Lecture given at the Helsinki meeting of the
IUGG (July, 1960).

where

Vp(r) BY

sin8 B@
fp ——Pp(r) Y„,

(3)

Y„„(8,y) =P„~(cos8)e'm4,

and a factor e""has been omitted. The frequencies o.p(n)
are degenerate, and do not depend on the azimuthal
number nz. It is shown below that the introduction of a
slow angular rotation rp («o p) removes the degeneracy,
each line op(n) being spl.it into a multiplet of (2m+1)
lines 0 given by

where
~„"=rro(n)+mr (n)rp, n~& m ~&

—n, (5)

r(n) = pr'(2UoV p+V(P)dr
0

pr'L Up'+n (e+1)Vp']dr (6)
0

in the case of spheroidal oscillations, and

o. (e) = 1/e(m+1) (7)

in the case of torsional oscillations.
Taking the earth model Bullen B, for which we have

evaluated the functions Up(r) and Vp(r), we hand from
(6) that 7 (2) =0.395 and 7 (3)=0.183. Using these in
(5), and the value 7.272)&10 ' sec ' of the angular
velocity of rotation of the earth co, we get the periods

' H. Lamb, IIydrodynumics (Cambridge University Press,
New York, 1940), 6th ed. , p. 320.

is due to the earth's rotation. This conjecture was made
on the basis of a recollection of a result in Lamb' s
treatment" of the effect of rotation on the free gravita-
tional oscillation of a circular basin, namely that the
wave advancing in the direction of rotation has a longer
period than the wave going in the opposite direction. A
perturbation calculation, " based on Lamb's analysis,
showed that in the case of the rotating circular basin
the frequency interval (o.&

—o.r) in the doublet should
be of the order of the angular velocity of rotation ~.
Observationally, the quantity (o&—p. r)/rp ranged from
0.7 to 1.1, thus lending support to the hypothesis of the
rotational origin of the observed doubling of the periods
of free oscillations of the earth.

In the following section, we extend our previous
analysis of the free oscillations of a nonrotating self-
gravitating elastic earth by carrying out a first-order
perturbation calculation of the effect of a slow rotation
on the freqgerrcy Denoti.ng by subscript zero the solu-
tion for the case of no rotation, the components of dis-
placement zIO, ~o, wo in a spherical system of coordinates
(r,8,&) and the perturbation in gravity Pp, are given by

BV„
No= Uo(r) Y„(8,$), so= Vo(r)

80
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TAHlz I. The periods T„ for model Bullen B.

g= dt's/d—r,

pl/ = —4' cpo, (10)

tt denoting the gravitational potential and G the gravi-
tational constant. If the earth now rotates with angular
velocity oe, Eq. (8) still retains the form"

Vpo= pod%,

the equilibrium static solution, and then superimposing
on it a perturbation velocity-6eld v which is controlled
by the elastic and gravitational restoring forces. The
static solution, which we shall designate by the sub-
script zero, is spherically symmetrical and is governed
by the equations

dpo/df = gpo,

T„(=2'/ .a) of the quintet for n=2 and of the septet
for m=3 shown in Table I. The question arises as to
why only two lines out of a possible five were observed
in the case m= 2, and again why only two out of a pos-
sible seven lines in the case n=3.

This leads us to an investigation of the relative
amplitudes of the lines within a multiplet. The relative
amplitudes depend on the nature of the source, its
geographical location, and the location of the observing
station, as well as on the nature of the quantity that is
observed —whether a component of displacernent, or of
strain, or the perturbation in gravity. We assume an
explosive compressional point-source at the earthquake
focus in Chile (eo

——128'), and make use of the results
of an earlier investigation' of the relative amplitudes of
the modes m=2 and m=3 which such a source excites.
If the source were located on either of the poles, there
would be, according to our theory, no rotational split-
ting, because there would be no longitudinal (East-
West) component of motion to, and m in (4) and (5)
would be zero. Although on the assumption of a point-
source there is no longitudinal motion around the axis
passing through Chile, there is longitudinal motion
around the axis of rotation of the earth, and this gives
rise to rotational splitting. In the case of the gravi-
metric measurements, we use the expressions for the
amplitudes within the rnultiplet of the perturbation of
gravity, while in the case of the strain-meter we use the
appropriate theoretical amplitudes of the longitudinal
strain in a horizontally placed long bar.

These theoretical results are compared with observa-
tions in Table III and in Figs. 1 and 2. It is seen that,
in general, the doublets observed are those lines of the
multiplet which are strongest theoretically, and that
the missing lines would not be expected to stand out
above the observed noise level.

2. THEORY OF ROTATIONAL MULTIPLETS IN
THE SPECTRUM OF THE EARTH

In the absence of rotation, the analysis of the free
oscillations of the earth proceeds by first determining

where @is the geopotential, comprising the gravitational
potential it defined in (10) and the centrifugal term,

O'=P+ '(u'r' sin'0- (12)
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FIG. 1. n =2. Spectral intensity of Chilean earthquake ob-
served at Isabella by Benio8, Press, and Smith. Arrows show
theoretical positions and amplitudes of multiplet for a compres-
sional point-source.

"H. JeRreys, The Earth (Cambridge University Press, New
York, 1958), p. 124.

in a spherical system of coordinates (r,o,&) The so. lu-
tion of (11) is

po= po(+), po=dp!d+=t o(+). (13)

It can be shown" that the surfaces 0 =C are ellipsoids
of revolution whose maximum ellipticity is at the sur-
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of the strain tensor e;;, as shown in the Appendix. The
time does not appear explicitly in R, S, and T.

Having solved' '" for the functions Up(r) and Vp(r)
in (3) and for the corresponding 0.0(n) for the case of
~=0, we now proceed to carry out a first-order per-
turbation calculation in the small parameter o, defined

by
n= ((v/0 0)«1. (21)

00+np1 u=up+nui, S=Sp+nSi, etc. ; (22)

then the zero-order equations are
0.0275 00277 0.0279 0.028I 0.0283 0.0285 0.0287

FREQUENCY IN CYCLES PER MINUTE po 0'up+E0=0, pop'vp+S0=0, (23)

pop'wp+T0 0, V'——It 0
—4prG(php+upp) =0. (24)Fxo. 2. n=3. Spectral intensity of Chilean earthquake ob-

served at Isabella by Benio6, Press, and Smith. v Arrows show
theoretical positions and amplitudes of multlplet for a compres- The terms proportional to A yield the equations for thesional point-source.

determination of N~, e~, m~, and o-~.

face r =a, where to a close approximation

r = a&1.+ (1/297) (-', —cos'8) J. (14)

po 00ui+ Ri= —2pa'po'iup —2ipp 0' singwp,

po 0 v,+Si= —2po po iv 0
—2zpo 0 cosgwp,

(25)

(26)
The geopotential surfaces are therefore nearly spherical
throughout the volume of the earth, to within 1 part
in 300. In the following, we shall therefore neglect the
ellipticity of the geopotential surfaces and shall assume
that pp, pp, and gp are functions of r only. One can also
demonstrate the smallness of the effect of the centrifugal
force from the relation

V'+ =V'P+2aP = —4v.Gp+ 2~0' (15)

C= 2ppvg 0&. (16)

which, with p~5, gives (200'/4v-Gp)~(1/400).
The rotation does affect the motion through the

"deflecting force of the earth's rotation, " or the so-
called Coriolis" force C which, per unit volume, is
given by

pgp wi+Ti= 2pppOiwp+21pp'0 cosgvp

+2jp~p' singu, , (27)

V'Pi —4v.G(phi+uip) =0. (28)

(ui &0 up K+vi Sp vo Si+wi Tp wp Ti)
= $2pp'po i(upup*+vpvp*+wpwp*)

+2ipop' sing(up*wp —upwp*)

+2tpo'0 cosg(vp wp vpwp )j. (29)

It is shown in the Appendix that, by virtue of Eqs.
(23)—(28) and the boundary conditions,

Let an asterisk signify the complex conjugate. It then
follows from Eqs. (23)—(27) that

Let I, v, m denote the components of displacement in
a spherical system of coordinates r, 8, @.The equations
of motion and of the perturbation in the gravity field
ares'

~a
r'dr

~0 &0

p2 X

singdg dg (u i*20—up Ei+vi*Sp

v0 Si+wl 2 0 wp 2 1) 0' (30)
p(8' u/gt0) 2-a&p sing —(gw/gt) =R, (17)

p(8'v/gt') 2a&p cosg (gw—/gt) =S, (18)

p(8'w/gt')+2cup cosg(gv/gt)+2cop sing(8 /gtu) =T, (19)

+=+0+&,
V'It =4v.G(ph+up). (20)

Here p denotes the unperturbed density po, 6 is the
divergence of the displacement, and a dot denotes dif-
ferentiation with respect to r. R, S, and T are linear
functions of the displacements and of the components

'6 The "deQecting force of the earth's rotation" is a dominant
term in Laplace's theory of ocean tides. Mem. acad. roy. sci. 88,
75 (1775); Oeuvres Completes 9, 88, and 187. Laplace does not
call it the Coriolis force, for obvious reasons. See the discussion
by A. T. Doodson, Advances ie Geophysics {Academic Press, Inc. ,
New York, 1958), Vol. 5, p. 122.

Hence, by (29), the volume integral over the sphere of
the right-hand side of (29) is zero. This furnishes a

relation for determining o-& in terms of 0-0 and the zero-
order solutions defined in (3). The result, derived in
the Appendix, is

0 i ——mppr (u), (31)

with 7(u) given in Eqs. (6) and (7).
It follows from Eqs. (31) or (5) that each spectral

line in (3) of nonvanishing azimuthal number m is
shifted either positively or negatively, depending on
the sign of m. It is only when the excited mode is sym-
metrical about the axis of rotation of the earth that the
rotation has no e8ect.

It may be noted that the free oscillations of a self-
gravitating liquid Maclaurin ellipsoid, for which the
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TABLE II. Relative excitation of modes n=2 and n=3 of model
Bullen B for a compressional point-source at the surface,

Up(a)

1.00
1.520

Vp(a)

0.0260—0.183

I'0(a)

0.359
2.28

multiplet-separation has been determined" for any
finite &o, approach the relation (5) in the limit of vanish-
ing co, with p.(n)=1/tt. The separation in the normal
Zeeman effect is also given" by a relation (5), with
7.= 1, m= m~, the magnetic quantum number, and
co=co&, the Larmor precession frequency.

'7 G. H. Bryan, Phil. Trans. Roy. Soc. London, Ser. A, 107
(1889). Equation (87) should read: X=&h+ (s/n) pp' M. A. Bethe and E. E. Salpeter, QNmstlm Mechanics of Two-
E/ectron Atoms (Academic Press, Inc. , ¹wYork, 1958), p. 206.

3. LINE INTENSITIES IN ROTATIONAL
MULTIPLETS

We shall now determine the line intensities in the
rotational multiplets of the terrestrial spectrum. In
the first instance, we shall treat an explosive compres-
sional point-source at the earthquake focus in Chile.
The theory can be generalized to more complicated
types of source. For each normal mode, the solution
of Eqs. (23) and (24) yields the relative values of Up(tt)
and Vp(a) entering in (3), as well as of the factor P(tt)
of I'„ in the perturbation of gravity at the surface
r=a. The relative excitation of the various modes by a
compressional point-source has been determined' for
model Sullen 8, and the relevant amplitudes at the
surface are shown in Table II. These were determined
for a source situated at the surface, but the relative
values do not change by more than about 1% as the
depth of focus increases to 200 km.

Let us choose a spherical system of coordinates with
the polar axis passing through the earthquake focus in
Chile (38'S, 73.5'W), and let 0' denote the polar dis-
tance from Chile. Then the components of displacement
I', v', m' and the perturbation of gravity at the surface
P' are given by

u'= A (8'), e'= (8/88')B (8'), (32)

w'= (sing') '(8/Hy')B(8') = 0, P'= C(g'), (33)

where

A (g') =p2(cosg') et~p'+ 1 520p, (cosg'.)et~ p'+ (34)

B(8') =0.0260pp (cosg') e"p'
—0.183pp (cosg') e"p'+ (35)

C(8 ) =0.359P2(cosg') e"p'

+2.28Pp(cosg')e' p'+ . (36)

Here o-~ and 0.3 denote the frequencies for m=2 and
m= 3, respectively.

In order to determine the rotational splitting of the

natural oscillations, we must transform the above quan-
tities to the geographical coordinate system (r,g,&)
referred to the axis of rotatiom of the earth, 8 denoting
colatitude and P longitude. First we transform A (0'),
B(8'), and. C(8') into A(8,$), B(0,$), and C(8,$), re-
spectively, by using the relation

»=I (tt—[ttt[)!
P.(cosg')= P P„(cosg)—- (uy ~~~)!

&(P (cosgp)e' && ep' (37)

where P (cosg) =P (cosg) are the associate Legendre
polynomials. Here Hp and Pp denote the colatitude and
longitude of the earthquake focus in Chile, and 8 and P,
the colatitude and longitude of the observing station.
The components of displacement I, v, m and of the
perturbation in gravity, P, in the geographical system
of coordinates are then given by

u=A (H,y) .= (0/00)B(g, y), (38)

to= (sing)-t(8/Hy)B (8 y) P= C(8 y). (39)

with m and m now denoting displacements in the direc-
tions of South and East, respectively.

Thus we get for the vertical component of displace-
ment u:

u =A (8,$)=e"'"'(0.069pp (cosg)

0.243P2'(c—osg)/e' & &"+e "& &"j
+0 078P2'(cosg)fe't'& '&"+e '"& '&"])
+e"'~ {0p.517Pp(cosg)+0. 134Pp'(cosg)

&($e'&& &p'+e '&4' &p'5 0 073—pep. (cosg)

&& pe'&'& '&»+e '"e 'eplf+0. 019pp'(cosg)
&»+e '&'& &pl]}+~ ~ ~ . (40)

The rotational separation of the multiplet stems en-
tirely from the dependence on P of A(8,&), B(g,g),
and C(g,y).

The Fourier analysis of the multiplets for @=2 and
m=3 was made by Senioff, Press, and Smith~ from the
strain seismograms obtained at Isabella, California. For
the interpretation of their results, we must derive an
expression for the strain e in a long quartz tube anchored
to the ground in a horizontal position, with its axis
making an angle P with the East direction. We have"

e= (cos'Peee+sinP c sPeoe+esi Pen), ee(41)
e;; denoting the components of the strain tensor. Using
Eq. (3), we get for each partial strain e corresponding
to the spherical harmonic F= V„(8,$),

( 0 I rrt

e„=U V+V„cos'p~ cotg — F'
~

88 sin'0 )
2ittt !HF ) O' F'

+ sinP cosP
~

—cotHF' ~+sin'P . (42)
sin8 ( 88 I 08'

'p A. E. H. Love, The trlathematieal Theory of L~'lastieity (Dover
Publications, Inc. , New York, 1944), p. 54.



ROTATIONAL MULTIPLETS IN SPECTRUM OF EARTH 1697

This leads to

( HB 1 cPB)
ae= A+cos'P~ cotH—+

HH sin'8 8&')

TABLE III. Theoretical periods T and amplitudes excited by a
compressionai point-source at Chile (as=128'), and observed at
Los Angeles (0=56').

Amplitude Observed periods
T Gravi- Gravi-

(min) metric Strain metric' Strain

—2 55.33 0.115—1 54.50 0.242
0 53.70 0.0015
1 52.92 0.242
2 52.15 0115—3 35.99 0.396—2 35.83 1.257—1 35.67 0.282
0 35.50 0.624
1 35.34 0.282
2 35.18 1.257
3 35.03 0.396

0.302
0.615
0.0023
0.615
0.302
0.401
1.46
0.377
0.873
0.377
1.46
0.401

52.80

54.7

53,1

35.87 35.9

35.24 35.2

a See reference 6.
b See reference 7.

~ The over-all sensitivity of the Isabella strain-meter varies by
less than 10% in the period range of 17 to 54 min, so that its re-
sponse is proportional to the strain within the above limit.

2 8 (HB $ HsB
+ sinP cosP—

I

——cotHB ~+sin'P, (43)
sin8 Hy&HH ) HH'

where a denotes the radius of the earth, A=A(8,$),
and B=B(H,y).

We note that this expression for the strain along a
horizontal axis contains the term A (8,&) stemming from
the vertical component of displacement N. Since the
ratio of A/B, as given in (34) and (35), is about 40
for e= 2, and about 8 for e= 3, it follows that the first
term in (43) predominates, so that in this case the
response of the strain-seismograph is not sensitive to
the orientation of its axis. Indeed, due to the pre-
dominance of the A term, the response of the strain-
seismograph in the various lines of the multiplet re-
sembles the relative distribution of amplitude in the
vertical component of displacement I and in the gravity
perturbation I'.

Using the expressions (38), (39), and (43), we have
computed the periods and amplitudes in the rotational
multiplets of the Chilean earthquake for observing
stations situated at Los Angeles and at Palisades, New
York. For Los Angeles, the gravimetric amplitudes were
computed from P in (39), and the seismic strain ampli-
tudes's from Eq. (43). These results are shown in Table
III and in Figs. 1 and 2. The values for the components
of displacement I, v, and zv in Table IV for the Palisades
station are based on Eqs. (38) and (39). The periods in
the multiplet are based on Eq. (5), with the values of
r(n) given in Table V.

Before proceeding to a comparison of theory with
observations, we shall discuss the implications of our

TABLE IV. Theoretical periods T and amplitudes of the dis-
placements I, v, and m of multiplets in the spectrum of the earth
excited by a point-source at Chile (80=128 ), and observed at
Palisades, New York (8=49').

—2—1
0
1
2—3—2—1
0
1
2
3

T
(min)

55.33
54.50
53.70
52.92
52.15
35.99
35.83
35.67
35.50
35.34
35.18
35.03

Vertical

0.265
0.721
0.020
0.721
0.265
0.200
0.814
0.350
0.288
0.350
0.814
0.200

South

0.0120
0.0053
0.0053
0.0053
0.0120
0.063
0.058
0.144
0.162
0.144
0.058
0.063

East

0.0182
0.0248

0
0.0248
0.0182
0.096
0.260
0.056

0
0.056
0.260
0,096

4. COMPARISON OF THEORETICAL WITH
OBSERVED MULTIPLETS IN THE

SPECTRUM OF THE EARTH

The theory presented above predicts that every fre-
quency of spheroidal oscillations of the earth of order I

assumption of an impulsive compressional point-source.
To begin with, the SLI torsional content of the source
has excited torsional free modes which have been ob-
served seismically' and which lie in a diferent part
of the spectrum. Secondly, we have to consider the
evidence put forward by Beni', Press, and Smith" to
the effect that the source was a progressive rupture
proceeding from the epicenter southward for about 1000
km with a velocity of about 3 km/sec. As far as the
purely compressional content is concerned, such a dis-
turbance could be represented by a point source travel-
ing over a distance of about 10' of latitude and lasting
some 5 min, with most of the energy probably released
in the initial burst near the epicenter. The finite time
extension, as against an assumed 8-function pulse, may
affect the relative excitation of the entire modes m=2
and m=3, but not the distribution of intensity within
the multiplet of each mode. The spatial spreading of
the source over 10' of latitude will change the coeS.-
cients for the relative excitation of the components of a
multiplet, such as is given in (40), to a degree by which
the functions P„(cos8s) vary as Hs goes from 128' to
138 . For e= 2 and m= 3 this variation is small and is of
the same order of magnitude as the rr terms in (22),
which we have neglected. Since n=(te/o. ) is around
1/24, we may expect errors of that order of magnitude
from the latter source in the amplitudes given in
Tables III and IV.

There remains to be considered the effect of torques
(SV) whose axis has horizontal components. An SV
torque will excite spheroidal oscillations which are not
symmetrical about an axis passing through the source.
These will have a diGerent distribution of intensity in
the rotational multiplets from that of a compressional
point-source.
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TAnLE V. Values of r(n) in Eq. (6).

Sullen 8 model'
Over- 0 o X10' To

a tone (sec ') (min) r(N)

Gutenberg model

~o X1o' T'0

(sec ~) (min) r (I)
2 0 1.951
2 I 4235
2 II 6.764
3 0 2.953
3 I 5.844
4 0 4.076
4 I 7.289

53.67 0.395
24.73 0.239
15.48 0.H7
35.46 0.183
17.92 0.213
25.69 0.099
14.37 0.198

1.957 53.52 0.395
4.306 24.32 0.230
6.912 15.15 0.120
2.964 35.33 0.182
5.940 17.63 0.207
4.100 25.54 0.098
7.420 14.11 0.192

a The periods given here are taken from reference (9), where the com-
pressional velocity Cp and the shear velocity Cs in the top 33 km were taken
as 7t65 km/sec and 4.30 km/sec, respectively. In reference (11), these
values were changed to 6.10 km/sec and 3.54 km/sec, resulting in differences
up to 0.04 min in the periods.

is split by rotation into a multiplet of (2@+1) lines
whose frequencies are given by Eq. (5), m denoting the
azimuthal number appearing in (3) and (4). Values of
r(n) are shown in Table V. Using these, and the previ-
ously determined values" of the central frequencies
o'p(rs), we give in Table III the periods of the multiplet
lines for the fundamental modes of spheroidal oscilla-
tions of order m=2 and m=3, in the case of model
Sullen B. Also shown are the theoretical amplitudes of
the lines for an assumed compressional point-source at
Chile, and the observed periods.

As for the periods, we note that the average of each
of the two observed doublets in the case m=2 is 53.9
min, as against the theoretical value of 53.7 for model
Sullen B. In the case m=3, the average period of the
observed strain doublet is 35.7 and of the gravimetric
doublet 35.56, as compared with the theoretical value
of 35.5 for model Bullen B. These central frequencies
depend on the model assumed, being even smaller by
0.18 min each in the case of the Gutenberg model. The
discrepancies with the observed values disappear for
the Gutenberg model for e&5. It is not the purpose of
the present discussion to deal with the question of the
modifications which would be required in the structure
of the model in order to eliminate the 0.2-min dis-
crepancy with the observed central periods. We shall
rather assume that the whole doublet is shifted so as to
bring the central line into coincidence with the observed
value, and we shall compare the observed ietereals be-
tween the lines in a multiplet with the theoretical
values for the intervals.

A. Gravimetric

Referring to Table III, in the case m=2, the central
line m=O should be very weak and was actually not
observed. The theoretical interval between the strongest
m= —1 and m=1 lines is 1.6 min, as against the ob-
served interval of 2.2 min. Since, however, the m=~2
lines are theoretically half as strong as the m=~1
lines, the observed lines may represent the unresolved
pairs m= 1 and m= 2. The average periods of the pairs,
weighted according to their amplitudes, are 54.77 and

52.67 min, giving an interval of 2.1 min, which is close
to the observed interval of 2.2 min.

In the case m=3, the strongest lines should be the
pair m= &2, which are very close to the observed two
lines. The m= 0 line should be half as strong, and should
have been observed if the noise level were low and the
resolution adequate.

In addition to the doublets in the fundamental m=2
and e=3 modes, the erst overtone of the m=3 mode
was also reported as a gravitational doublet: T=17.88
and 17.68 min. Theoretically, the relative amplitudes
within a multiplet for the overtones should be the same
as for the fundamental, as given in Table III. The
strongest lines in all the overtones of m=3 should there-
fore again be the pair m= ~2. The frequency interval
is 4~rr(3) =6.20X10 s sec ', using the value of 0.213
for rt(3) given in Table V. This leads to a period-
interval for the pair of 0.19 min, which agrees with the
observed value of 0.20 min.

B. Seismic

Two doublets were reported by Benioff, Press, and
Smith7 from a Fourier analysis of the strain seismogram
at Isabella, California. In Fig. 1 is reproduced their
spectral intensity curve in the vicinity of the m=2 pair
of 54.7 and 53.1 min. In the same figure are shown by
arrows the theoretical separations and amplitudes of
the five lines making up the e= 2 quintet, in accordance
with the results given in Table III. The central m=0
line should be extremely weak, and is indeed below the
background noise. The m=2 line is not far from the
observed intensity level. On the other hand, the m= —2
line is above the observed intensity in its vicinity. One
should expect a rise in intensity immediately to the left
of this line, which is outside the limit of the figure.

In Fig. 2 is shown the observed spectral curve for
m=3, and the theoretical positions and amplitudes of
the m=3 septet. There is an indication of the central
m=0 line, and its theoretical intensity is close to the
observed value. The m= &1 and m= &3 pairs are
close to the general noise level in their respective
neighborhoods.

The answer to the question posed previously, as to
why only two lines out of the quintet for m=2 have
been observed at Los Angeles, is that the observed
doublets are the theoretically strongest lines, that the
central line should be weak, and that the outermost
lines would not be expected to stand out above the pre-
vailing noise level. In the case of the septet for n=3,
the observed doublets are again theoretically the
strongest; there is actually an indication of a third
line at m=O in the strain record, while the missing two
pairs m= ~1 and m= ~t3 are theoretically again just
within the background noise.

It would be of interest to make a more refined I ourier
analysis of the observed spectral curves in the multi-
plets, and also to determine the theoretical multiplet
intensities for an SV torque-source. Further test of the
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theory could be made by observations at other lati-
tudes, where the intensity distribution within the
multiplet would be different. We are at the threshold
of a new science: terrestrial spectroscopy.

e,=—
TT

188 Q
egg= ——+—,

r80 r
(A.S)
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APPENDIX
e,~
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r sin8 ale ar r
(A.10)

1 BQJ 8 Q BV '0 1 BQ
e@g

—— —+- cot8+—, e„g= +, (A.9)
rsin8ap r r ar r ra0

We shall erst prove that, by virtue of Eqs. (23)—(28)
and the boundary conditions,

1 878 Qr Bv

egg
——————cot0+

r a8 r r sin0ap
(A.11)

p Q 'lf'
fO

I= r'dr t sin0d0 dp(ui*Rp —up*El+ lil*Sp BN 2Q 1 8 1 BW
6=—+—+ - —(l. sin0)+

Br r r sin0 80 r sin9 a@
(A.12)

with

Vp(r) a
wp —— —V, fp I' p(r) V„——,

sin0 alta

(0 y) P m(cos0)eim&

(A.3)

(A 4)
We have"

ap a
R,= pgd, +p——p—(gu)

Bf Br

a ( aug Igaeg
+ ( XA+2p I+ +

ar ( ar) r a8 r sin9 ap

p+ (4e„—2—egg —2egp+cot8e„g), (A.S)

p an't

S,= ——+—(Ige„g)
r 80 Br

1 l9 p Begy
+——(—gpu+llA+2uegg)+

r 80 r sin0 aitl

&p Si+wl Tp —wo Tl) =0. (A.1)

In the absence of rotation, the components of dis-
placement No, vo, and mo and the perturbation in the
gravitational potential lit p are given by

8
up= Up(r) V (8,$), vp= Vp(r) V(A.2)—

80

We now substitute from (A.5), (A.6), and (A.7) into
(A.1) and carry out the indicated integration. Every
term which involves derivatives of X, p, 6 and of the
components of the strain-tensor e;; we integrate out
partially. The integrated quantities vanish because of
(1) the boundary conditions at the surface r =a:

Xigl+2p(au/ar) = e„g e,g
————0, (A.13)

(2) the regularity of the e;, and of 6 at the poles, and
(3) the periodicity condition in g. It is found that the
terms in the integrand multiplying X, p, and gp each
cancel out, leading to

ago a4'z 1 ( a isoI= "dr p us* —uo* +—
]

iig* —lip*

ar ar r E a8 a9 )
1 ( ago apz)+ i

wi* —wp* ), (A.14)
r sin0 I. ag ag)

where fdr denotes the volume integral in (A.1).
For the proof of the vanishing of (A.14), we make

use of the equations for the gravity potential:

V'Po* —4grG(php*+up*p) =0, (A.15)

V'pl* —4grG(pkg*+ul*p) =0. (A.16)

Multiplying (A.15) by P& and (A.16) by —Pp, adding,
and integrating over the volume of the sphere, we get

p, (1 all v

+— 2 cot9i ————cot8-
r Er 80 r

p ap a—+—(pe g)
r sin8 ap ar

1 Bm)—~+3e g

r sin8 2PJ
(A.6)

7P 2'

sin0d8 ' dQ a'
Jo

(4o*,) (a4 i*—4~Gpuo*
)

—Po] —4~Gpui*
)

& ar J & ar

p Beoitg 1
+— + — ( gpu+7lk+ 2pepg)— —

r a0 r sin0 alt

3p 2p
+—e„g,+—cot0egg . (A. i)

r

Disap apl 1 ( alit'p alpl )
=4grG dr ui*——uo +—

~

&i &o

ar ar r ( a0 a0 )
1 I' ago alit i)+ ~

wl* —wo*
~

. (A.17)
r sin8 E ap a@) .
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Now, while uo and Po in (A.2) and (A.3) are each
represented by a, single spherical harmonic of order e,
the solutions for u& and P& from equations (25) and
(28), respectively, are of more general type:

ng ——Po eg&'&, u, &"= U, "'(r)Yo (8,y). (A.18)

~=K.e"', a, '"= ."'() .-(,~), ( )

of the right-hand side of (29) leads to

(dp) 2 mop2-
2o.oog dr p Uo P+Vo ] I + .( d8) sin'8

dp,=4mo. o' tdrp UoVop'+cot8p —Vo' J., (A.24)
d8

no=la'"', g, —p (n) (A 20) where

p(8) =—E (cos8). (A.25)
The boundary condition at the surface for the gravita-
tional potential is

(BP'"'/Br) 47rGp~—"'= $(&+—1)/~]y'"
y

r = ay (A.21)

for each k. Hence

(B4 ~'

—4 Gp~o* [-Po] — 4~Gpm,—* [

E Br ) E Br )

=-2 [(&+1)A'"'0~*'"'—(&+1)A*'"V~"'3 (A 22)

The surface integral of (A.22) vanishes because of the
orthogonality of the spherical harmonics when m~k,
and because of identical vanishing for a= k. Hence, the
volume integral in (A. 17) vanishes, and with it I, as
given by (A.14).

The above derivation holds for both spheroidal and
torsional oscillations, since all the boundary conditions
are satisfied in both cases. In the case of the torsional
oscillations, some of the boundary conditions are satis-
fied identically because for them

2 (e+m)!
A = sin8d8 p'=

(2n+1) (n —m)!
(A.26)

(dp) '
8= ~ sin8( —

~

d8= rs(v+1)A —m'C (A.27)
L d8)

I
~ d8 1 (e+m)!

P2
"o sin8 m (m —m)!

f dp
m I cos8p—d8=-,'mA.

d8

(A.28)

(A.29)

Using these in (A.24), we are led to Eqs. (3) and (4).
In the case of torsional oscillations, we have' '

mo ——0, go = (Vo(r)/sin8) (8Y„ /Bp),
wo ———Vo(r) (BY'„ /B8), (A.30)

and the volume integral of the right-hand side of (29)
leads to

&o= &o= To= |!o=0.

Evaluation of ~(n)

(A.23) 2o'oo'i dr P Vo't (dP/d8)'+ (m'/sin'-8)P'j

=4mooo ~dr pVoo cot8p(dp/d8). (A.31)

In the case of spheroidal oscillations, No, v~, and mo

are given by (A.2) and (A.3), and the volume integral From this, relation (7) follows.


