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We investigate the corrections to the representation of the joint distribution of q+l particles, nq+) by
the product nqn& for large separation between the sets of g and l particles. For a system in which there
exists a "finite correlation length, " we find explicitly the 1/iV correction term to the simple product, where
X is the number of particles in our system. When q+l. is equal to two, this expression reduces to that familiar
from the Ornstein-Zernike relations for scattering of light from a Quid. In a uniform gas, our derivation
also yields the explicit 1/N dependence of equilibrium distributions. Our result on the asymptotic form
is then used to determine the low-order distribution functions for an equilibrium system of varying density,
as well as for a nonequilibrium system represented by a local-equilibrium ensemble. These distribution
functions are shown to be governed by the temperature and density in the vicinity of the molecules con-
sidered. We find as expected that the two-body distribution function coincides, to within quadratic terms
in the gradients, with its equilibrium value for a uniform system at the temperature and density of the
midpoint. For the higher-order distributions, correction terms linear in the gradients are found.

1. INTRODUCTION

1
W~NE of the fundamental concepts of macroscopic

physics is that of a homogeneous system. The
state of such a system is completely described by a set
of intensive parameters which make no reference at all
to the size or shape of the system, and by the total
number of particles, X (unless otherwise specified, we
deal with a one-component fluid). In actual systems,
there are always inhomogeneities due to boundaries
and to gravitational body forces. For sufficiently large
systems, however, the boundary inhomogeneities, being
confined to a region very close to the surface, i.e.,
involving distances comparable to the range of inter-
molecular forces, may be neglected when considering
bulk properties of the system (or may be investigated
explicitly by changing the boundaries). The inhorno-
geneities due to gravity (or other body forces) are
usually very small over molecular distances and are
treated by considering the Quid as made up of homo-
geneous parts with differing intensive parameters. One
of the purposes of the present paper is to investigate
and find from the point of view of statistical mechanics
a justification of this procedure. We consider both the
case of density variations alone, where we may have a
true equilibrium system, and the case of temperature
and velocity variations as well, where the system is to
zero order in a state of local equilibrium.

In order to carry out this investigation, we first
establish some results concerning the form of the joint
distribution n,+i(ri, ,r,+i) of q+l particles in equi-

librium, when the set of q particles is "very far" from
the set of / particles. The distribution e,+~ approaches
the product of the distributions m, and eE plus a
correction term. It is the form, Eq. (2.22), of this
correction term which we find here under certain
conditions. It turns out that this correction is related
to the integral over all space for the Ursell functions in
an infinite system. In the course of the derivation, we
also find the explicit 1/Ã dependence of the low-order
distributions for a completely uniform system, i.e., one
confined to a box with periodic boundary conditions.
This case was also studied by Oppenheim and Mazur'
who, using a virial expansion and making essentially
the same physical assumptions as we do, find a density
expansion for the coeKcients of the powers of (1/iV) in
the distributions of a uniform system. It is possible to
show that their density expansion may be summed to
yield our result, .

The general correction terms to the pair distribution
function ns(ri, rs) when ~ri —rs~ ~ ~ have previously
been investigated. When both r~ and r2 are in the
interior of a Quid, the asymptotic form of e2 is related
indirectly (through normalization, see, e.g. , Appendix
3) to the scattering cross section of visible light (of
wavelength long compared to the length of molecular
correlations) by fluids found by Ornstein and Zernike. '
When the dependence of the one-particle density e(r)
on r is neglected, and some further assumptions are
made (implicitly) which will later become clear, then'
through terms of relative order 1/X,

ass(rt )=—ti'g(its) - is'L1 —ri&Tx/Ej.
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Here I is the average density Ã/V, x is the isothermal
compressibility

1 t3/2

X 7

tL BP
(1.2)

and p is the pressure. Recently, one of us' also investi-
gated by a very diferent method (based on a new
virial theorem for total momentum fiuctuations) the
rather special case of the asymptotic form of es(ri, rs)
when rJ is adjacent to a rigid wall which forms the
boundary of the Quid and r2 is far in the interior. It
was found there that, again through order 1/1V,

where

1 m)
(r„r,):~s„e-""E

n,„=p/kT= n(ri)

(1 3)

(1.4)

3 J. L. Lebowitz, Phys. Fluids 3, 64 (1960).
4R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).' 0. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
6 J. E. Mayer and E. Montroll, J. Chem. Phys. 9, 2 (1941).

was shown to be the value of the density at a rigid wall.
Equations (1.1) and (1.3) turn out to be special cases
of Eq. (2.22) derived in this paper. Another consequence
of Eq. (2.22) is the vanishing of 1/E correction terms
to all distributions at T=O. This was conjectured by
Feynman and Cohen. ' It is here seen to rest upon our
fundamental hypothesis of finite correlation length.

The basic assumption which is made implicitly in
the derivation of (1.1) and in reference 1, and was
explicitly made in reference 3, may be stated loosely as
the absence of long-range correlations in a Quid. A
rather stringent formulation of this assumption, which
in one form or another is universally accepted in the
theory of Quids, states' ' that if the Quid is disturbed
somehow in a limited region of space of volume u, then
properties of parts of the Quid suKciently far away
from co (the effective unit of length being the range of
molecular forces) will be affected only to the extent of
0(ro/V). Further, the eQect of the disturbance is

supposed to approach its asymptotic value exponentially
fast. (The additional assumption of exponential
approach is not necessary for many applications, It is
usually sufficient that the approach go as some power
of the inverse distance from the location of the disturb-
ance. What does appear necessary to assume is the
absence of Quctuating behavior extending over the
whole container. ) It is clear that the assumption. of no
long-range correlation can be made precise only in the
limit of the volume V becoming infinite, the density
remaining constant. It is also clear unfortunately that
a proof of this central hypothesis wouM be extremely

.dificult. Since this hypothesis is believed violated in
the solid state, any proof of it would give a criterion
for phase transitions. There is however an ample

experimental and intuitive basis for this character-
ization of the Quid state; we shall accept it here and
use it in our proofs in this paper, leaving a more
formal discussion to Appendix A.

We give two derivations of our general result, a
thermodynamic one is in Sec. 2, and a statistical one
based in part on the virial expansion, and thus pre-
sumably valid only for gases, in Sec. 3. The application
of our result to nonuniform systems is presented in
Sec. 4. In Appendix 3, we extend the result on asymp-
totic expressions to mixtures, and also consider light
scattering from mixtures. Appendix C contains a
formulation of our main result in terms of Ursell
functions, and Appendix D contains a further self-
consistent confirmation of this result.

es(ri, rs)dridrs ——1V(1V—1), (2 1)

where S is the number of particles and the integration
is over the system volume V. )Since e~(ri, rs) is zero
whenever r& or r2 is outside V, the integration can be
extended over all space, which is indeed necessary
when there is no well-defined volume V.j

The assumption of a Rnite correlation length implies,
for ri~ very large, that

rN, (r, ,r..) —+m(ri)e(r, ) 1——L1+o(1)j, (2.2)
E

where we use the notation 3=8+a(1) to mean that
lim~ „(A—8)=O, and b is a number, independent of
Ã, which will be determined later. To show this, we
first write Eq. (2.2) in a form which exhibits more
transparently its relation to the correlation length,
Consider the conditional number density,

w(r, iri) =Is(rs, ri)/e(r, ), (2.3)

for particles at r2 when it is known that there is a
particle at r~. Equation (2.2) may then be written as

w(r, lr, ) n(r, )L1—b/cV+ (2.4)

Now in a classical system in equilibrium, the presence
of a particle at ri does two things: (1) It leaves only
X—1 particles with unspecified positions, and (2) it
introduces an eA'ective one-particle potential g(r;i) for
the jth particle Lhere @(r) is the assumed potential
between any two moleculesf. The conditional density

2. THERMODYNAMIC DERIVATION

In order to make our arguments concrete, we shall
consider explicitly the asymptotic value of the pair
density n~(r&, r,). Our argument, however, will be of
such a form that extension of the results to the other
distributions will be immediate. From its definition,
ns is symmetric in ri and rs. When e~(r&,rs) is integrated
over the whole pair space, each pair is counted twice,
thus yielding the normalization
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) ~(r, lr, )dr, =N —1. (2.6)

For a real fluid, the added "external" potential g(r;i)
produces a change in density in the vicinity of r& with
the result that the effective number of particles whose
position is unspecified (which determines w2 far away
from ri) differs from 1V—1, and (2.5) is replaced. by
(2.4). We can express this idea more clearly in the
following way. Let us divide the volume V into two
macroscopic parts U~ and U~, U~+Uii ——U. The part
V~ contains the point ri, while all points r& in V~ are
sufficiently far from r& that e2 may be given its asymp-
totic value. The average number of particles normally
in V~ and V~ will be designated by X~ and X~, where
N~ and Nii are regarded here as both of order N. Now
for any particular partition of the X particles into E~
in V~ and X~ in V~, where

(2.7)
we may write

e2(ri lg ~NQ 1Vii) =m(r&
~
r2,X&,Ns)e(r&

~
NQ 1Vii). (2.8)

Here m(r&~r2, X&,N&) is the density at ri when there
are X~ particles in V~ and X~ particles in V~, one
of the latter being speci6ed to be at r2, similarly,
e(r2~N~, Nii) is the density at r, when there are 1V~

particles in V~ and E~ in V~. This situation corresponds
to a model system in which V& is separated from V&

by a surface S~ which is impenetrable for particles
crossing between V~ and V~, but which does not
otherwise modify the Hamiltonian of the system.

We now have generally that

B (r 2r )i=2Q P(V~)ii (ri, r'i
~
N~, N —N~), (2.9)

where P(Nz) is the probability of having Nz particles
in V&, and correspondingly X—T& in V&. Thus,
performing a Taylor expansion of m2 about E&——N&,
we have

m2(ri, r2)=e(rilr»g& N N~)n(r2IN»N —g&)
+-',((N~ —Ng)')(&'/&Ng') Le(ri

~
r2, Ng, N Ng)—

x~(r2IN~) &—N~)]+, (2 10)

w(r2I ri) is therefore identical with the ordinary density
in a system of S—1 particles with this extra perturbing
potential. Hence for distances large compared to X,
the range of @, w(r2~ ri) should be equal to the density
at r2 in a Quid consisting of S—1 particles, plus a term
O(X'/U). Since the difference in the density at r2

between a Quid consisting of N particles and one of
1V—1 particles is again O(1/N), we are led to (2.4).
For the special case of an ideal gas, &=0, and we find
immediately that

~(r2lri) = C(N —1)/N j~(r2) =~(r2)C1—1/&j (2 5)

From its definition, we of course always have

where

((1Vg—Ng)') =Q P(1Vg) (N.z N—~)'.

We assert that (1) the Taylor expansion may be stopped
at the term ((iV~ —N~)'), and (2) e(ri ~r2, N~, N N~)—
in (2.10) may be replaced by m(ri~N~, N N~—). The
first point follows from the fact that, judging from the
prototype of an ideal gas, (~&~ N~~—')=O(N~*'');
since the volume V~ is macroscopic, the remaining
terms in the series are of order Nz &O(1/Nz) and may
be dropped. Secondly, the Axing of a particle at r2 in V~
for given values of S~ and E~ can affect the density
at r& in V& only by modifying the distribution of
particles in V~ close to the surface S~,' this in turn
modifies the neighboring distribution in V~ close to S~,
which can then affect the density at ri. Since the
potential change due to the positional perturbations of
the particles near the surface in V& extends only to the
order of X inside region V~, the assumption of short-
range correlation tells us that when ri is far from the
surface Sg,

N(r&~ r, , g&, N g~) =e(—r&~N~, N —g~)+ P,S~/U~)
)&/order of deviation of N(rs~r2, N~, N N~)—

from N(r& ~N» 1V g„)], (—2.11)

where r8 denotes a surface particle in V~. But again
by the assumption of short-range correlation, the
deviation in (2.11), elicited by a perturbation over a
volume X', will be of order O(X'/Uii) O(1/X)
=(N~/N)O(1/N~). The correction term in (2.11) for
ri and r2 far from S~ will then be ePS~/N~)O(1/N)
and will vanish compared to O(1/1V) as U~ increases.

The foregoing argument can be improved by further
dividing V~ into V~', surrounding r2, and V~" sepa-
rating V~' from V~. We shall however not attempt this
here. Accepting then the above argument, we now
rewrite Eq. (2.10) asymptotically as

N2(r, ,r,) ~ n(ri~Ng, N Ng)e(ri ~Ng, Ã——gg)

+-,'((N& —N~)') [n(r, ~N~, N N,)—
BX~'

Xe(r. iNg, N Ng) j. (2.10')—

The steps which led to (2.10) may also be utilized to
write

e(ri) =Q P(.Vg)ni(ri
~
Ng, N Ng)—

=e(ri i Ng, X—Ng)

+2((Ã~ N~)') e-(ri
i
gg—, 1V—g~),

BNg' (2.12)

n(r, ) =e(r, ~g~, N N,)—
+-', ((1Vg —N~)'~ e(r,

~
N~, N —g~).
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In (2.12), we have neglected terms of smaller order
than 1/N~, but this is consistent with V~ being of
macroscopic size. Combining Eqs. (2.11) and (2..12)
then yields in the asymptotic region

n, (rg, r,) ~ n(r, )n(r2)

B
+((bNg)') —n(r ~N.g, 1V Ng)—

BEg

B
y ——n(r, ~~ N~, N N~)—, (2.13)l

BXg

where BNg Ng N——g. —
Since the second term in (2.13) is already of order

1/N, any parts of it which are of further order 0(1)
can be omitted. This permits (since r~ and r, are far
from the surface) the replacement to order 5/V,

BFg (T,Vg,Ng)
Pa= =pg=

BNg

BFs(T, Us, N Ng)—

and @=p~(Nz(N))=p(N) is the chemical potential of
the full system. This readily yields the expression

&(N') =-pf, L&—.(T,V.,N.)+F (T,V.,N. &

1 (51Vg)'—F(T,V,N) j/kT} exp
2 kT

B'F z (T, Vz,Ng) cPFs (T,V~,N~)
+

BXg' BNs'

Ii being the Helmholtz free energy, and we have again
consistently neglected terms of order o(1). Here the
most probable value of S~, which for our purpose may
be set equal to N~, is determined from the condition

n(r~lN~ N N~) =n(r~—lN~, o),

(.,~N. , N-N. )= (..~0, N —N.).
(2.14)

Bp ( BN BN')
((BN,)2)=kT

~

——+ ~, (2.1S)
B1V 4 BNg BNs)

Both X& and X& are functions of X. We roay therefore
express (2.13) in terms of derivatives with respect to 1V.

callus

or, combining with Eq. (2.16),

e)(r„r,) —& e(r,)n(r, )

Be(rg iO, 1V Ng)—d (re, ~O, N )s
d/g

de(r, ~0, Ns(N)) (de&
( dN)

Be(r,) dN

BE dÃg
(2.15a)

kT Be(rg) Be(r,) t
1 BN)

(2.19)
lV Bn Be ElV Bg j

For a uniform system with no body forces, the quantity
(1/N)BN/Bp is equal to n times the isothermal com-
pressibility X. For a general nonuniform system, we
may still write

(2.20)

and similarly

Bn(r, ~iV~, O) Be(r,) dN

BV dE~

where x is now some average compressibility. This
leads us finally to the asymptotic expression,

(2.15b) n2(r~, r~) —& e(r~)e(r~)

again neglecting terms of order 5/V. Setting n, =N/U
and leaving the e dependence implicit, Eq. (2.13) thus
reduces to

Be(r,) Be(rg)
n, (r„r,) ~ e(rg)e(rg) — n—,

37 Be

1 ad% dE)
X((».)')—I + I, (2.«)

1V (dN~ d¹gJ

ekTg B B—e—n(r, ) n—n, (r,) . (2.21)
E l Be . I Be

When r~ and r2 are both in the interior of a uniform
Quid, (2.21) becomes the Ornstein-Zernike relation

g(r) —+ 1—ekTx/N,

while if ri is at a rigid wall, then, as shown in reference 3,

n =e(r~ at wall)=p/kT, Bn(r,)/Be=1/(ekTX),

where we have used the identity (dlV/dN~)(dN/de)
=dN/dNg+dN/de

@le now show that the expression (2.16) is inde-
pendent of the division into volumes V~ and V~, and
And its explicit form. It follows from the general
principles of statistical Inechanics that

e 1l
e2(r, ,r,) —+ n„e( 1———(,

E n„N)
(1 3')

a result derived in reference 3.
The extension of the above analysis to the distribu-
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tion of q+/ particles is straightforward and yields terms of it through the contour integral

ekTgt' »~,) ( ~«)
e.+~ ~ e.« ——

I
e

I I

e- l. (2 22)
N 0 Be) L Be)

Qp = (1/2 Z)g exp[L(l)]& 'di/('

3. STATISTICAL MECHANICS DERIVATION

F~= —(1/p) 1nQ~, (3.1)

where kP is the uniform reciprocal temperature. Q~ is
given explicitly by

Q~= (1/N!) exp( PH/e) (drd p/h—')~, classical

=Tr exp (—PH~), quantum mechanical, (3.2)

Bz being the system Hamiltonian. However, the
precise form of Q~ is unimportant at this stage. What
is vital is the smallness of density Quctuations, to the
extent that the grand partition function,

Ke shall now investigate the asymptotic behavior of
e,+~ from a statistical mechanical viewpoint. To do this
involves two steps: (1) a decomposition of quite general
validity of thermodynamic quantities and distribution
functions into a dominant part and an O(1/N) cor-
rection term expressed in terms of the dominant part,
and (2) a computation of the spatial asymptotic form
of the dominant part of a distribution and consequently
of the O(1/N) term, in which the explicit form of the
canonical partition function plays a crucial role. Since
the dominant part in fact represents a grand canonical
average from which the fixed-S components are then
extracted, there is a family relation with the "box
within a box" thermodynamic argument of the previous
section.

The equilibrium statistical mechanics of an inter-
acting S-particle system in a volume V may be obtained
from the partition function Q&, or from its physical
counterpart, the free energy

The large-N asymptotic form of (3.5) appears from a
steepest descent evaluation as'

where

8 ' 8
Q~—s—~e~&' 2srs—s—L(s)

Bs Bs

sclL(s)/cps= N

(3.6)

(3 7)

determines s. If the method is valid, corrections to
(3.6) for derived quantities such as FN may be shown
to be of order O(1/N') compared to the principal term,
and this is strictly negligible for most applications,
including ours. Such a statement is as always fully
meaningful only for a uniform Quid, where one can take
the limit S~ ~ at constant density, but the same
numerical order of magnitude should hold for a non-
uniform system. From (3.1), we have as well

PF~ L—(s) N—lns —-—', ln2sr

8 8—-', ln s—s—I.(s) . (3.8)
Bs Bs

On the basis of (3.8), we may introduce the "domi-
nant part" of F~,

—PF~&'&=—L(s) —N lns —-', 1n2sr. (3.9)

F~(", which coincides with the result of the usual
Mayer-Ursell virial expansion, ' is of course just the
grand canonical average, and would yield the correct
free energy per particle in an infinitely large uniform

system. In a general system, the principal property of
F~(0& which will be utilized is the following. Consider
any variation of the system which does not aBect total
particle number. Then according to (3.9),

Q(s) =Z Q~s
0

(3.3)

at fixed V and s has contributions from only a very
small range of particle number M. If this is so, we may
contemplate a Darwin-Fowler or steepest descent
extraction of Q~ from Q(s).

I et us define

(PF&&o&) =PL(s) —(N/s)8s

or, inserting (3.7),
—&(PF 'o~) =SL(s)—faL(s)/as]hs.

Hence we may write

—~(PF~'")=~L(s) l*=--. (3.10)

L(s) = lnQ(s).

For an open system or grand canonical ensemble, L is
related to the pressure by L=pV/kT and s to the
chemical potential by pls=lns. Here, the quantity L
is but a means to an end, for we may express Q~ in

Equation (3.10) permits us to compute a variation of
F&"& explicitly in terms of L without being required

7 See, e.g. , J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,
Molecular Theory of Gases and Liquids (John Wiley 8z Sons, Inc. ,
New York, 1954), p. 142.

M. G. Mayer and J. E. Mayer, Statistical Mechanics (John
Wiley R Sons, Inc. , New York, 1940), Chap. 13.
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1
H= . +— P @('(r'i, ,r',)+ (3.14)Bp~() ( Bs ) (BL

BN &B'AV) 0 Bs s)
j]ge ~ eg j8

to solve for s. Finally, F~ is to be expressed in terms of an s-body potential,
8~&0). Since

i.e., the thermodynamic relation p= Bp/B.V, then

B'I" 'o) f'1) Bs ( BN) ' B ( B

BN' !s)BN ( Bs) Bs( Bs ).
Inserting into Eqs. (3.8) and (3.9), we have

B2P (o)
q

PF~ PF~(')—o in
I

P-
B1V' ) (3.11)

which in the final evaluation is to be given its actual
value, perhaps zero, but not until then. Then it is
easily shown that the s-body distribution function e„
normalized so that

e,(r„,r,)dri, , dr, =N!/(N s)!, (3—.15)

may be written as
s! 1 BQ~

e, (ri, ,r,) = ——
p Qx ~0 "(ri, ,r.)

Equation (3.11) may be rewritten in terms of the
compressibility. For a very large uniform system, F)(/N
is a function of e—=N/V alone. Hence the isothermal
compressibility may be written as

Bp) ( B BFI

( Be) 0 B1VBV)

B ( B F)
BN0 BVN)

B
t

B F&-—' !r B'F
l1V —

l =l eN
BN E BN N) E BN')

For an arbitrary system, we may correspondingly
define an average compressibility,

(e B
p~(o)

Be' )
(3.12)

1 Ng
BP~=BF~(o) eo (BP (o))

1V 2p Be'
(3.13)

our fundamental relation. The second term on the
right-hand side of (3.13) is a correction, containing the
factor 1/N. For a large uniform system, the relative
correction (Fz itself goes as N) is literally a 1/1V term,
while for a nonuniform system, this is still a reasonable
assessment of its numerical value.

Relation (3.13) is readily applied to determining the
N dependence and asymptotic form of the configuration
space distribution functions. For the Ã dependence, it
suffices to express the distributions in terms of the free
energy. Suppose that the system Hamiltonian contains

where differentiation is at constant volume (or constant
external potential). Equation (3.12) is seen to be
equivalent to the expression (2.20). Further, applying
a variation B, commuting with N, to (3.11) yields by
virtue of (3.12)

ol
e,=s!SF~/5(t)('). (3.16)

By making p" other than a pure configuration-space
potential, this result extends at once to phase-space
distributions and density matrices. Now applying
(3.13) to (3.16) results in the relation

1 ex

N 2p Be2
(3.17)

where e,('), arising via (3.16) from F&(o), actually
represents a grand canonical average distribution.
When e,(') depends only on e=N/V, then it coincides
with e, in an infinite system, and (3.17) expresses the
1/N corrections. For example, with s=2 and large
separation r», then in a uniform system, (3.17) reduces
to the previously discussed e2 ——e'(1—ex/PN). For a
nonuniform system, the utility of (3.17) derives from
the special properties which e,&'& possesses, and in
particular its simple asymptotic form.

Our major objective is to find the asymptotic form
of m,+~ when the coordinates separate into two distinct
bunches,

q= (ri, ,r,) all(l /= (i' +i, ', i' y().

For this purpose, the corresponding asymptotic form
of e,+~"& is required, and it may be obtained by as-
suming sufficiently rapid convergence of the standard
cluster expansion for L(s), a stronger condition than
the previously employed finite correlation length. The
point is this. First consider classical equilibrium
statistical mechanics. If the factor

f(') (ri, ,r,)= exp[—Pg(') (r, , ,r,)j—1 (3.18)

is regarded as a "star" connecting vertices r~, , r„
and if we further introduce the Ursell factor

V, (r.. .r,) =g D,(r„.,r,), (3»)
where the D(, run over all (nonrepeated) products of
f" represented by diagrams in which the ri, , r( are
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Q(s)=exp P

connected, then it is known (see Hills) that Q(s) of
(3.2) and (3.3) achieves the form

Ue(ri, . . .
,r,)d'r s'C'/t!, (3.20)

is not obtained. Instead, one finds (3.23) direct;ly, but
more laboriously. ]

Applying the correction formula (3.17) to the
combination eq+~ —eqn~, we have

where
d'r=—dr&d12 dr&.

(e'X ) B'no+&&a&

no+& e,e—t e,+——t'"&

42PN) Bn'

Here C is a factor resulting from momentum integra-
tions. From (3.16) and (3.10), then

(e'&t ) B'e, 's&'

g, (o)

& 2PN) Be'

( n'x i 82m&')

n, (e&

E 2PN) Bns

whose simplicity is due to the fact that explicit s
dependence is untouched by the variation.

Suppose now: that (3.21) converges rapidly enough
that only terms up to some finite t need be considered.
For finite-range forces, this then requires only clusters
up to some finite spatial diameter, related of course to
the correlation length but conceivably depending on s.
Sets q and f in s=q+f are then to be regarded as
asymptotically separated if q and 1 are separated,
member from member, by more than this finite diam-
eter. If under these conditions 8j'Dtd'r/8p«+'& did not
disconnect set q from set / in D~, the cluster would
have an impermissibly large diameter. Thus a separa-
tion must occur. We note that Ut/t! lists all distinct
diagrams (with undesignated vertices, but weighted by
the number of repetitions under vertex permutation),
while (—s!/!3)5/bP&'& for separated q and I removes a
"star" f&'& in any order in which it may be presented.
It follows that, including both possibilities f"& and 1

for the q connection, and similarly for the l, the sepa-
ration is into

(—q!)(B ) ~ ~r( —~!» ( t

( p ) E5$'o&) ~ et! E p ) 8@'t& & " n! )

Here rn+n=t, and all distinct combinations D, D„
are obtained in this fashion. Inserting into (3.21), we
at once conclude that

s(')q+L q (3.22)

for asymptotic separation of sets q and l. This may be
regarded as the characteristic property of e,"): The
grand canonical distributions, for asymptotic decompo-
sition into particle subsets, separate through order
1/N into their component distributions. )It might
appear that a corresponding statement could be made
for the diagrammatic density expansion of a canonical
ensemble with periodic boundary conditions and
translation-invariant potential, but since the generating
function for the irreducible clusters is no longer the
free energy, and since more diagrams may be decom-
posed by the variational differentiation, the form (3.22)

' See Hill, reference 2, p, 136.

Employing (3.22), and dropping the final O(1/N')
term as well as the deviation of m, from eq") within a
correction term, then

1 nx( Bn $ ( Bet)
e;+i~ e,«——

f
e II n I, (323)

N P 4 Bn) & Bn)

the desired asymptotic relation. The foregoing is
classical. For quantum mechanical distributions, the
explicit form of the Ursell factor is altered, " but
similar comments are appropriate. The noncommuta-
tivity of coordinates and momenta however introduces
additional effective coupling in the form of propagation
factors of range of the order of the thermal de Broglie
wavelength, (Ph'/2m) '*, thereby contributing to the
maximum effective cluster diameter. At very low
temperature, p —+ ~, greater care is required, as it is
when infinite range, e.g., Coulomb forces, are present.

We remark here further on the relation of Eq. (3.17)
to the general X dependence of the low-order distribu-
tion functions. This may be of some direct relevance
in dealing with systems in which E is actually a small
number, such as those used in machine calculations by
Alder" and others. When our assumption concerning
the convergence of the virial expansion is valid, then
for a uniform system, m, (') depends only upon the
density, "' in which case as indicated following (3.17),
e, I& coincides with the leading term in a 1/N develop-
ment of e, Equation (.3.17) then states a verifiable
relation between the Ã-independent term and the first
correction to it, which is proportional to 1/N.

The relation (3.23) may also be extended to the
intrinsic correlations or Ursell distribution functions.
This is carried out in Appendix C.

4. THE LOCAL NATURE OF DISTRIBUTION
FUN CI'IONS

We shall now apply the results of the previous
sections to a one-component Quid whose intensive

"See, e.g. , C. Bloch and C. de Dominicis, Nuclear Phys. 7,
4S9 (&958)."See, e.g. , B. J. Alder and T. E. Wainwright, J. Chem. Phys.
27, 1208 (1957).'"Note added tn proof. This is true up to the kth power in the
density, where k= (L/a), I. being the length of the periodic con-
tainer. The coeKcients of the higher powers in the virial expansion
will contain implicit nonanalytic dependence on U. We are pres-
ently studying this dependence.
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parameters such as density, temperature, and local
velocity vary slowly with position. The Gibbs ensemble
describing such a system has been considered by many
authors. " The classical ensemble density p(X), where
X={. r;, ,p; .) is a point in the I' space of the
system, is generally written as a local equilibrium part
p(X) and a correction term Iz'(X). The part p(X) is a
superposition of canonical (or grand canonical) en-
sembles for each small region of the Quid at its own
temperature T(x), velocity v(x), and density n(x):

I (X)= I (X)+~'(X),
1

p(X) =- exp
J

dx P(x)[E(Xx)

(4 1)

—v(x) P(X,x) —i (x)n(X,x)] . (4.2)

Here x is a point in physical space, P(x) =[kT(x)] ',
and v(x) is chosen to give the correct density n(x).
E(X,x), P(X,x) and n(X,x) are the microscopic energy,
momentum, and particle density at x when the state of
the system is represented by the phase point X":

E(X,x) =P b(x r;)[P—,z/2m+ ,' P y-(r, ,)+U(r, )],

P(X,x) =Q h(x —r„)p,, (4 3)

n(X,x) =Q 5(x—r;).

p„„(X)= exp —P —p(r.;)+P(r,)

([p;—tnv(r;)]'
&&I +!Z~(',) I, (44)

2m ')

Q= (1/1V!)
J

P„.(X)drt dpiv,

p(r;;) and U(r, ) are the internal and external potentials,
respectively; Q is a normalization constant, reducing
to the canonical partition function Q& for an equi-
librium ensemble. Thus

p(X) =0-.(X)/&!Q,
where

for the dissipative behavior, while p should yield the
equilibrium form, at the local value of the intensive
variables, for such quantities as energy density E(x),
pressure p(x), etc. This will be true if the low-order
distributions f„and in particular the two-body distri-
bution function f, (rtr2, pt, pz), computed from j have
their equilibrium form at the local value of the intensive
variables. We shall investigate the validity of this
hypothesis.

Now the distribution f, for the position and momen-
tum of s particles factors readily into a position distri-
bution n, (ri, ,r.) and a momentum distribution
(with positional dependence in. the large). We have

f~(rt~' ' ')r~)pt)' ' ')ps)

Sl
t'pd. .„d..dp.„dp.

(fV s)!&—

= n ,(rt, . ,r,)g [2~nzkT(r, )]r*
1

( [p,—rnv(r), ]')
&(exp( —P(r,)-

'
~

. (4.6)
)

The momentum distribution is thus locally Maxwellian
and we need consider only n, (ri, ,r,). The position
distribution n, is a functional of the temperature T(r)
and (through y) of the density n. (r) in the whole
container. It is our aim to show that, for slow variation
of P(r) and n(r), the n, depend only on the values of
these quantities in the region containing r~, . , r, . In
fact, it will develop that, for s=1, 2,

n, (rt, ,r,) =n, (rt, ,r„P,n), (4.7)

to second order in the gradients. Here e, is the equi-
librium distribution for a system at uniform tempera-
ture (kP) ' and density n; P=P(R) and n, =n(R),
where R=(1/s)Pt'r, is the s-particle centroid. For
s&2, gradients at R will also be required. However,
there will be no contributions from outlying elements
of the Quid, so that even for s)2 the distribution
function is truly local, as expected,

We shall consider erst the change in R, due to a
change in the function p(r). It readily follows from
Eqs. (4.4) and (4.6) that

y(r, ) =[—U(r;)+-z'nzv(r, )'+ v(r;)]p(r;). (4.5)

The term p'(X) in (4.1) is of first order in the
gradients of the hydrodynamical variables in the sense
of vanishing in the case of uniformity, and has a
vanishing integral. It is p,

' which is supposed responsible

rs H. Mori, Phys. Rev. 112; 1829 (1958); J. L. Lebowitz,
Phys. Rev. 114, 1192 (1957)."J.Lebowitz, H. Frisch, and E. Helfand, Phys. Fluids 3, 325
(1960).

+n,+t(rt, ,r„r)—n, (r.. .r,)nt(r). (4.8)

(nt=ni is the density which determines y.) Hence
under the infinitesimal alteration by(r),

Sn, (rt, ,r,) = n, (rt, ,r,)+8V(r,)
1

+ [n,+i(ri, ,r„r) n, (rt, ,r,)nt(r—)]by(r)dr,
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which, since

[e,+i(ri, ,r„r)—n, (ri, ,r,)ni(r)]dr

= —se, (ri, ,r,), (4.9)

may be written in the more convenient form:

l

be,(r„.,r,) =
~

[e,+,(ri, ,r„r)

nx p Bni(r)
be~(ri) ' ', r~) = — n bp(r)

1Vjp & an

Be,(ri, ,r,)——P bq(r, ) dr, (4.13)
8

for s=1 or 2. This is of 0(1) with respect to 1V.

Consider first the case s=1. Equation (4.13) then
reduces to

p Bei(r) Bei(ri)—n, (ri, .
,r,)ni(r)][by(r) —(1/s)/by(r;)]dr. (4 10) bei(ri) = n' [by(ri) by(—r)]dr, (4.14)

1VP & Bn Bs
To take advantage of the asymptotic expression (2.22)
or (3.23), (4.10) is further decomposed as

ex ae, (ri, ,r,) pani(r)
be,(r„,r,)+ rP

1VP Bn & Bn

which, noting that (B/Be) J'ei(r)dr=alv/Be= U and
inserting (2.20), may be solved for by(ri) in the form

P bei(ri) 1 p Bei(r)
by(r, )= + by(r)dr

n'g aei(ri)/ae U ~ an

X bp(r) ——Q by(r, ) dr=, e,,+,(r&,r„r)
s

f BPp Bei(1'i) )
!bni (r,)+const.

E an ae )
(4.15)

nx Be,(ri, ,r,) Bni(r)—n, (ri, ,r,)ei(r)+ rP
1VP Be Be

by(r) ——P by(r;) dr. (4.11)

According to (3.1) and (3.12), the mean compressibility

x and reciprocal energy P need not be specified more
precisely, for the combination

nx//=1V ( n'a' lily/Be') 'y —n=iV/Uy (4.12)

is directly determined by Q.
By virtue of the relation (3.23), the integral on the

right-hand side of (4.11) has contributions only from r
within some conservative multiple of the correlation
length from at least one of r&, ~ ~ ~, r„certainly a finite
region R independent of V when all r, are far from the
walls. Hence (4.11) is seen at once to be a local expres-
sion for the change of 8,. Further simplification may
be achieved. Assume that the spatial rate of change of
by(r) may be regarded as uniform in region R. Then
b&(r) —(1/s) +b&(r;) may be replaced by [r—(1/s) gr;]

~ Vby(R), where R is the center of mass of ri, , r, .
Similarly, assume that ei(r) and Bei(r)/Be are essenti-
ally constant il this region, for we are concerned with
large scale inhomogeneities, while n,+~ is also uniform
in that it depends only upon interparticle distances.
Under these conditions, if one makes the center-of-
mass reflection r~ (2/s)P r;—r, the second bracket
in the integral reverses sign. On the other hand, for
s=1 or 2, a center-of-mass reflection of r leaves the
distances of e,+i(ri, ,r„r) unaltered, so that the first
bracket is unchanged. Hence the right-hand side of
(4.11) vanishes, and we are left with

Thus, the change in y(ri) required to produce a given
change in ni(ri) is, except for a constant, identical
with that which would be obtained by changing Pp by
means of a change in total particle number (or over-all
density n) adjusted to yield the actual local density
ni(ri). This shows that a slowly varying density can be
interpreted by representing each Quid element as an
open system exchanging particles with neighboring
fluid elements (total particle number being main-
tained), and gives meaning to (1/P)y(r) as a local
chemical potential, up to a constant independent of r
(but which may depend on the function p).

l,et us illustrate this by considering the variation of
density of an ideal gas in a uniform gravitational field
in the s direction (a potential of mgs) due to a change
in the gravitational force constant g. According to
(4.5), this will result from by(r)= —Pmbgs. Further,
since n(r) =1VPmg exp( —Pmgs) for a unit area of gas
between s=0 and s= ~, then be(ri) = (1/g —Pmsi)
Xe(ri)bg, which would equivalently be produced by a
b1V of (1/g —Pmsi)ebg. Now the chemical potential is
given here by

p = BF/B1V = (a/B1V) (—1/p) ~31V 1n(27rm/ph')

f—ln1V!+1V ln exp( —Pmgs)ds

—const —(1/P) lnlV+ (1/P'mg),

so that b(Pp) = b1V/1V —bg/P'mg'. Under the above
changes, this becomes b(Pp) = —Pmbgsi, which is indeed
identical with by(ri).

To complete the picture, consider next the case s=2,
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in which our principal interest lies. Observing that
P by(r;)=sby(R) through Qrst order gradient terms,
we find that Eq. (4.13) takes on precisely the same
form as Eq. (4.14) for n&(R). It follows then that

(BSz(rz,rz) Bni(R) )
bSz(rz, rz) =

I

— ~bn, (R). (4.16)
Bn Bn )

In other words, the change in Sz(rz, r,) produced by by
is equal to that which would be obtained by only
altering the number of particles in the system so that
the local density ni(R) at the center of mass R=-,'(r&
+rz) attains its actual value. Thus we reach the desired
conclusion that a variation of nz(r) also has the same
local effect on n2 as an equivalent change in local
density achieved by changing the total particle number.

The infinitesimal process leading to (4.14) can be
iterated as long as neither the gradient of the effective
external potential y(r) nor the form of the two-body
distribution vary signi6cantly within a correlation
length. Starting with a uniform motionless Quid tof
small (surfaceXcorrelation length/volume) ratio), we
can further conclude in this fashion that with the sole
condition that the external force and local velocity
(and hence local density) be slowly varying in space,
the 2-body distribution will be precisely that of a
uniform fluid of density equal to the local density at
the center of the two particles.

The simple expression (4.14) is not valid for n, with
s)2. Indeed, the vanishing of the short-range contri-
bution to the right-hand side of (4.11) was established
by an elaboration of the familiar argument" that for
Sz(ri, rz) there exists no vector of local character,
symmetric in r, , r, which can combine with V'y(R) to
give a erst order correction. This argument fails for
s)2. Instead, a density gradient can provoke an
anisotropy in the local s-body distribution. Replacing
(4.13) by (4.11) in (4.16), and representing S,+,/n, by
the superposition approximation, "results in a relatively
simple correction to (4.16) which we cite for the sake
of completeness: If

S,(rz, ,r,)-Q nz(r, gj'LS. (r, ,r,)/n, (r,)n&(r,)],
then

(BS,(r„,r,) Bn, (R) )
bS, (r&, ,r,)—~

—— — —
~
bn, (R)

Bn )
Sz(r, ,r)

=n;(r, ,r.) i

4nz(r;)n, (r))
t'Sz„, (r, ,r) y-

(r) ( —R)d V'by(R). (4.17)
&ni(r, )ni(r))

Here n2 „.is the asymptotic form of n2.

'4 H. S. Green, 3Eolecular Theory of Fluids (Interscience Pub-
lishers, New York, j.952), Chap. 5, Sec. 5.

' J. G. Kirkwood and E. M. Boggs, J. Chem. Phys. 10, 394
(1942).

from which
—S,(ri, ,r,)n, (q, r), (4.18)

2bS,(r„,r,) = bPy(q, r)$S„z(r , i,r,„q,r)

—S, (r&, ,r,)Sz(q, r)]dqdr

+2~ Q be(r;, q)$S,+z(rz, ,r„q)

—S,(r.. .r,)n, (q)]dq+2S, (r.. .r,)

X Q be(r;, q)n&(q)dq

+n, (ri, ,r,).P' bPQ (r;,r,), (4.19)

where g' denotes the omission of i=j.
Our inquiry now concerns the extent to which the

change in S,(rz, ,r,) differs from that which would
occur due to a uniform change in temperature corre-
sponding to that at, the midpoint R= (1/s)g r, of
r~, , r, .Thus, being more explicit, we wish to consider

S,(r„,r„P(r)+bP (r))—S,(rz, ,r, ; P (r)+bP),

the difference of two types of variation, where bp is
the uniform variation bp(R), and y(r) is the same for
both distributions. Again, this difference may be
divide6 into an asymptotic and a residual part:

2LS,(r.. . r, ; P(r)+bP) —n,,(r.. . r„P(r)+bP, (r))]

= (n'g/ZP)BS, (ri, ,r,)/Bn ~l A,(q, r, r)S, (q, r)dqdr

+2 Q A(q, r;, R)nz(q)dq +Ti+Tz+T, +T4,

We proceed next to the case of a slowly varying local
temperature, anticipating that, low order distributions
will again maintain their equilibrium form. Changing
the function P(r) in (4.4) has two effects on S, of (4.6).
First, there are one body terms which will alter,
namely y(r) and the exp( ——,

' inL2zinzkT(r)]) arising
from normalization of the momentum distribution. We
have just seen that a slow alteration of a one-body
term leads to an n2 in which this term may be taken as
literally constant. There remains then the effect upon
the two-body potential terms, that is, upon

p(qr)4(q, r) =—lLp(q)+p(r)]4(qr)
Clearly,

b(p4) = lLbp(q)+bp(r)]4(q, r).

It is now only necessary to extend Eqs. (4.8)—(4.10) to
two-body variations. Doing so, we have

bS,(r„,r,)
2 —= S,, (r.. .r,)g b(r,—q)b(r,—r)

be (q, r) '+i

+S,~z(rz, ,r„q)Q b(r„—r)
—S,+,(r, r„r)P b(r;—r)

+n+-"(r&~' ' ~r ~q~r)
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where

Ti "——a(q, r,.R)[n, (r.. .r,)e, (q,r)

—n +2(ri ' ' ' ' q ')+ (n x/-~p) a" (ri ' ' ' r )/

aean2 (q, r)/an]dqdr,

T2 P——6 (q,r;, R)[n, (ri, ,r,)ni (q)
(4.20)

T,= —e, (ri, .
,r,)P' 6(r, ,r, , R),

n,—+1(ri, ,r„q)+ (n x/Ep) ae, (ri, ,r,)/

anan, (q)/an]dq,

T,= —2e, (r, , ,r,) P A(q, r, ,R)n, (q)dq,

Combining with (4.16), we see that a uniform change
of reciprocal temperature 8P followed by an alteration
of y(r) sufficient to bring ni(R; p+ap) to its true value
nl (R;p+ap) results in a value of n 2 (ri, r2) identical
with that produced by the nonuniform change aP(r).
This infinitesimal process can then be iterated to show
that a slowly varying temperature, with no restriction
on the magnitude of its change in the large, can be
reduced insofar as n2(ri, r2) is concerned to a uniform
temperature p(R) with modified y(r) and thus to the
corresponding equilibrium distribution at p(R), e, (R).
As a consequence of the analyses of (4.16) and (4.21),
the validity of (4.7) for s=2 has now been demon-
strated.

In Appendix D, we show that the pattern of inference
established above may be reversed, in that the asymp-
totic forms (2.22, 3.23) are themselves consequences of
the local character of distribution functions together
with the basic Ornstein-Zernike relation.

~(q, r, R) —= [lap(q)+lap(r) —ap(R)]4 (q,r)

The "unperturbed" distributions all have temperature
dependence p(r), although this is not explicitly indi-
cated. The elimination of correction terms T~—T4 in
(4.20) is possible once more only if s= 1 or 2, which we
henceforth assume.

In order to reduce (4.20), let us more carefully define
the slow variation of 5P, in the sense that if L is a macro-
scopic length, / a microscopic one, then LV'bP is of order
5P, but t178P and PV'V'8P may be taken as zero. Consider
first the term T~. Again assuming local dependence of
e,+2, n2, p on interparticle distance alone, both p(q, r)
and [n,n2 n, +2 ]—are un. changed by an inversion
through the center of mass: x —+2R—x. But p(q, r)
insists that q be close to x' and the asymptotic deviation
[n,n2 —n,+2 ] then requires that q and r be within
the order of a correlation length from (ri, r2). Since
the coefficient of p(q, r), averaged with its inversion, is

-'[lap(q)+ lap(r) —ap(R)]
+-,'[-', 5P (2R—q)+-,'aP (2R—r) —P (R)],

with leading term now going as PV'V'P(R), the term Ti
may be dropped. The elimination of T2 and T3 proceeds
in precisely the same fashion, while for T4 an average
over inversions is both impossible and unnecessary.

Thus only the asymptotic contributions to (4.20)
remain, and the second of these vanishes for the same
reason as that ascribed to T3. Since the resulting
relation is equally applicable to variations of n2(ri, r2)
and ni(R), it follows that, as in (4.16),

n2[rl, r2 p(r)+ap(r)] n2[r1 r2 p(r)+ap]

(ae2(r, ,r.) ae, (R) )
!(n,[R;p(r)+ ap(r)]

ae ae )
—ei[R; P(r)+8P]). (4.21)

5. CONCLUSION

We have shown in this paper how the assumption of
the existence of a finite correlation length in a Quid

yields explicit expressions for the (1/E) terms in the
joint distribution of two sets of particles which are far
apart compared to the correlation length. The form of
these terms was then utilized to prove the local nature
of the low order distributions in a system with spatially
varying intensive parameters.

It appears to us that the central problem in the
theory of equilibrium Quids is the proof of the existence
of such a length. As mentioned in the introduction,
this is related to the distinction between Quids and
crystals a~d hence to phase transitions between these
forms.

ACKNOWLEDGMENTS

We would like to thank Dr. H. I. Frisch, Dr. E.
Helfand, Dr. O. Penrose, and Dr. L. Van Hove for
several valuable discussions.

APPENDIX A

In this appendix we attempt to give a more rigorous
mathematical formulation of the concepts of finite
correlation length and asymptotic form of distribution
functions. It is clear that these concepts can be made
precise only when we have some procedure for letting
the particle number E approach infinity. When the
system is completely uniform, i.e., periodic boundary
conditions, this passage to the limit is indeed straight-
forward: 1V~ ~, V —+ ~, X/V=n (although even
here one may have to specify the ratios of the various
sides).

For a nonuniform system, we may imagine the
restriction to successively larger volumes V by impo-
sition of an appropriate (short range and infinite) wall
potential. All other conditions are to be held fixed at
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predetermined values throughout space: internal and
external (e.g., gravitational) potentials, as well as local
(for a local-equilibrium ensemble) temperature and
chemical potential. We assume then that these quanti-
ties are sufficiently bounded that if the particle number

N(V) for each volume is suitably chosen, the distri-
butions ek(ri, ,rk,.N) of finite order k will possess
limiting values nk(ri, ,rk) as N" ".The value of
ek(ri, ,rk) may of course depend on the way the
volume becomes infinite. In the following we shall think
particularly of two ways of passing to the limit: the
first is such that the positions of all k particles become
infinitely far from the walls, the second that some of
the walls remain located at a finite distance from the
k particles. As a prototype of the first situation we start
with a cube defined by ——,'L&x, y, 2.&-,'L and then let
L —& ~, while the second may be represented by
starting instead with a cube 0&x&L, ——2L&y, s& ~L.
The second situation is necessary for the examination
of wall effects on the distributions in the limit of
infinite L for an otherwise uniform system.

We will now specialize our discussion to the one and
two-particle distributions. The two-particle Ursell
function for given S, U is

F2(ri, r2, 1V)=e2(ri, r2, N) —e(ri, N)e(r2, 1V). (A.1)

4'2(rlr2 N)= 2(rlr2 N) ~2(rlr2) (A.5)

(defined as vanishing outside of U) may be termed the
asymptotic part of F2(N). In applications, use is made
of the short-range character of F2, coupled with
properties of the integrals of &2(1V) over the full
volume, or more precisely of

42(rlr2 N)X(r2)dr2 (A.6)

where X(r2) is a bounded function: ~'(r2)
~

&M.
We shall first discuss the value of the integral (A.6)

when x(r2) is a constant. This will yield sufficient
information about &2(N) that the properties of (A.6)
will be obtained with few further assumptions. The
advantage of the restriction to g being a constant is
that since

$2(ri, r2, V)dr2 ———e(ri, N) 52(ri, r—2)dr2 (A.7)

In addition to vanishing rapidly at large separation,
F2(ri, r2) will only have a small fractional deviation
from P2(ri, r2, N) at small ri, . Hence the difference

5 vanishes when either of the particle coordinates is
outside U and has the property that

t'F2(r, ,r2, N)dr2 ———n(ri, 1V). (A.2)

Our previous assumption assures the existence of

hm F2(ri, r2,'N) = 52(ri, r2) =e2(ri, r2) —e(ri)e(r2). (A.3)

The Ursell function F2(r, ,r2) is defined in such a
fashion that it vanishes for statistically independent
particles. The correlation length of a Quid is therefore
related to the scale on which F2 vanishes as ~r12t
increases. The possibility of correlation over large
distances may be intrinsic, as in a crystal or at the
critical point, or may be due simply to the constraint
of a Axed number of particles in the system. It is
clearly the second part of this long-range correlation
with which we are concerned in this paper. The magni-
tude of this nonintrinsic correlation will vanish as the
size of the system increases. Hence in the absence of
intrinsic long-range correlation, which we here assume,
we will in the limit have for some ns

~|r12'~F2(ri, r,) ~dr2=0(1) for 0&1&vs. (A.4)

The value of m determines the rate at which F2
approaches zero as r12 —+ "; if (A.4) holds for all l,
the approach is exponentially fast.

(employing (A.2) and (A.S)], then only the integral of
F2 is required, which being short-range can be found
by integrating over a Qnite volume as V —+ ~.

Consider now the process discussed in Sec. 2 of
dividing the volume V into V~ and V~= V—Vg.
Using the previous notation, we have

F2(ri, r2,.N) =(e2(ri, r2t N', N —1V~))
—(~(ri) ~N', N —N')(N(r2) ~NA N —N') (A.S)

If 82(ri, r2;N) is integrated over V' with ri in V"„
then from (A.S)

F2(ri, r2, 1V)dr2 ——((1V—N")m(ri~N', .V—N"))Jr,
—. (N —Ng)(e(ri~N", N Ng))—

(Ngl(ri! Ng, N —Ng))—
+(N~)(e(r1~1V~, N —Ng))

((gN")k) g k — gk

Lrz.e(ri~~Ng, N Ng)]-
k=2(N„)k-1 P! gg„k

Bke(ri~Ng, N N.)-—
Sg (A.9)

where H. N"/V~, 81V~ N~ N.=. By taking the-— —
limit of lV; V —+ ~, with Vz remaining fixed, it follows
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»(ri, r,)dr2 —— lim P~(ri, r2, N) dr2
~a~~ "

= lim
~ »(ri, r2,. N)dr2

N~oo J

e—(ri) l—iIII I »(ri, rg', 1V)dr2
N-+oo J Vg

((KVz)") e~"
= —e(r,)+ P

~=2 (N )"—' k~

X [e~e(r I lN~, N N~) 3—
Bngk

8'e(ri
l Ng, N Np)—

(A.10)

At fixed ri, characterization of p~(ri, r2, N) will entail
two regions of interest. For r2 separated microscopically
from r, , the general argument following (2.10) suggests
that the effect of the boundary may cause 5'2(N) to
deviate from F2 by the order of (1/N)0(1V&) =0(N ').
For r2 outside an intrinsic correlation length from r~,
the effect of the constraint (of precisely N particles in

V) could still introduce terms of order 0(N l). How-

ever, this could certainly not be true in a uniform
sense, due to the existence of the integral (A.15). We
would like to argue that in this region, the dominant
term in &2(N) is given by the second term on the
right-hand side of (2.19), which is of order 0(1/N).
This is certainly compatible with Eq. (A.15) and as we

shall see is almost implied by it.
A very strong argument for this behavior of &2(N)

can be made by considering rather than &2(ri,r&,' N) a
very similar quantity

where all quantities on the right-hand side are to be
taken in the limit of V becoming infinite.

Next let E& increase to infinity. The quantities
inside the square brackets in (A.10) are of at most
0(1), and this remains true if for the purposes of rigor
the series is truncated, the final term being evaluated
at other than X~. We now assume that the fluctuations
in S~ are bounded in order of magnitude by the
fiuctuations in a grand canonical ensemble, where it
can be shown that

(yN. ) )&O(N. ) (A.11)

This yields, for V& approaching infinity in such a way
that r& becomes infinitely far from the interface S&
(although not necessarily far from the container walls),

» (ri, r2) dr 2

where
p, (ri,r2lN~)= »(li r2—lNQ) $2(ri, r2) (A.16)

»(r, ,r., lNg) = lim 5 (ri, r~lNg, N —N~).
N-moo

p, (r, ,r, lN~) is the deviation of the Ursell function for
an infinite system without any constraints from the
one for the same system when a given volume V& is
constrained to contain E~ particles. As far as the
constraint of a fixed number of particles is concerned,
the subsystem inside V& may be regarded as a closed
system with a special type of boundary. The function

F2(ri, r2lN~) should therefore mimic for ri, r, inside V&

the behavior of the function»(ri, r, ;N~) for a closed
system of X& particles inside the container V&. Indeed,
as far as the integral over V~ is concerned, the two
functions have the same behavior:

= —e(r,)+e'kTXBe(ri)/Be+o(1), (A.12) »(ri r lN~)«2= —e(rIIN&). (A.17)

where we have defined

((».)')
lim =nkrX,

N gazoo g

The properties of $2(ri, r~lN~) can be found from an
expansion similar to that leading to (A.9), which

(A.13) yields, as a development in (1/N~),

82

with the understanding that to order o(1) in Nz, »(r&, r2lN&)=-»(r&, r )—{(&Nz)')»(ri, r2lNA)
ekTX(N~) and e(rI,N~) coincide with their limiting
values. But according to (A.4),

»(ri, r&)dr2 —— »(ri, r2)dr~+o(1). (A.14)

It follows from (A.7) and (A.12) that

+=—e(rilN~) e(r~lN~) +" . (A. lg)
AXE

For r~ and r2 far from each other, this expression
reduces to

Be(ri) Be(r,)+, (A.19)
1=- ekTx

Bng 8ngwhich is the result desired.

&e(ri)» (ri, r. l N~) —»(ri, r.)
lim I $2(r, ,ri, N)dr;= —e'kTx, (A.15)
N~m ~ Bn
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if ri and r, are both interior to V~ (the correction term
vanishes otherwise). The right-hand side of the expres-
sion is indeed of the same form as that found in (2.19)
for the function &2(ri, r2, N~).

Let us now return to the discussion of &2(ri, r2, N).
On the basis of (A.15), we divide &2(1V) into two parts:

of these limits means that we discard the possibility of
&21O'(1V) having an oscillatory behavior extending tile
length of the container. The limit

~ r2~ ~ ~ is here to
be taken in such a way that r2 moves infinitely far
from the walls. Combining Eqs. (A.21) and (A.26)
yields

@2(rl r2 N) =N 'p2 (rl 12 N)+y2 "&(ri, r2, N). (A.20)

Here g~"&(N) is to remain bounded as N —+ ~, i.e.,
p2i@(1V)=0(1), and satisfies

p(ri) = e'k—TxBn(ri)/Br),

so that finally, using (A.24),

(A.27)

1 t aN(ri)
lim —

~~ g, ~'&(ri, r2,. 1V)dr2 —— rPk—TX, ; (A.21)
N~oo g J 8'Jz

the remainder @2"&(N) may be of order greater than
O(1/N) but by virtue of (A.15) must satisfy

lim t y~ "& (ri, r2, N) dr2= 0.
+-&oo

(A.22)

lim ~g.&" (ri, r2', .V) ~dr. =0.
N —+~

(A.23)

This assumption implies that

lim x(ri, r1)$2(ri, r1,. N)dr~

1
= lim —I X(ri, r2)g, &'&(ri,r~, N)dr. , (A.24)

N~oo N J

where x is an arbitrary bounded function of r& and r2.
Hence in all applications in this paper we need only be
concerned with the value of &2&'&(ri,r2, N).

Consider now a homogeneous system. I.et us denote
the limiting value of f2&" (1V) by p2"&,

lim 42 (rl r2 N) 42 (rl r2)
N—+~

(A.25)

and its asymptotic part by P,

lim y, &'&(r, ,r,) =P(r, ), (A.26)

both of which limits we assume to exist. The existence

The decomposition (A.20) is of course not unique, since
one can for example add and subtract any term of
order o(1/N)

The vanishing in the limit of the integral (A.22) can
occur in two basic ways. First, the part of &2u&(N)
which is of order greater than O(1/N) may be effectively
restricted to a finite region. Second, &2&'&(lV) may be of
order greater than O(1/1V) over the full volume, but
have an oscillatory character leading to a vanishing
integral. %e assume now that in a Quid the latter
situation does not arise and express this formally by
the condition that a decomposition (A.20) exists for
which

X(ri, r2) &,(ri, r~, 1V)dr~ —— X(r,,r&) F,(ri, r~)dr~

Bn (ri)—rs'kTX 1V '
~

X(ri, ri)dr~ +o(1). (A.28)
8's

For a system which is not completely uniform, the
limit (A.26) may still exist if the system is asymptoti-
cally uniform, in which case (A.28) clearly remains
valid. However, if the region ~r2~ ~ ~ is not uniform,
(A.26) will not hold and must be replaced by the
strong assumption of statistical independence of
distant parts, i.e.,

lim Q2&'&(ri, r,) =p(ri)p(r1).
l &12 I

~oo
(A.26')

where
+y2'(1V)+o(1/N), (A.29)

(N)
~
dr2 ——o(1).

The generalization of the above discussion to higher
Ursell functions is quite direct and will not be carried
out, but the final expression will be written down in
Appendix C.

APPENDIX 8

In this Appendix, we extend Kq. (2.22) for the
asymptotic value of a distribution function to Quid
mixtures. This result is then applied along the lines of
Ornstein and Zernike to the scattering of visible light
from mixtures. For simplicity, we shall consider ex-
plicitly only the case of a two-component Quid con-
sisting of S atoms of one kind and E~ of another kind.

The joint distribution of m& particles of species a
and m2 of species b will be written as Ãmym2. The
asymptotic values of e,&+» &2+&2 when the subset
consisting of q& particles of a and q2 particles of b is
very far from the other particles can be found by an

This is perhaps the strongest assumption we have made
and it may possibly be violated at low temperatures.
If we do make this assumption, then (A.28) again
holds, and we further have on combining with previous
equations

1 Bei(ri) Bei(r1)
g')1 (1V) = n'k Tg—

Bs Bs
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investigation similar to that used for the one-component limit. If v is sufficiently low that
Quid. It yields

c/v))l,
+Ql+Pl 2+02 ~ +Q1Q2+PlP2

t—P] kT
Bye) BW. cjlVe

where / is the correlation length —beyond which the
integrand in (8.6) must vanish —then s«1/1, and we

(8 1) may replace sinrs/rs by 1. Writing

where n and P can assume the values a and b, and
n.e(~ ) =n.ne —(1/V)y. e,

it readily follows that8.2

(8 g)

When a parallel incident beam of radiation of
intensity Io and frequency v falls upon this Quid, the
intensity of the radiation at distance r which has been
scattered at angle 0 may be computed in a way entirely
analogous to that used for a single component Quid. "
It is iven b

i (s) ~i (0)=v-f'+vbbfb'+2&. bf.fb (8 9)

But according to (8.1), we can write

(8.10)

I(g) J (1+ gg)I ( / )p / f 2+/ f y+ t ' [f Equations (8 .9) and (8.10) constitut e the result
esire .

+2f fbn„b+ fb nbb]8" drydr' (8 3)

-e(r )= - eg-e(

and Eq. (8.3) can be rewritten as

I(s) = -', (1+cos'0) Ib (ro/r)'U j(s),
where

(8.4)

(8 5)

Here f, and fb are the atomic scattering factors for
single atoms of type a and b, respectively, r& e'/m——,c'
is the classical radius of the electron, the n e(r~, r2)
denote the two self- and one mutual- two-body distri-
butions, and K is the change in wave vector on scat-
tering [K= (47rv/c) sin~28].

In the above, we can subtract a constant term from
any e p since for a system of volume V this will con-
tribute only when E V: and is thus indistinguishable
from the transmitted beam as V —+ ~. We shall
therefore subtract the corresponding asymptotic value.
The integrand in (A.3) then exists only for small
values of rl2, of the order of the correlation length.
Further, if the system is uniform, then

APPENDIX C

We now extend Eq. (2.22) to the asymptotic
value of the intrinsic correlation functions. These may
be defined by the sequence of relations

5'&(r) =n, (r),

F,(r,r') =n&(r, r') —n&(r)n&(r'),

F,(r,r', r")=n3(r, r', r")—n2(r, r')n&(r")
—n2 (r,r")n~ (r') —n, (r', r")n~ (r)

+2n~(r) ng(r') ng(r")

The fundamental property possessed by S,(r~, ,r,)
is that of vanishing in any region in which the set
rl, ~, r, decomposes into two or more independent
subsets, i.e., such that the' distribution' functions e~
correspondingly decompose into products. This is
because all correlations due to subsets have been
subtracted in forming 5, from m„ leaving only the
"intrinsic" s-body correlation.

The connection between the m, and the 5, may be
defined more concisely. For this purpose, introduce a
"test function" f(r), and integrate to form the constants
(functionals of f)

+2f.fbn. nbl g.b(r) —g.b(0)j
f

n,[f]= . n, (r~, ,r,)f(r,) f(r, )dr, . dr„

(C.2)

and

(sinrsq f,[fj= F, (r~, . ,r,)f(r~) . f(r, )dr~. dr„
+fb'nb [gbb(r) gbb(~) j}4~r'I le, (8.6)

'
~ J(rs)

and the combinations
s= (4m v/c) sin-', 8

(reducing correctly to the one-component case when

f = f, g e=g, n, +nb n) Equation——s (8. .5) and (8.6)
are appropriate for determining the long-wavelength

"Reference 13, Chg, p. 3, Sec. ].,

(C.3)
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The distribution functions may be recovered by number 1V, we have generally. (where q) 0)
variational differentiation:

E„+&(r& . .r,+i, Ã)dr, +i . .dr,+i

(q+)—1)!= (—1)' E,(r, r, ; .V).
(q-1)!

n, (ri, ,r,) =
8f(ri) . bf(r, )g . o (C.9)(c.4)

B ~[f]
&f(ri) . &f(r,) y=o

e, (ri, ,r,) = Consider now the corresponding integral for the
difference of 7,+& and its asymptotic value 5,+&&" ~

lt is then found that the sequence (C.1) achieves the given by (C.S),
very concise form

&[f]=»n[f] (C.5)

The required extension of (2.22, 3.23) is now readily
accomplished. From (3.17), we have

sg
[f]=n ' [f] ——n' n'o'[f], (C.6)

cV 2P Bn'

and (C.5) becomes

—f,+$ "'(ri. r +i, rV)]dr qi .dr +$

(q+1—1)!
= (-1)l e,(r)

- (q —1)
BS,(1V)—(1—1)!nkTxn (C.10)

1 1 nx B'n&'&[f]
S[f]=lnnio~[f] —— — n'—

n(oi[f] N 2P Bno

1nx
I

inn~'i[f]
1V 2P Be')

The integrand of (C.10) is of a local nature. We can
therefore pass to the limit of N ~ ~ inside the integral
sign, yielding finally

Go~i(ri, ' ' ', ro+i; oo)droyi ' 'drq+t

1 nx ~
B 1nn&o&[f]~ '

f
n (c.7)

1V2P0 Bn )

1 eg BF, BF)
n e

cV P Bn Bn
(c.s)

the desired result. It should be pointed out that our
final expression (C.S) depends only upon the asymp-
totic form of the distribution functions, and its validity
is therefore not restricted to the gas region for which
the separation into n&o& and a remainder [necessary for
(C.6)] is possible.

We may note that 7, becomes a higher order in6ni-
tesimal than 1/AT if its particles divide into three or
more groups. Another consequence of the asymptotic
form (C.S), which was previously discussed (see
Appendix A) for the case of Fo, is an expression for the
integrals of F,+& in an infinite system. Indicating the
explicit dependence of Ursell functions on particle

To find F,+&, we must apply 8o+'/Bf(ri) 8f(r,+&) ~ i—o.

But suppose that the sets q, / are asymptotically
separated. Then according to (3.22), the n, "& decompose
accordingly, so that P,~P' obtained from lnn&oi[f]
must vanish. In the same fashion, there can be no
contribution from the [nB inn'oi[f]/Bn]' term unless
the complete set of derivatives corresponding to the
set q operates on one factor, those for set / on the other.
We conclude at once that

BF,(~)—(l—1)!nkTxn, q & 1 (C.11)

of which the Ornstein-Zernike relation is a special case.

APPENDIX D

Here, we "close the circle" and show, using the
well-known special case q=/=1, that the asymptotic
formula (2.22, 3.23) is implied by the local character
of distribution functions. This may be done in two
stages.

First consider the conditional distribution n, (ri,
r,

~
r,+i) when r,+i is far from the set ri, , r„of center

of mass R. Now the effect of fixing r,~i is to change the
local density at R from n(R) to

n'(R) = n (R t r,+i)

1 nx nBn(R) nBn(r, ~,)=n(R) —— (D 1)
iV Pn(r, +i) Bn Bn

Further, if n,(;n) denotes the joint distribution
function for a uniform density e, the local dependence
of n, on R tells us [see (4.13, 4.17)] that

n, (ri, ,r,)=n, [ri, ,r„n(R)]
+Vn(R) A, (ri, ,r„n(R))+ (D.2)
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+[V'e'(R) —Ve(R)] A, [ri r„e(R)]
+[e'(R)—e(R)]7'n(R)

BA,[ri r„e(R)] Be(R)
+ (D 3)

for some appropriate vector function 3q. Also,
eq(ri, . ,rq~rq+&) is similarly expressed, with n'(R)
replacing e(R). Hence

e,(ri r,
~
r,+i) n—,(r, r,)

=n, (r, . r„e'(R))—n, [r, r„n(R)]
+V'n'(R) A,[ri r, ; e'(R)]
—Ve(R) A,[ri r, ; e(R)7+

Bn,[r, . r, ; e(R)] Be(R)= [e'(R)—e(R)]-

Inserting in (D.3) and comparing with Bnq(ri r,)/Be
from (D.2), we obtain

n, (ri r, j r,+i) —e, (ri r,)

Be,(ri . r, ~r,+i) Be(R)= [n'(R) —e(R)]

+ (»)
Substituting from e'(R) —n(R) of (D.1) and multi-
plying by e(r,+i) now results in the q, 1 case for asymp-
totic separation:

nq+1(rl' rqrq+1) 'nq(rl' ' 'rq)'n(rq+i)

1 nx eBn, (ri r,) nBn(r, +i)
(D.6)

XP Be Bs

V[e'(R) —n (R)]
t

Bn(R)= [e'(R)—e(R)]V
~

Be

Bn(R))I+" (D 4)
Be

Since the only R dependence of e'(R) —n(R) is
through the factor Bn(R)/Be, it follows that

Next consider ei(r,+i rq+i~ri r,). The effect of
fixing ri, , rq is to change the local density at R'
(center of mass of the set of / particles) from n(R') to
eq(R'~ri r,), which we have just obtained. Applying
the above argument to the set of / particles then
recovers the full relation (2.22, 3.23).


