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Sinusoidal electron charge density fluctuations with propagation
vector k are considered for a fully ionized gas in complete thermo-
dynamic equilibrium in a constant magnetic field. Let n and &

be the ratio of the Debye length and of an electron gyroradius,
respectively, to the wavelength k '. A general formula is derived
for the frequency spectrum of these fluctuations for arbitrary
values of n, e, and of the angle (@——,'~) between k and the magnetic
field. The dispersion relation implied by this expression has been
obtained previously by Gross and by Bernstein, but the method
of derivation is different. A very small electron-ion mass ratio
m/ Jft/I is assumed.

For large values of e and n most of the intensity occurs at
small frequencies: If sin@)) (m/M) &e, the main spectrum is
continuous as in the absence of a magnetic 6eld; if (m/M) l«sing
«(m/M) 4, it consists of lines with spacing about the ion gyro-
frequency; if sin@(&(m/M)&, it consists mainly of a line at zero
frequency. Weaker spectral lines are obtained which correspond
to plasma oscillations, the existence of "frequency gaps" is
conarmed for small angles @, and the intensities of the various
components are evaluated. For small @, another spectral line is
obtained at a "resonance" frequency intermediate between the
electron and ion gyrofrequency.

I. INTRODUCTION
' 'N a previous paper' (I) the frequency spectrum was

derived for the spatial Fourier transform with fixed
wave vector 1 of the electron charge density fluctuations
in a plasma The present paper is a continuation of this
work, which now includes the effects of a constant
magnetic field 8 in an arbitrary direction. As in most
of the previous papers, we assume complete thermo-
dynamic equilibrium and neglect collisions throughout
the present work. We also assume that kc is sufficiently
large for coupling between longitudinal and transverse
oscillations to be negligible and consider only longi-
tudinal ones.

The aim of the present work is twofold. The first is
to provide a theoretical basis for analyzing experiments
on radar backscatter from the upper ionosphere and
exosphere. Preliminary experiments have already been
performed and more are planned. ' 4 In some of these

* Supported in part by a joint contract of the U. S. Atomic
Energy Commission and the OfIice of Naval Research.

t Permanent address: Cornell University, Ithaca, New York.
' E. E. Salpeter, Phys. Rev. 120, 1528 (1960);hereafter referred

to as I.' K. Bowles, National Bureau of Standards Report No. 6070,
1959 (unpublished).' W. E. Gordon, Proc. I. R. E. 46, 1824 (1958).

4 V. C. Pineo, L. G. Kraft, and H. W. Briscoe, J. Geophys.
Research 65, 1620 (1960).

experiments, at least, the effect of the earth's magnetic
field should be detectable. It is by no means certain
that deviations from thermal equilibrium are unim-

portant in the ionosphere and exosphere, but an
equilibrium theory is necessary in any case before such
deviations can be deduced from observations. The
second aim is a more academic one: Considerable
theoretical work has already been done in the past on
plasma oscillations in a magnetic field for cases in which
collisions can be neglected. These previous papers"
have concentrated mainly on the dispersion relation,
i.e., on finding possible solutions for the frequency co in
the complex plane. The dispersion relation has the
advantage that it gives some information on plasma
oscillations independent of the excitation conditions,
i.e., even when the oscillations are produced by devi-
ations from thermal equilibrium as is the case in most
laboratory experiments. In the present paper, on the
other hand, we derive the actual intensities as a function
of the real frequency variable ~ for a specific case,
namely complete thermodynamic equilibrium. Although
this is only a special case, knowledge of the actual
intensities throws some light on some puzzles encoun-
tered in the study of the dispersion relation alone. In

5 E. P. Gross, Phys. Rev. 82, 232 (1951).
6 I. B. Bernstein, Phys. Rev. 109, 10 (1958).
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particular, we shall consider some apparent discon-
tinuities as the magnetic field goes to zero /Sec. 4(e)]
and the so-called "frequency gaps" which had met
with some criticism~ LSec. 4(c)j. For these reasons we
shall discuss some limiting cases in more detail than
the practical ionospheric applications warrant.

We first define some constants and discuss approxi-
mations to be made. We consider a fully ionized plasma
consisting of electrons of mass m and a single species of
positive ions with mass 3f and atomic charge Z. Let m

be the number particle density of electrons, T the
temperature (the same for electrons and ions), k the
fixed wave vector of the sinusoidal spatial density
variation, 8 the constant magnetic field, and pv —P
the angle between k and B. We define six characteristic
angular frequencies by

frequency spectrum for arbitrary values of the angle p
and the various parameters n, p, Z, and m/M (but
always for m«M, Z 1). In Sec. 3 we consider a few
simple limiting cases, such as P —+7r/2, e~0, and
n —& 0. In Sec. 4 we discuss the special case of /=0,
i.e., propagation direction perpendicular to the magnetic
field. In Sec. 5 we consider some cases for nonzero
values of the angle P.

2. DERIVATION OF THE GENERAL EQUATION

We consider a volume V containing E electrons and
5/Z positive ions. We define the spatial Fourier
transforms of the electron and ion charge densities for
fixed wave vector k by

NIZ

p (t) — eQ e
—ikzi

p (t)= Ze Q e

pp, =k(2~T/m):, co„= (4v.ee /m):, co,=eB/mc,
(1)

pi, =k(2~T/M)', &ov;= (4veZe /M)', pi„=ZeB/Mc Pi(t) =P (t)+P'(t)
(4)

o.= 1/kD= pi„/v2pp„

e= cog/Mg~ 1/kRgq

e;=pp„/co, = (Zm/M) 4 1/kR, .
(3)

We shall carry out calculations for general values of a,
e, and e; but shall assume throughout that A—=eD'))1
and that the effective collision mean free path t DA/lnA
is very large compared with k

—', R„E;, and D. We
consequently shall neglect individual two-particle
collisions completely and consider as infinitesimal the
electrostatic fields produced by the charge density
fluctuations at thermal equilibrium.

In Sec. 2 we derive the general formula for the

71. Oster, Revs. Modern Phys. 32, 141 (1960).

or, is characteristic of electron Doppler broadening
frequencies, i.e., co, is typical of times taken by a
thermal electron to travel a wavelength k ', co„ is the
electron plasma frequency and co. the electron cyclotron
frequency or gyrofrequency. ~,, ~„;, and co„are the
corresponding frequencies for the ions. Another char-
acteristic frequency is kc, the frequency of an electro-
magnetic wave in vacuum of the same wavelength. We
shall assume throughout that kc is very much larger
than all the six frequencies in Eq. (1) and shall omit
completely all terms in 1/kc, i.e., omit the magnetic
induction and Maxwell's displacement current in
Maxwell's equation. Consequently, we shall retain no
retardation effects, no coupling between transverse
and longitudinal oscillations, in short no genuine
magnetohydrodynamic effects.

We define next the Debye length D and electron
gyroradius R, by

D= (zT/4v~e')-:, E,=v,/pi„ (2)

where v, is the electron thermal velocity (with a similar
relation for the ion gyroradius R,). We shall also require
three dimensionless parameters,

where we have taken the positive s direction parallel to
k and s;, Z; refer to the positions of the jth electron
and ion, respectively. Since we are neglecting magnetic
induction and retardation, the electrostatic held K
consists of a superposition of terms for the different
wave vectors k, given by Eq. (7) of I. The k term in
this sum is

Ei, (r, t) = —i(4'/Vk)p, (t)e"*i„ (~)

where i, is the unit vector in the k direction (and real
parts of the right-hand sides are implied in Eqs. (4)
and (5)j.

We are interested in the Laplace transform of p, (t),

Q.(~) =
0()

dt p, (t)e ""+»',

where y is an infinitesimal real positive constant and co

is angular frequency. The standard method of deriving
an expression for Q, (p~) starts from the Boltzmann
equation without collision term, the so-called Vlasov
equation, and such a method was used in I (in the
absence of a magnetic field) and by Bernstein. ' Since
there has been some criticism' of some mathematical
techniques used in the work of Bernstein' and of
Gross, ' we shall use an alternative method of derivation,
leading to the same result.

We start from the equation of motion for a single
electron in the absence of collisions,

i= pi, &&r' —(e/m)E(r, t),

where pi, is a vector of magnitude pp, $Eq. (1)$ and
direction parallel to the constant magnetic field 8. Let
u be the velocity component parallel to B and v the
absolute value of the velocity component in the plane
perpendicular to 8, at time t=0. For the s component
of r(t) we have

s(t) =s„(t)+z'(t), (7)

s„(t)=ut sing+ (v cosP/&v, ) sin(u, t—0)+sp,
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where t& and sp are constants. s„(t) is the solution of the
equation of motion with E replaced by zero, but
satisfying the correct boundary conditions at 3=0.
s'(t) is the solution of the full equation of motion which
satisfies z'=z'=0 at t=0. Let s'(pp) and A((e) be the
Laplace transforms of z'(t) and (e/m) K(r(t), t), respec-
tively, defined analogously to Eq. (6). By using the
identity

where Qt(po) is the Laplace transform of pt(t). The
term involving s' in Eq. (11) then reduces to

J '(kt& costt /pd, ) (Q '—&e,
' sin'ttt)

(4&re/mV)Q:(~) P . (12)
n=—oo 0„'(0 '—(e.')

Let P,(" and F,") be the one-dimensional and two-
dimensional Maxwell distribution functions for elec-
trons at temperature T,

c
a(t)e ""+»tdt= —a(0)+(i&d+y) a(t)e ('"+»tdt

aJ p 0
F (') (u) = (m/2&&Tpr)~ exp( —mu'/2&&T),

Fs(P) (&&) = (mv/2prt&T) exp (—m&&'/2&pT).
(13)

twice, we obtain from the equation of motion the
unique solution

(i&e+y)'r'(&p) = (i(e+y) kk, )& r'((d) —A (co).

This gives

To obtain Q, ((e) we have to sum Eq. (11) over all
electrons, j=i to Ã. In the second term, given by
Eq. (12), we can replace the summation over j by
integrations over the distribution functions. We obtain

(&z& 2')z) (z& „.
(8) N zp

Q, (&p) = ie P— P e '(kzp+n') J (k&& cosset/pp, )Q„'
1=j n=~

where —,'7r —tt is the angle between k and B.
We need an expression for e '~") and make use of

the fact that the electric field R, and hence s'(t), is
extremely small. We use the linearized approximation,
i.e., expand e '~" and carry only the erst two terms.
On using the identity

eta sin&& —g J (a)etnt&
n=—(x)

and Eq. (7), we find

e
—ikz(t) —e zk(zp+at sin—po P J (k&& COSQ/~ )

Xe'"( ' ')t 1—iks'(t)]. (10)

The Laplace transform of this expression is

i Q e—" k+"' )J( kc&&osttt/pp, )fQ„'+ks'(0 )]
n=—oo (11)

0„=(d+ku sintt —tt(d, —iy,

where s'((e) is given in terms of A (&p) by Eq. (8). We
shall have to sum Eq. (11) over all N electrons which
have a random distribution of sp and 8, to lowest order.
s' and A(po) are already infinitesimal and we need
carry in Eq. (11) only those lowest order contributions
to A(&e) which survive after averaging. In taking the
Laplace transform of the electric field to obtain A ((p)
we need carry only the contribution in Eq. (5) for the
given value of the wave vector k and use for e"' in
Eq. (5) the complex conjugate of Eq. (10) with kz'

omitted completely. Substitution into the last term of
Eq. (11) leads to a double summation over u and n'
but only the terms with n =a' will survive the subse-
quent averaging over values of 8. In the last term in
Eq. (11) we can then substitute

A (0 ) s i(4vre/mVk)Q— t (pp)e (k"+"P)J (kt& costtt/po, ),

(pt '(fI '—&e,
2 sin'g) t'k&&

J„'
I

—cost)t& i. (15)
(pz&z )Q,P (0„'—pp, .')

The remainder of the derivation of an explicit
expression for ~Q. (&0) ~' follows along similar lines to
Sec. 3 of paper I:One obtains an expression similar to
our Eq. (14) for Q, and hence an explicit expression for
Qt ——Q,+Q;. From this one obtains an explicit expression
for Q„analogous to Eq. (26) of paper I, which involves
the electron summation over j and u shown in Eq. (14)
plus a similar summation over the N/Z ions. The
square of the modulus of this expression involves a
double sum over particle indices j and j', in analogy
with Eq. (27) of I, as well as a double sum over tt and
e'. We assume that sing is nonzero and fixed and allow

p to tend to zero. We single out the terms with j=j'
and e=n' and can replace the sum over j by an integral
over the distribution functions. As y —&0 these terms
are proportional to y ' since

J
F ( ( ))ud( u+&z&ksulnttt tuz&p 'tp)

,F'()(
Lariat, .

—&p)/k sing)pr/yk sing, (16)

if y&«d, sintt. The remaining terms with j0j' or nate'
tend to a constant limit as y —& 0 and can be neglected.

In analogy with Eq. (28) of paper I one obtains an
explicit expression for the average, under complete
thermodynamic equilibrium, of ~Q.((0) ~', the frequency
spectrum for the intensity of the electron density

+&.(~)Qt(~), (14)

where subscripts j are to be understood for sp, 6 I,
and 'v and

H. ((e)= —Q ~ F,"&(u)du t F, '(())&&d&&

n
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variations with fixed wave vector k. This expression is

~
g.(~)

~

s=~-:Pres/& sing) ~1—H.—H;~-s

&&( ~1—H, ~-'Q X.„,exp( —x„.s)/o~.

+~H, ~'Z P X„;exp(—x„,')/+;}, (17)

where

X .= F,ts&(v)dv J„'(ks cosg/oi, ),
Jo

is simple. For cases of practical interest Z 1 but
M/res))1. In the remaining sections we discuss approxi-
mations obtained for various limiting values of the
parameters tang, n, and e, but always for 3f))m.

We shall usually express integrals of the intensity
distribution ~Q, (oi) ~' over frequency ~ in units of
7rlVe'/y. In Sec. 2 of paper I we had derived expressions
for the total integrated intensity from statistical
mechanics using purely energy considerations. Since
the magnetic field does not contribute to the energy,
the total integrated intensity should be the same with
or without a magnetic field. .

x~g= (soi~ oi)/cea slntjt. (19) 3. SOME SIMPLE LIMITING CASES FOR FINITE 0

H, (oi)= —n' Q X..T ., H;((u)= —Zn' P X„;T„,',

T„,((v) = 1— F."i (u)du o~/Q„
(20)

= 1—(o~/cu, sing) [x„, 'f(x„,) —ill exp( —x s)],

with an equivalent definition for the ion quantity T;.
The variable x„, is defined by Eq. (19) and f(x) is the
tabulated function

f(x) =2x exp( —x') exp(t')dt,
0

(21)

which was graphed in paper I.X „which is independent
of the frequency oi, is defined by Eq. (18) and can be
expressed in terms of the Bessel function I„of the
first kind of imaginary argument,

X„,= exp( —cos'P/2e')1„(cos'P/2e'), (22)

which has been tabulated' extensively. For the ion
quantities x„;, X„;,and T„,, simply replace co„co„and
e by co„, ~„and e,, respectively.

Equation (17), with Eqs. (19) and (20), is our
desired formula for the intensity frequency spectrum,
involving infinite series of tabulated functions. The
shape of the spectrum depends on five dimensionless
parameters tang, n, e, Z, and e/e, = (M/Zm)l. If these
parameters are comparable with unity the series
converge rapidly and numerical evaluation of Eq. (17)

' Trans. Am. Inst. Elec. Engrs. 60, 135 (j.94j.).

and H, is defined by Eq. (15) with similar definitions
for the ion quantities x,, X„,, and H;. Equation (17)
is our desired expression but Eq. (15) for H, can be
simplified: After rearranging terms in the summation
over e and an integration by parts in the I integration,
using the explicit expression in Eq. (13) for F,"&, one
obtains an integrand involving 0„'. On using the
identity J„,'(s) —J„+t'(s)= (2n/s)dJ„'/ds,

and integrating by parts over ~, one obtains finally

(a) We consider some limiting values for the pa-
rameters n and e for a fixed nonzero value of the angle

p, assuming in fact sing))(nz/M) . The limit of n —+0
is particularly simple and corresponds to omitting
electrostatic forces entirely and replacing H, and II,
by zero. The second term in Eq. (17), the "ion compo-
nent, " disappears in this case and we get

~Q, (oi) ~'= (s.&Pe'/~, sing) P X, exp( —x ') (23)
n=—oo

with x„, and X . defined by Eqs. (19) and (22).
Equation (23) had been derived previously and ana-
lyzed in detail by I aaspere. ' The spectrum consists of
a series of broadened lines of widths o&, sing and
spacing re, . If e«sing, the lines overlap strongly and
the spectrum reduces to the Gaussian shape it has in
the absence of a magnetic field. If sing«e«1, the lines
are sharp, but the intensity envelope for the line
spectrum has approximately the same Gaussian shape.
If e))1 most of the intensity resides in a central broad-
ened line of width oi, sin& and the intensity of the
broadened lines at +neo, decreases rapidly with
increasing m.

(b) Another simple limit is obtained when p —&-,vr

for arbitrary values of e and n. In the limit of cosp/e=0
one finds from Eq. (22) that Xs,——Xs,——1 and X„,
=X,=O for I/O. In this case the functions H. (oi)
and H, (o&) in Eq. (20) reduce to the functions G, (re) and
G;(o&), defined in paper I, Eq. (29). Equation (17) for
the frequency spectrum then reduces exactly to Eq.
(28) of paper I, the equivalent expression in the
absence of a magnetic field. This is to be expected
physically when the magnetic field is parallel to the
wave vector since the motion of charges along a line
of force is unaffected by the magnetic field.

(c) We consider next the limit of vanishing magnetic
field, s ~ 0, for fixed values of n and P. More specifi-
cally, we require e,«s«sing. Since c«1 the series over
X„,in Eqs. (17) and (20) converge very slowly and we
require asymptotic expansions in e '. If a number of
terms in these asymptotic expansions are required one

' T. Laaspere, Ph.D. thesis, Cornell University, 1960 (unpub-
lished).
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can use contour integration with the method of steepest
descent, etc. , as used by Gross' and Bernstein. ' We
shall evaluate only the leading term and can use a less
standard but simpler method for this purpose: Over
the important range of integration in Eq. (18) the
argument of the Bessel function J„ is of the order of
e '))1. The Bessel function of large argument and
large order can be approximated by"

J„(s)=cos[fs(tang —p) —m/4](-', s.s sinp) '*, (24)

cosP= n/—s,

if ~fs/s~ (1. If ~ri/s~ &1 and fs))1, s))1 the Bessel
function is extremely small and can be neglected. "
Since fs))1 the factor cost ] in Eq. (24) oscillates
rapidly as s varies and, for substitution into the
integrand of Eq. (18), we can replace its square by the
average value —',. If g(s) is any smoothly and slowly
varying function of s without singularities for s))1 we
can make the replacement E ~-'(s)= 2 X-=1, (28)

g —+0, as well as e~0, is more dificult and will be
discussed in Sec. 4(e). The difliculty for sing((1 lies
in Eq. (25). Although Eq. (24) is a good approximation
when e«1, no matter what p is, Eq. (25) holds only
when g(e)=g(fs+1), where g(u) stands for T„,(co) or
exp( —x„,s). This holds only if e«sing, in which case
the functions T„,of co overlap for adjacent values of e.

(d) We consider next the case of e,«sing but with
e not necessarily small. In this case we can again make
the replacement H, (oi) —+G;(ro) and use Eq. (27) for
the ions, but cannot in general make such replacements
for the electrons. For the first term in Eq. (17) we must
carry out the summations but the second term can be
simplified: According to Eq. (27) this term is most
important in the range re ce, ce, (res/M)'*. Since e&1,
we have co«cs, and, from Eq. (20), T,(ro) can be
replaced by unity for n/0. Using the identity

2 J '(s)a(u) (2 ) ' de a(«os') (25)
n= J()

We substitute Eq. (18) into Eqs. (17) and (20) and
replace the summation over e by the integral in Eq.
(25). This gives a three-dimensional integrali' over u,
n, and cosP for H, (rd). Using the fact that the product
Ff"(u)F'"(n) is simply the three-dimensional Maxwell
distribution function which is spherically symmetrical,
a change of coordinate system gives the general relation

duds F&'i(u)F&'i(s)P J '(ks cosP/ro, )

&y(ku s!ng —Nro„cosg) —+ dt F&'i (t)y(kf), (26)

where y is an arbitrary function. With the use of Eq.
(26) the expression for H, ( )roreduces to Eq. (25),
paper I, for the function G, (ro). The summation appear-
ing explicitly in Eq. (17) can be reduced in a similar
manner leading to

P„X exp (—x„P) —+ exp (—roe/reP), (27)

with a similar expression for the electron quantities.
With these substitutions Eq. (17) reduces exactly to
Eq. (28) of paper I.

Ke have thus derived the physically reasonable
result tha, t, for lixed nonzero angle P, the limit of the
frequency spectrum as e —+0 is identical with the
spectrum for zero magnetic field, &=0. The case of

"G. N. Watson, A Treatise on the Theory of Besset FNnctions
(Cambridge University Press, New York, 1952), Chap. g.

"These statements are incorrect over a narrow range of values
of I,

~

n —s
~
&si, but this narrow range is found to contribute

little to the summations over n and can be neglected.
"The three-dimensional integral is the expression for G, (co) in

terms of a cylindrical polar coordinate system with arbitrary
direction of the axis.

e,s«sin'p))m/M

holds, even if e is larger than unity.

(30)

4. THE LIMIT OF fi —+ 0

In this section we consider the magnetic 6eld, and
hence e and e, )defined in Eq. (3)],as fixed and nonzero
and let the angle P approach zero. The formulas
derived below require for their approximate validity
not merely sing«1 but the more stringent conditions

(nz/M)i«sing«(res/M)e (m/M)ie; (31).
Our derivation of the general equation, Eq. (17),
required that y«co, sing, so we let the infinitesimal
parameter p tend to zero first for fixed p and secondly
let P tend to zero." In this limit we shall obtain a
series of sharp lines. The "central line" at co=0 has

'30ne could also put pe=0 first for fixed y and second let y
tend to zero. The form of the expression derived in this manner
appears to differ from the expression to be derived below. Never-
theless, for all the simple special cases described previouslyfor
P=O LK. E. Salpeter, J. Geophys. Research (to be published)g,
the two expressions give identical results and the two expressions
are probably equivalent.

we derive from Eq. (20)

H (ro) = rr'(1 X—p,f(x—p,)
+iXs, (7r) **ms, exp( —xs,')], (29)

where xs, ——co/ro, sing. Now if, in addition to e,«sing,
we also have (m/M) i«sing, then xs,«1 for the
important range of re ro;. In this case we have H, (ro)
=—ri', the same value as the funct. ion G, (ro) has for

co;«or, . In this case then the second term in Eq.
(17) reduces to the second term in Eq. (34) of paper I,
the so-called "ion component" (which is the dominant
term if rr& 1). This "ion component" is thus unaffected
by the magnetic field as long as the double inequality
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somewhat different properties than the others and we
discuss it first.

) dx I'e(x) = (m)l(1+p') —' (3-')

for any P. By denoting the integrated int. ensity Ip,, in
units of n.3tIe'/y, we find

Ios= Xo.L1+Zn (1 X )] (1+Zn'(1 Xo')
+n'(1 —X )] '(1+Pe') ' (33)

For the second term in Eq. (17) which involves Xp,
we have op op; sing«op, sing and H, reduces further to
—o.2. This term also reduces to a multiple of an expres-
sion of the form I'„(op/oo, sing). The integrated intensity
Ip of this term (in units of mIVe'/y) is found to be

Io,——Xo,Zn4L1+Zn'(1 —Xo,)+a'] '

XL1+(Z+1)~'] '. (34)

If the magnetic field is weak enough so that e,((c(&1
we have Xp,((Xp,«1 and the intensity Ip;+Ip, of the
"central line" is only of the order of Xo, times the total
intensity of the whole spectrum. On the other hand, if
the magnetic field is strong enough so that p&)1 (even
though p; may be smaller than unity) the "central line"
contains the bulk of the total intensity: If e))1 we have
X0,=1, and making this replacement we obtain from
Eqs. (33) a,nd (34)

Ip;+Ip, = (1+Zn') L1+(Z+1)n']—'. (35)

According to Eq. (13) of paper I the right-hand side of
Eq. (35) represents the total intensity of the whole
spectrum and the error in the equality in Eq. (35) is

only of relative order of magnitude (1—Xp,))&1.

(a) The Central Line

We consider the angle g as nonzero and fixed but
extremely small so that Eq. (31) is satisfied. We call
the "central line" the intensity obtained from Eq. (17)
by carrying only the terms with m=0 in the summation
which is shown explicitly. These terms are important
only for frequencies oo op, sing or op, sing, so that Lfrom
Eq. (31)] oo(«p„., oo„. In Eq. (20) each T„, and T„,
with eNO can then be replaced by unity. In this case
H, reduces to the expression in Eq. (29) and H; reduces
to a similar expression. For the first term in Eq. (17)
which involves Xo, we require the frequency range

co, sing))oi, sing and H, reduces further to —n'(1
Xp;). One then finds that this term reduces to a

multiple of I'e, (op/op, sing), where I'e(x) is the function
defined by Eq. (35) of paper I and

p,'= Xo,n'p1+Zn'(1 —Xo,)+n'(1 —Xo,)] '.

In the limit of & ~0 we are interested only in the
integral over frequency op of the intensity ~Q, (p~) ~'

since the frequency line becomes infinitely sharp. From
the work of paper I one can show that

The result that for e))1 most of the intensity resides
in the central line may seem somewhat surprising for
the case o.))1and e;(1:In this case the ion's gyroradius
is larger than the wavelength and the electron charge
density is coupled to that of the ions, and one might
have expected a pattern of width ar; consisting of lines
with spacing co„.This is not the case, however, under
the simplifying approximations we have made through-
out this paper. With the propagation direction k
exactly perpendicular to the magnetic field the electrons
can move no further than an electron gyroradius R, in
this direction, in our approximation. The net ion charge
density is coupled to the electron density to within
distances of the order of the Debye length D and the
ion charge density is thus confined to within distances
of the order of E., or D, which are both smaller than the
wavelength. This condnement of the electrons and ions
depends very sensitively on the approximations made,
and deviations to be expected under practical circum-
stances will be discussed in Sec. 6.

fZ M

+ZX„,
M tPco

=0. (36)

This dispersion relation has been derived previously by
Gross' and by Bernstein. ' Let co=co„be one of the
(real) roots of this dispersion relation. In the numerator
of Eq. (17) we can put II.=1 H, and neglect the-
infinitesimal part $ of (1 EI,, I3~). The num—erato—r is
then found to be proportional to $ itself and the
intensity spectrum in the vicinity of co=co„ is a Lo-
rentzian-shaped line with maximum at co=co„and half-
width proportional to $. In the limit of &~0 the

(b) The General Limit of P -+ 0

We consider now Eq. (17) for opAO as the angle P
decreases towards zero. The factor exp( —x„,o) is very
small unless

~

op —nop.
~

&co, sing. However, in this
narrow frequency range T„, in Eq. (20), and hence H„
is extremely large as g —+0. Since H, occurs only in
the denominator in the factor multiplying exp( —x„,o),
this frequency range gives a vanishingly small contri-
bution to the intensity and we assume ~co

—trop. ~(«o,
)&sing. The factors exp( —x o) are then extremely
small, but so is the imaginary part of the denominator
(1—H, —H, ) and we shall obtain nonzero intensity
only near those frequencies at which the real part of
this denominator vanishes. The same arguments apply
for the terms involving x„, and we also have

~
op —mop. ,

~

))oo, sing.
Each x„, and x„; approaches infinity as p —+ 0 and

the function f in Eq. (20) can be replaced by it.s

asymptotic value of unity. We are interested in those
frequencies at which the real part of (1 H, —II,), —
which we denote by Y, vanishes. By using Eq. (28),
we find

+c
I'(op) —= 1—2n' P X .

n=1 &2 ~2~ 2
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expression $ approaches zero, the spectral line becomes
infinitely sharp and its integrated intensity approaches
a limit independent of the va, lue of $. By denoting this
integrated intensity I, in units of iree'/p, one finds

I„=(1—H )'/n'I"ru

where F'—=dV/Che evaluated at co=o&,.

(37) io

(c) The "Frequency Gaps"

As co is increased by m„ from any value, the function
I'(&u) encounters a singularity once and covers the
region from —~ to + ~. Thus a frequency interval
of =co.; contains one root" of the dispersion relation.
Similarly, there are other roots with a larger spacing
of =co, and we consider these roots first. We assume
e))(m/3II)'* so that these roots occur at frequencies
large compared with co„and ~,. In Eq. (36) we omit
the term involving X; entirely and in Eq. (37) we

replace H; by zero.
As discussed previously by Gross and by Bernstein,

the dispersion relation exhibits "frequency gaps,
" i.e.,

some frequencies near multiples of cu, are never encoun-
tered as roots of the dispersion relation. For instance,
consider e as fixed, allow n to vary from zero to infinity,
and let a, (n) =or./o&. F—or any .value of n there will be
one root a„between is and ++1, where is is any positive
integer. For o.=0 we have a =e and as n increases so
does a (n) but a„approaches a limit, less than ran+1 by
a finite amount, as n —+ ~. If e))1 we can approximate
I„,and the dispersion relation by

I6

IO

8

I 2 3 4 5 6 7 8 9 IO I I l2 l3 I 4 I 5
2, g

FxG. 1. The roots e' of the dispersion relation as a function of
(n'/2e') for s= 2. The diagonal line represents L1+ (a'/2c') j.

"If we do not proceed to the limit p —+ 0, but consider sin@
as nonzero and small compared with unity, Eq. (36) is replaced
by a more complicated expression for T(co) which is unique and
has no singularities. Nevertheless P(co) has large negative minima
and large positive maxima and the roots of the dispersion relation
are very similar to those for @=0 as long as sin&((1. The lines
are no longer infinitely sharp but the integrated intensities are
still approximated closely by Eq. (36).

J 2 3 4 6 8
&'/2. r.

'
FrG. 2. The roots e' of the dispersion relation as a

function of (n'/2c') for e=4.

X„,= Ln, !(2e)'!j '~~1 —(2c') 'j, a—= (o/a&„.,

(
2e& l.

+ + =0
32e4(a' —9)

(38)

For the first few roots, a' is plotted against o,' for &=2
and 4 in Figs. 1 and 2. For e))1 the first frequency gap
lies between a'=4 —(3/2e') and a'=4, the second gap
between a'=9 —(3/4e4) and a'=9, etc. If all but one
inverse power of e' is omitted in Eq. (38), one obtains
only a single approximate root

a '=1+ (n'/2e') co '=a~ '+o~ ' (39)

Of the infinite number of actual roots, there is always
one very close to the value given by Eq. (39) if e is

very large.
For e))1 and a given value of n, the intensity of

each of the infinite number of lines can be obtained
from Eq. (37) by putting H, =O and using Eq. (38)
for I'(oi). We assume at first that the approximate
expression, Eq. (39), does not accidentally give a value
for a very close to an integer. Consider first that root
of the actual dispersion relation, Eq. (38), with a close
to a . Since e))1, all terms in the series in square
brackets for I' in Eq. (38) are small except the first
one, and the same is true of the derivative V'. Carrying
only the first term in this series for I"' and using
Eqs. (37) and (39), we obtain for the integrated
intensity of the two symmetric lines at oi= &co, (in
units of mlVe'/y)

(ns+ 2 es)—i (40)

If n)) e (in addition to e))1), the frequency and intensity
of this pair of lines reduces to that of the plasma
frequency lines in the absence of a magnetic field.
Consider next the line corresponding to any of the
other roots of Eq. (38). In this case a is extremely
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close to some integer n and the term involving (a' —n') '
in the series in Eq. (38) is comparable with the first
term. In the equivalent series for I" the corresponding
term involves (u' —e') ' and is very much larger than
the first term. From Eq. (37) the intensity of all these
other lines is then negligibly small compared with I
in Eq. (40).

Consider now those special values of n/e for which
the solution a, of Eq. (39) lies very close to an integer
e, i.e., a, lies in '(or very near) one of the "frequency
gaps. "The exact dispersion relation then has two roots
for a close to a, and e, one just below and the other
just above the "frequency gap" near m. In these cases
~a —m~ is sufficiently small so that the term involving
(a' —I') ' in the series for F' is comparable with the
6rst term, whereas the term involving (u' —e') ' in the
series for F is much smaller than the first term. The
two lines on either side of the frequency gap then have
comparable intensities, each somewhat smaller than I,
in Eq. (40).

Oster' has questioned the existence of the "frequency
gaps" found by previous workers' ' on the grounds of
some alleged ambiguities in the derivation when &=0
and a equals an integer, but the different method of the
present paper also leads to these gaps. Furthermore,
essentially the same gaps are obtained (although the
lines are not infinitely sharp) as long as a&, sing is small
compared with the width of a frequency gap —and the
intensity function is unique and divergence-free for any
nonzero P. Although the "frequency gaps" exist, they
do not lead to any discontinuities in the frequency
spectrum as 0. is varied for constant e. Consider the
average of frequency over all the lines with the line
intensity as weighting function. In general only one
line is prominent and the average is close to ~,a, (n).
When a, as a function of n crosses a "frequency gap"
the intensity of the line below the gap decreases
continuously whereas the intensity of the line above
increases. As a consequence the "frequency average"
is a continuous function of o. and always close to a,
(all for e))1).

(d) The "Ion Resonance" for Large e

In the preceding subsection we have analyzed the
dispersion relation, Eq. (36), for frequencies ~&~,))&u„,
co;. For this frequency range we had omitted the second
series involving X; in Eq. (36) entirely, but now we
consider lower frequencies co&~, and carry the terms
in I„;.We assume at the rnornent that c))1, replace
Xi, by (2e) ' according to Eq. (38), and replace X,
by zero for e& 1. The dispersion relation has an infinite
number of roots but, in this frequency range also, all
roots but one (or a few) occur a,t frequencies extremely
close to multiples of co„(if e))1) and have very low
intensities. Ke assume n))1 and shall find that the roots
with appreciable intensity occur for frequencies ~ much
larger than or; and co„, no matter what the value of e;.

In the denominator of the term multiplying X; in
Eq. (36) we then replace (co' —n'~„») by u'.

For X, defined in analogy with Eq. (22), one can
easily derive. the general Bessel function identity

rPX„,= cos'P/4e '
n=l

(41)

which holds for any value of e;. Sy using these approxi-
mations and Eqs. (3) and (41), the dispersion relation
reduces to

Kith the same approximations one easily finds for the
intensity I„of the pair of lines at co= &co„, from Kq.
(37),

I„=Q» (~»+ 2 g&)
—i (2/2)

—i (44)

As in the previous subsection our approximation
breaks down if co„happens to be very close to a multiple
of ~„and two lines would be obtained instead of one.
For e))1 this happens only over very narrow frequency
ranges. Some results for e 1 will be discussed in Sec.
4(f).

The physical significance of the resonance lines at
~, is seen most easily if c))o,))1, in which case co„

reduces to M„,= (m/M)'co~, the plasma frequency for
ions imbedded in a fixed background of negative charge.
This comes about in our approximation because the
electrons are confined to distances of about an electron
gyroradius in the direction perpendicular to the mag-
netic field. As for the "central line, " the "ion resonance"
line at = &co„ is very sensitive to deviations from our
simple approximations, caused by electron collisions,
etc. (see Sec. 6).

(e) The Limit of z —+0

For any nonzero value of the angle @ we have shown
in Sec. 2 that the frequency spectrum reduces to the
spectrum without a magnetic field in the limit ~ —& 0,
as is to be expected on physical grounds even if we
afterwards allow p to tend to zero. A seemingly different
limit is obtained if we first put &=0 and afterwards
take the limit e —+0. As has been pointed out previ-
ously, ' this limiting procedure corresponds to a "set of
measure zero" of angles since we require sin&((e for its
validity. This case is nevertheless of academic interest
since a study of the general dispersion relation alone
seems to imply contradictory results for the two
limiting procedures: For &=0 the roots are complex

1—(n'/2e') ((a' —1) '+ (m/Ma') j=0, a—=(u/cu, . (42)

With m«M the only root for
~

a
(
(1occurs for

~
u

~
&&1,

and replacing (a' —1) by —1 this root occurs at a
frequency given by

62~2 ~ (y2 rpg ~ 2x~p2
~„»=(o; =—co. » =— —. (43)

~2+ 2E2 m ~2+262 ~ ~ 2+~ 2
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and the imaginary (damping) term remains finite even
as P ~ 0. For @=0 the roots are real (infinitely sharp
lines) and remain so as e —+ 0. For the explicit case of
thermal equilibrium discussed in the present paper,
we can now show that the same physical frequency
spectrum is in fact obtained by the two limiting
procedures.

For &=0 we are dealing with a line spectrum but the
spacing of the lines is of order ~, or cv„which tends to
zero as e does. In this limit the line spectrum is physi-
cally indistinguishable from a continuous spectrum and
we need the envelope to the line spectrum in this
limit, as obtained from Eq. (37). We merely outline
the derivation: We need simplified expressions for
V=1 H, H,—in E—q. (36), in analogy with Eq. (25)
but with g(zz) replaced by the singular function (a—zz) '.
For such a singular function the terms in the summation
with e fairly close to a have to be treated separately.
Otherwise making similar approximations we find,
instead of Eq. (25), in the limit of very large a and s,

P I„'(s)(zz—a) '-+ (2zr) '[R+I cote.aj
n=—~

f/2 1l

dP(s cosP a+i—y) ', (-45)X
Jp

where R and I denote the real and imaginary parts of
the integral. With H, given by the first series in Eq.
(36) and using Eqs. (18) and (45), one finds for a ~0

H, —& G,i~i+G &'& cotzra, a=co/a)„(46)
where 6, is the function of co defined in paper I Eq.
(25), and (R), (I) denote real and imaginary part.
One obtains an equivalent expression for H;. As e ~ 0
we also have M. —+0 and in evaluating the derivative
I" we need only carry the derivative of cotta. On
substituting into Eq. (37) one finds, after some algebra,
that the intensity I„of the line spectrum (after smooth-
ing over the infinitesimally small frequency range
between lines) reduces to the intensity of the continuous
spectrum in the absence of a magnetic field, which was
described in paper I.

(f) The "Ion Resonance" for Small e;

In Sec. 4(d) we found a single pair of "ion resonance"
lines at frequency &o&„, given by Eq. (43), if e&)1. In
Sec. 4(e) we found a closely spaced line spectrum whose
envelope is the "ion component" of the field-free
continuous spectrum, if &&1. The intermediate region
of (zzz/M)'*&(~(((M/zzz) & can be investigated as follows:
We consider only co&(a&, (but disregard the central line
&v=0) and can replace H, by —n'(1 —Xo,). Since e,(&1
we replace EI, by the expression equivalent to Eq.
(46). Substituting into Eq. (37) then gives as envelope
to the line spectrum a multiple of the function I'p(ar/~;),
defined in Eq. (35) of paper I, with

P'=Zn'[1+cP(1 —Xo,)j '. (47)

By using Eq. (32), one finds for the total integrated
intensity I; of this part of the spectrum

I,=P4(1—Xo )'(P'+1) '. (48)

If e&(1 then Xp QQ1 and, if we omit Xp, altogether
in Eqs. (47) and (48), we have again the field-free
"ion component" which is almost a Gaussian curve if
o))1 and an almost Rat-topped broad curve if n))1.
If e 1 then 1—Xp, is somewhat, but not very much,
smaller than unity and P is slightly larger than for the
field-free case. If e is appreciably larger than unity,
then 1—Xo, can be approximated by (2e') ' and P is
then appreciably larger than unity if o.))1.In this case
1"8 is a fairly sharply peaked function with small width
and the maxima occur at frequencies near &or„. If 6

(as well as n) is very much larger than unity then also
P))1. The width of I'p is then much less still than the
spacing or., of the line spectrum and we have a single
pair of lines, as found in Sec. 4(d).

n)&1; (zzz/M) '«e;& 1, (49)

from which e))1 follows. In Sec. 4 we have seen that
the spectrum is essentially that for &=0 if the inequality
in Eq. (31) holds. One can also show that the less
stringent single inequality sing(((zzz/M)'* is in fact
sufficient. Some aspects of the spectrum change radi-
cally when this inequality is violated. This change is
most marked for the "ion component" and we discuss
this first.

(a) The "Normal Ion Component"

We now return to the general expression, Eq. (17),
and denote by "normal ion component" the spectrum
obtained from the second series of terms (involvin. g
X„,) in Eq. (17) in the restricted frequency range
~~~ &co,&~„.Consider first the term with zz=0 which
contributes to the "central line" discussed in Sec. 4(a).
It can be shown easily that Eq. (34) is a good approxi-
mation to the intensity Io, as long as sing(&e, even if
sing is not smaller than (zzz/M)'*. For Z=1, n&)1 this
expression reduces to Io; [Xo~/2(2 —Xoq)] comp——ared
with a total intensity of —,

' for the whole spectrum.
Consider next the terms involving X; with m~0 in

this frequency range and assume again sing((e, . In this
region of co and g the function H; does not. depend very
sensitively on the relation between g and (zzz/M)'*,

which is much less than e,. However, the function H,
is given by Eq. (29) which depends quite strongly on
the value of xo,. If sing(&(zzz/M)& we have xo.))1 over
the frequency range in question, —H, is much smaller
than 0.' and there is very little intensity in the frequency

S. SOME CASES FOR NONZERO P

We shall consider only some cases for nonzero values
of the angle g. We first of all restrict ourselves to such
values of e and of the magnetic field so that
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TABLE I. Frequency or„ for the first few lines in the "normal ion
spectrum, " in units of or„..

0.5
1

1.15
1.14

2.18
2.04

3.'10

3.01
4.03 5.01

range ~~~ &ar, except for the central line. However, if
sin@))(m/M)'* we have xo,«1 and H, can be replaced
by —n'.

Since sing«e, the imaginary part of H; is small and
we get a series of fairly sharp lines and methods similar
to those of Sec. 4(b) can be used. 'However, with

H, = —o,' the dispersion relation is given by

instead of Kq. (36). If the double inequality

Y(co) = 1—n'(1 —2Z P X .rPar '(co' —e'&u ') ')=0 (50)
n=l

and the intensity of each line, other than the central
one, is smaller than in the region of Eq. (51). For
sing(&(m/M)' only the central line survives and the
value of /0; is unchanged. It should be remembered
that there is an additional contribution Io, to the
central line intensity, discussed in Sec. 4(a). For sing
(&(m/M)* this intensity is given by Eq. (33), but this
intensity decreases as sing increases and is negligible if
sing))(m/M) l.

The physical reason for this dependence on the ratio
sing/(m/M)' is as follows. The effective component of
the thermal drift velocity of the electrons in the
direction of the propagation vector is of order &u, sing
since the electron's gyroradius is much smaller than
the wavelength. On the other hand, the ion's gyroradius
is comparable with or larger than the wavelength, so
that the effective thermal drift velocity of the ions is of
order co; co, (m/M)'. For the spectrum at low fre-
quencies (and for the "resonance lines" discussed in
the next subsection) it is important which of these two
effective drift velocities is the larger.

TABLE II. Intensities in the "normal ion spectrum"
(multiplied by 2).

0.5
1

IOi

0.183
0.475

0.169
0.213

0.145
0.045

0.075
0.004

I4t'

0.015 0.003

holds, the frequency of the centers of the fairly sharp
lines in the frequency region ~a&t &~; is then given by
the roots of this dispersion relation. The integrated
intensity of each line is again given by Eq. (37).

In Table I we give the values of co„ for the 6rst few
lines for e;=0.5 and 1 with e))1 and Z=1. As v in-

creases the value of cv„approaches v~„more and more
closely. In Table II we give the intensity I, of the line
at +co„(the line at —co„has the same intensity)
together with the intensity Io;———',Xo;(2—Xo,) ' for
the central line. For all values of |.; does the intensity
fall off very rapidly as co„becomes Inuch larger than
both ~; and +„.In our approximation of n))1 the sum
of the intensities of these lines (including those at —co,)
equals —'„ the total intensity of the whole spectrum. If
e;))1 most of the intensity is in the central line. For
e;=0.5 the intensity envelope to the line spectrum is
almost Rat-topped, and for e, appreciably less than 0.5
we have many lines with spacing very dose to co„and
with intensity envelope very close to the field-free ion
component of the spectrum, as was shown in Sec. 3(d).

The line spectrum discussed above is almost inde-
pendent of p as long as it satisfies the double inequality
in Eq. (51) (which is possible only when e&)1). As sing
approaches e, the lines broaden and begin to overlap,
and for sing))e; (if e,&(1) the spectrum is continuous
and identical with the field-free spectrum. When sing

(m/M)' the function H, is somewhat less tha—n n'

(b) The Plasma Oscillation and
"Resonance" Line

In the preceding subsection we have seen that the
main part of the spectrum is concentrated into a
frequency range ~a&~ &co; if both n and e are large
compared with unity. However, there are also some
components of the spectrum at frequencies much larger
than ~; whose total intensity is small but which may
still be of interest since they occur in the form of a
few sharp lines. We now consider this part of the
spectrum for arbitrary values of the angle p.

The expression for H, in Kq. (20) can be simplified
if

~
~

~

))co;. The values of X„;are negligibly small unless
e~„&co; and we can expand in powers of the small
quantity m~„/a&. We then also have x„;))1 for the
important range of values of e, the function f(x;) can
be replaced by (1—(2x„P) ') and the imaginary part
of H; is very small. By keeping only the lowest order
nonvanishing terms in the expansion in powers of
n~d„/cv and using the Bessel function identities, Eqs.
(28) and (41), we find for the real part of H,

H,'~i =Zn'(of/2oP (52)

independent of the value of P.
Since e))1 we can replace Xo, by P1—(cos'p/2e'))

and Xi, by cos'p/4e', according to Eq. (38), and omit
X„, with m)1 altogether in Eq. (20). We shall find
that we are interested only in frequencies co such that
both cv and

~
co

~

—&u, are much larger than a&, sing. This
is the case for any value of p as long as n&)1 and c))1.
We can then replace f(xo,) by $1—(2xoP) ') and f(ai, )
by unity. The imaginary part of H, is then very small,
for any angle p, and its real part is given by

H " = (n'/2e') (a' —sin'P)/a'(a' —1), (53)
where a= co/~, .
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(2a'=( 1+
2~')

( n2 P n2 ( te
1+ )

—2—
]
—+sin'@

(
. (54)

2~') e' EM )
The intensity of each of the two pairs of lines is given
by Eq. (37) with the expression in Eq. (54) for Y(&u).

Of the two solutions for a', one is always larger than
unity and one smaller than unity. If p is close to m/2,
one root is close to a'=n'/2e', i.e., ~= K&u„, the plasma
frequency in the absence of a magnetic Beld. In this
case the other root is close to a'=1, V' in Eq. (37) is
very large, and the corresponding intensity is very
small. If either sing«1 or e«n or both, the square
root in Eq. (54) can be expanded and the two roots
simplify. One root is then given by

aP=a& '+~ ' cos'&+sin'P ~ '/(&u '+&u ') (55)

which corresponds to a plasma oscillation in the
presence of a magnetic field. For sing«1 the frequency
and intensity of this pair of lines reduce to the expres-
sions given in Eqs. (39) and (40).

The other root is given by

~„'=
t (m/M)+sin'Qj&u, 'cu '/(co, '+a& ') (56)

and its intensity by

I ——
2g~(n~+2g~)

sin'P ) 2e'q -'
~1+

~
. (57)

sin'p+ (m/M) & n' )
Unlike the plasma oscillation line, this "resonance line"
changes its character depending on whether sin'p is
larger or smaller than m/M, for the physical reasons
discussed in the preceding subsection. If sin'g«m/M
the results reduce to those of Sec. 4(d). If (nz/M)
«sin'g«1 the resonance frequency in Fq. (56) becomes
independent of the ion mass M and the intensity J„ is
given approximately by

I,.=2&'/(F(n'+2e').

6. DISCUSSION

(58)

The cases likely to be encountered in the near future
in ionospheric radar backscatter fall into one of two
categories. For the Lincoln Laboratories and the

Since the imaginary parts of H, and H, are both
small we obtain very narrow lines at frequencies given
by the roots of a real dispersion relation. In our approxi-
mation the dispersion relation has only two roots for
a', which are given (after dropping a small term in
a'm/M) by

n' cos'p (m/M)+sin'@
+ — =0, a=co/cu„.

2&2 82—1 8

proposed Puerto Rico experiments with rather high
radar frequencies the angle @ is not extremely small,
the parameter e is slightly larger than unity (e,«1),
and the parameter n somewhat larger than e. In such
cases the frequency spectrum to be expected is rela-
tively straightforward: The main part of the spectrum
is essentially the same as the "ion component" in the
absence of a magnetic field. The fairly weak "plasma
oscillation" lines occur not at &~„but at the slightly
modified frequencies given by Eq. (55). In addition we
have a fairly weak pair of "resonance lines" at fre-
quencies &&a„given by Eq. (57) with intensity given
by Eq. (58). This pair of lines is absent in the absence
of a magnetic held.

Another class of proposed experiments deals with
very small values of the angle p, i.e. , radar beam almost
perpendicular to the magnetic Geld, and uses low
enough radar frequencies so that n and e are both very
much larger than unity and e, only slightly less than
unity. In this case the "plasma oscillation" lines and
the "resonance lines" discussed in Secs. 4(d) and 5(b)
are very weak. If sin'p, although much smaller than
unity, is larger than the mass ratio m/M, the bulk of
the spectrum is as discussed in Sec. 5(a). For &=0 the
bulk of the spectrum would reside in the "central line"
discussed in Sec. 4(a), if all the approximations made
in this paper were strictly valid. In practice, however,
the following complications may arise.

In ionospheric radar backscatter experiments we are
dealing with a wave-pulse of finite length and width
and thus a finite volume V for which the radar signal
measures the Fourier components of the electron charge
density fluctuations. There is then a certain spread,
not only in the absolute value but also the direction of
the propagation vector k. This results in a certain
spread in the value of sing which is very small compared
to unity (since very many wavelengths are contained
in the volume V), but not necessarily smaller than
(m/M)'.

Even if the spread in the angle P is negligibly small,
we have to consider the eGect of electron collisions
which we have neglected throughout this paper. YVe

are considering cases where the collision mean free
path / is large compared with all the linear dimensions
such as wavelength, Debye length, and ion gyroradius
R;. For most components of the spectrum Lincluding
the discussion of the "frequency gaps" in Sec. 4(c)j
this is sufFicient to justify the complete neglect of
collisions, but our treatment of the "central line" Land
the "resonance lines" in Secs. 4(d) and 5(b)j requires
more stringent inequalities: Our treatment for &=0
requires that the effective mobility of the electrons in
the propagation direction k be less than the thermal
velocity of the ions. After each collision an electron can
move its position along the k direction by a distance
of the order of an electron gyroradius R,. By a random
walk process, the collisions then enable an electron to
drift along the k direction even though this direction



1674 E. E. SAL PETE R

is perpendicular to the magnetic field. In the absence
of neutral atoms the collision mean free path / is of
order DA/1nA, where A. =eD'. We are assuming through-
out that A))1, but for the electron mobility to be less
than the ion mobility we require the more stringent
inequality

(e'/n) h./in')) (M/m) l. (59)

If this inequality is not satisfied, the results are more
complicated than the results for &=0 derived in this
paper but should be qualitatively similar to our results
for (m/M) «sin'P«1.

Because A))1 we have used the random phase
approximation throughout this paper and neglected
any coupling with Fourier components of the density
Auctuations with propagation vectors different from
the constant k. This coupling is indeed weak but does
produce weak electric fields in directions other than k
which can, in the presence of the magnetic field, cause
a slow drift of the electrons in the k direction. This
slow electron drift will also affect the "central line"
unless A is sufficiently large for the inequality in Eq.
(59) to hold.

If the spread of sin& around zero is sufficiently small
and if A is su%ciently large, most of the frequency
spectrum is contained in the very sharp "central line. "

This implies that both the electron and ion density
fluctuations in a direction perpendicular to the magnetic
field cannot move through distances much larger than
the Debye length D or the (small) electron gyroradius
R,. It should be remembered that we are dealing with
density fluctuations with a rather special geometry,
which would not necessarily apply to macroscopic
density variations in the magnetic containment prob-
lem, say: The setup of a radar backscatter experiment
selects out of all possible density fluctuations only
sinusoidal ones, with a definite propagation vector k,
which extend over very many wavelengths (the width
of the radar beam) in directions perpendicular to k.
"End eGects, " which may be of importance in the
magnetic containment of macroscopic density variations
with more complicated geometry, can be neglected in
our case.
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