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Stark Broadening of Hydrogenic Ion Lines in a Plasma*
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The frequency distributions of the ionized helium lines at 4686 A and 3203 A broadened by the local Gelds
of both ions and electrons in a plasma are calculated in the classical path approximation, which is shown to
be always applicable. General formulas are developed for the Stark proFiles of lines from multiply ionized
hydrogenic systems, and the validity domains of the impact and quasi-static approximation for electron
and ion broadening are delineated. The results are compared with the Holtsmark theory and an approxi-
mation for high series members.

INTRODUCTION
' 'N a series of papers the Stark broadening by local
~ ~ fields from ions and electrons in a plasma has been
calculated for the most important hydrogen' and
neutral helium' lines and for high series members of
hydrogenlike spectra' using a generalized impact
theory' ' to describe the electron effects. In these
calculations the electrons were assumed to follow
straight classical paths, but the usual adiabatic ap-
proximation was not made. Furthermore, except for
Hn, the electron broadening of the lower states of the
various hydrogen lines was neglected.

The latter approximation will not be made here, '
and therefore the impact broadening of lines with
highly excited upper and lower states like that of the
strong Hen line at 4686 A can now be obtained with
equal accuracy. New calculations for the HP line of
hydrogen give only slightly diGerent profiles, which
further justifies neglecting the impact broadening of
the lower state for the higher members of the Balmer
series in reference 1.

Instead of the straight classical path, hyperbolic
trajectories must be used to calculate the impact
broadening of ion lines. This will be shown to yield
practically the same results for hydrogenic lines as the
straight classical path calculations, thus confirming the
approximate formulas for the impact broadening of
higher hydrogenic lines given in reference 3.

The classical path approximation turns out to be
valid even for lines from high-s hydrogenic systems,
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i.e., a completely quantum mechanical calculation
yields the same answer, if carried through with the
corresponding approximations. It will be shown that
this is also the case for most nonhydrogenic lines.

At high densities the broadening by ions can always
be calculated with the quasi-static approximation, but
at lower densities a transition into the impact domain
may occur before the Doppler broadening becomes
significant. However, the two extreme approximations
for the Stark broadening overlap smoothly, and there-
fore the uncertainties in the region, where none of them
is applicable, are not very large.

Correlations of ions 'contributing to the quasi-static
broadening, shielding of their fields by the electrons,
and interactions between the emitting and broadening
ions will be taken into account in the detailed calcu-
lations for ionized helium lines following Baranger and
Mozer, ' ' and the relative importance of these effects
for higher s lines will be discussed.

For the electron broadening the impact approxi-
mation is valid except at very high densities. But
impact and quasi-static theory give almost the same
answer in the transition region, and again the over-all
accuracy of the profiles should not be seriously impaired
by this difficulty.

IMPACT BROADENING

If the impact approximation is valid, i,e., at high
perturber velocities and low densities, the profile of a
line arising from transitions between any of the sub-
levels n', 0,", of a group a of closely spaced levels to
any of the sublevels p', p" of another group b can be
expressed in terms of the matrix elements of the
operator (the * means complex, not Hermitian,
conjugate)

4.s=—Ps MLS.t(0)S»*(0)—1j (1)

)see, e.g., Eq. (7) of reference 1, where 5 t(0) was
called T„j Here I'; is the frequency of collisions of

7 M. Baranger and B. Mozer, Phys. Rev. 115, 521 (1959).
B. Mozer and M. Baranger, Phys. Rev. 118, 626 (1960).
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type j; the S„(0) and S»(0) are the S matrices for
collisions taking place at time t=0 with the atom or
ion being in the a or b state, respectively. With the
classical path approximation and the usual perturbation
expansion, (1) becomes to the first nonvanishing order'

g, h
——2zrvX dp p{S,(0)Sh*(0)—1}

(z)z /+"
dt ea Ha t//h P(t) e 'iHg t/lh-

t, p&

dt~ eaHat'/hl/ (t~)e aHat'/—h

dt ezHa«hP' (t)e aHatlh—

zzz'd'r(t)/dt'= &(s—1)e'r(t)
~
r(t)

~
(4)

(The principal ions contributing to the impact broad-
ening are hydrogen ions at extremely high tempera-
tures, where only high-s line radiation exists. Therefore,
one can usually neglect the motion of the emitting ion. )
With (3) and (4) and omitting the exponentials and
higher order terms, (2) can finally be written as

electron impact broadening is only important for con-
ditions where the tt-matrix elements are of the same
order as the matrix elements of H, h/5, which include
the quasi-static perturbation and therefore determine
the quasi-static shifts from the ion fields, and also
occur in the exponents.

To calculate the time integrals in (2), the equation
of motion of the perturber (mass zzz'; charge e) in the
field of the emitting ion with net charge (s—1)e must
be introduced:

e aEEZ«hV 8(t)eiHgt/h
zzz zz

dpp
J E e'zzzs(s —1))

+ I dt '"h«hV, *(t—) '~~'/h ( /a+Cl

X/ JE.

d'r(t')d'r(t)
dt R. dt' R..

dtz „dt"
dt~ e aHh('/hl/ 4—(t~)east'/h (2)b

+" d'r(t)—t'
dtR.

t'
dt R,

Jdt'

d'r(t')

t
+" d'r(t) /' d'r(t') )+ dt Rh

~

dt'Rh i, (5)
dtz ~ . dt'z j

where ~, X, and p are the perturber velocity, density,
and impact parameter, V, ~ the perturbation, and H+, g

the unperturbed Hamiltonian. The perturbation Hamil-
tonian is, for distant collisions, given by the dip
term

U. , h(t) = ae'r. h. r(t)
~
r(t)

~

—',

ole
where the matrix elements of R, , h are now those for
hydrogen in atomic units. The time integrals yield

3

er, , ~ being the dipole moment of the emitting atom or
ion and r(t) the radius vector of the perturber, which
is assumed to be singly charged. Since V, , &(t) is an
odd function of the perturber coordinates, only even
terms in the perturbation expansion contribute to the
average over angles in. (2), which is indicated by { }.

If all perturbers can be treated by the impact ap-
proximation, the exponentials in (2) are equal to 1,
because in hydrogenic systems the a and b levels are
completely degenerate. But also in cases where the ion
broadening is quasi-static and thus removes the de-
generacy, the exponentials may be replaced by 1, if
for electrons the impact theory is valid. This follows
from the usual validity criterion for the impact approxi-
ma, tion )(n' )p ~

n")
) p/v&&1, if one realizes that the

'In an earlier version of this paper the cross term in a, b
was erroneously left out, as was pointed out to the authors by
M. Baranger. This term had already been considered in reference
6. Its importance is minimized if, as in the present calculations,
parabolic wave functions are used. In that case it affects even
the line profile of the Hen 4686 A line only by 5%, i.e., only
to a negligible extent,

2 5$ O'v

sin(-,'n)
3 e'zzzs(s —1)

X(R. R.—2R, Rh+Rh Rh), (6)
if one uses

dr/dt( ~)=v, dr/dt(+—~)= v cosn+ (v/p)g sinn,

{v,p„}=0, {v,v„}=-',S.„vz, and {p.p„}=-',S.„pz.

The p integral in (5) can be carried through between a
maximum and minimum impact parameter with the
relation between impact parameter and scattering
angle,

(s—1)e' cos(-', n)
P=

zzz'v' sin(-', n)

i.e., finally

4m. ( iz )' (sin(-,'n, ))
3v L zzzs) ( sin( —'n;„)&

X(R, R,—2R, .Rh+Rh. Rh). (8)
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The smallest scattering angle will correspond to an
impact parameter of the order of the Debye radius pD
or the mean distance rp=((42r/3)E] ', whichever is
larger. (For rp) pD the Debye theory is invalid, and by
cutting off at ro one then only counts the closest of
several simultaneous impacts. ) Equation (7) yields
accordingly

(z—1)e' ( (z—1)e') '
sin(-,'-n;„)= 1+~—

m V pmax ™2pmax~
(9)

If the perturbation theory breaks down for large
angles, n, must be chosen in such a way that the
absolute value of the first contributing term in the
expansion for the matrix elements of 5;(0)Sb;*(0)does
not exceed 1, which gives with (6) and using (a)' for a
typical matrix element of R, .R,—2R, Rb+Rb Rb

(3~ '* epnbz(z —1)
sin(-,'n

E 2) m'I'bva2
(10a)

In situations where the classical path approximation
breaks down erst, impact parameters smaller than the
de Broglie wavelength must be excluded (see the
Appendix for further discussion), and one should use
instead of (10a)

Av

sin(22n, „a.) = 1+~ (
=1.

E (z—1)e2)
(10b)

This follows from (7) with the requirement n2'vp;„=22,
if one recognizes that typical electron velocities are
v=3&(10'z $cm sec '], because electron temperatures
have to be of the order of z' Lev] for sufficient ionization
and excitation. But sin(2n, „)= 1 is obviously identical
with the limit of the classical path theory, and for s~&2
one can accordingly use the latter to calculate the weak
collision contribution to the impact broadening of
hydrogenic lines. The same conclusion had already
been reached for hydrogen lines' (a quantum mechanical
calculation for this case is carried through in the Ap-
pendix). It also holds for most nonhydrogenic lines,
because for small impact parameters (corresponding to
short durations of the perturbations), where one might
expect the classical path approximation to break down,
the hydrogenic formulas are usually applicable, since
the exponentials in (2) can then almost always be
neglected. In all these cases only the strong collision
contribution (p(p;„) may have to be calculated by a
completely quantum mechanical theory. This con-
tribution is of the order m.eTp; ' with p, ;„corre-
sponding to o.,„, . It is negligible for hydrogenic lines
if in/sin(pn, „)/sin( '2a;„)] is large compared to 1 in
cases where e„, (m and zero for o,„,„=x.

That in the impact domain the logarithm will

usually be large compared to 1 in the first case can be
seen from (9) and (10a) which yield for small a

(low densities)

»n(&&max) f 3) * ™pmaxz

sin(-2'n; ) E2) ha2
))&.

A(o p, Aa)At

1- ) e2nbz(z —1)q
'-

X -1—
i

(-;)-:
nb'22va2

n2vp, ."((z—1)e2) '
+») (-')* 1+(, ) I I, (1»)

Aa2 & nz'v2p ..)
and for (2)'epnbz(z —1)/(n2'Avap)) 1:

4~ f
Aqp

y, b
————Ã~

~
(R, R,—2R, Rb+Rb Rb)

3v & nbz]

(nb'v2p, . ( (z—1)e2) ' l)
X»/ 1+(, I (, (»b)

( (z—1)e2 (n2'vpp, ~ )
if one adds an estimate for the strong collision term
(2rEvp; ').

These g, b must still be averaged over the velocity
distribution. It turns out that the velocities are usually
in the range where (11a) is valid, and comparison with
Eq. (21) in reference 1 (in this equation the strong
collision term was neglected) shows that the same
equation also applies to hydrogen (z=1). The second
factor under the logarithm in (11a) is normally close

(A&u=Aa2/(nbp, 'z) is a typical value of the quasi-
static splitting and At= p, /v is -characteristic for the
duration of a collision, and finally A~At is much smaller
than 1 in the impact domain).

The only approximation whose validity remains to
be checked is the use of the dipole interaction in (3).
It will be adequate if only values of

~
r(t)

~
larger than

a252/(znbe2), the Bohr radius of the upper state, con-
tribute significantly. This was shown to be the case for
hydrogen' (z=1). For z)1 the distance of closest
approach for electrons is shorter because of the Coulomb
attraction. This effect is, however, compensated by the
fact that the electrons will for the same reason only
spend a shorter time near the perturbed ion for any
given impact parameter. Accordingly this approxi-
mation is also expected to be valid for the evaluation
of the p operator for high-z hydrogenic systems Lob-
viously (3) is a very good approximation for impact
broadening ions]. That the choice of the dipole inter-
action does not introduce serious errors was already
suggested by the fact that no cutoff was necessary in
situations where (10b) applies.

From (8), (9), and (10a) or (10b) follows finally for
the P operator which describes the impact broadening
of hydrogenic lines for (-', ) 'e2nbz(z —1)/(nb'Ave) (1:

4~ t hy2
y.b= E~ ~

—(R—.R,—2R. Rb+Rb Rb)
& mz&
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to 1 (also for s) 1), i.e., the hydrogen formula can be
used in most cases to calculate the weak collision
contribution to the impact broadening of hydrogenic
ion lines, and the Coulomb interactions between emit-
ting ions and perturbers have no significant effect on
the impact broadening, especially if one realizes the
uncertainties in the choice of p, .

1V))(sms/5gsk)'. (12)

Then the quasi-static (half) half-width of a line will be

Ace =5 (g'k/sm)E-: (13)

using the estimates in reference 3 (where g and b are
interchanged) for the matrix elements and neglecting
the broadening of the lower states and interactions
between the perturbers.

From this relation follows an approximate value for
the maximum density E,„at which a discrete line
can. be observed (Inglis-Teller relation" ), by equating
hen, with half the distance of two neighboring hydro-
genic lines in the same series,

QUASI-STATIC BROADENING

The perturber motion can be neglected at high
densities and low temperatures, if the frequency char-
acterizing the perturbation is much smaller than a
typical value of the quasi-static splitting SAEig /(ms),
i.e., if

field of the emitting ion at the mean distance is of the
same order as its kinetic energy, i.e., if

(s—1)e'
t

r, q'

rskT l pD)
(17)

This correlation therefore becomes stronger at higher s.
It should be noted that (17) is actually an overestimate
for the ratio of the electrostatic interaction and kinetic
energies, because the ratio will be smaller by a factor
exp( —rs/po), which accounts for the Debye shielding

by the electrons. However, one must expect that the
correlations between emitting and broadening ions
reduce the quasi-static broadening significantly at
high densities, thus making (15) an underestimate of
the limiting density for low a but high s lines, unless
electron broadening over-compensates this effect. (That
correlations between emitting ions and perturbing
electrons are not important follows from the similarity
of the straight and the hyperbolical classical path
results. )

The question whether the quasi-static approximation
for broadening by ions is valid in all cases can be
answered by comparing Ate, from (13) with the Doppler
width of a hydrogenic line

( 2k T) '* me4s' ( 1 1 )
A~.=0.833!

(m, c2) 252 (b2 g')

namely

me4s2 ( 1 1 q me4s-'

!AMp, = 4' ( g' (g+1)2) 2gsks

(mesq ' s'" s2~2

E, =3X10 '! ! =2X10" . (15)
4 Pg2 ) gls~2 gib 2

This gives for the density Ed, where quasi-static and
Doppler broadening are equal with m, =2mts, T= Ttss

=s2[ev], and neglecting 1/g' versus 1/b2,

( kTt ) —,
'

(me2) 2 s2tl4 g21l4

! —=3 X10", (19)
40 Emtc') ( f2' ) g'b' gsb'

At this density the validity criterion (12) is always
fulfilled for broadening by ions, whereas the electron
broadening may remain in the impact domain.

Equation (15) seems to overestimate the maximum
density because electron broadening was neglected.
This will however be o6set by correlations between the
ions, whose importance is characterizedv ' by the
magnitude of rs/po, where rs is the mean distance of
the perturbers defined by (42r/3)res/=1 and po the
Debye radius [kT/(42re2$)$'. This parameter will be
a maximum for E, , i.e., with (15) and T,= Ttss

assuming that the quasi-static approximation were
still valid. Comparison of (19) with (12) shows that
this is strictly justified if s *g/k is much larger than

20. But as will be shown at the end of this section,
the quasi-static approximation may still. be used at
densities much lower than those indicated by (12),
and (19) can therefore usually serve to estimate the
density at which Doppler and Stark widths are
comparable.

In the transition region between impact and quasi-
static domain, where (12) is a near equality, i.e., for

rs (m $& e'

pD t.kTt) fsg'14s'
(16)

8 'h

m=5 E&,
sm

(20)

Accordingly the perturbing ion-ion correlation and the
electron shielding e8ects decrease slowly with increasing
2' and c.

For s&1 also the interactions between broadening
and emitting ions must be considered. They will be
important if the Coulomb energy of a perturber in the

"D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).

Eq. (8) yields for the g, s operator

42rA (Sin(-,'tr, ))Ã'R. R. 1n!
15g'ms (sin(22n;„))

= —5 r:R. R.,
a'ms
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because the logarithm is about 6 if (20) is fulfilled.
Again using (a)' as an estimate for a typical matrix
element of R R, one sees that then the P-matrix ele-
ments are very close to the quasi-static half-width
given by (13).

In case of isolated lines the impact half-width is
equal to the diagonal g-matrix element, but here the
width would be larger by a factor of the order of the
principal quantum number, because of the degeneracy.
Actually in the transition region some quasi-static
broadening will also be present, which removes the
degeneracy, thus reducing the importance of the oG-

diagonal P-matrix elements, which correspond to the
impact-induced transitions between the various Stark
components.

If one schematically splits the ion field into a high-
and low-frequency component, one can therefore say
that in the transition region each component will

approximately contribute —',6~0, as given by (13) to the
half-width, i.e., no large errors are expected if one uses
the simpler quasi-static approximation for the total
field. As long as an intermediate theory is lacking, one
should do this even for lower densities (because in this
range impact and quasi-static broadening depend
similarly on the density) unless the impact approxi-
mation for ions yields significantly smaller widths.

Similar considerations show that, in the cases where
the impact approximation breaks down for electrons,
a theory treating part of the field (the ion field) as
quasi-static and using the impact approximation for
the rest of the field (the electron field), would yield
almost the same width as a quasi-static calculation for
the total field. Therefore one can use the quasi-static
approximation for electrons where it results in a nar-
rower line than the impact approximation.

COMPLETE LINE PROFILES

At low densities, where the impact approximation is
valid for all perturbers, the line profile is given by the
generalized impact formula' ' "

1
1.~(~)=—«2 &~'I ~.IP'&&0"

I ~. l
~"&

~I~ I IP/ Pi' f g

x&~'I(J3'ILi~ —i(&.—»)/&+0 ~] 'l~"&I&"& (22)

The matrix elements of p are the dipole moments for
the various polarizations and those of (H,—Hi, )/A are
the frequencies of the unperturbed lines. Because P, i,

is essentially inversely proportional to the perturber
velocity, the electron contribution is here entirely
negligible, i.e., (11a) or (11b) can be used with m'

being the mass of the perturbing ions.
Equation (22) can be approximated by a dispersion

profile' with a half-width given by the @ matrix element
following from (8) with iSas as an estimate for the sum
of the contributing matrix elements of R, R,—2R, Rt,

again using 6 for the logarithm and assuming hydrogen
ions as perturbers and T=s'I ev], m. =2mis.

As pointed out in the previous section, the impact
approximation, i.e., Eq. (22), can be used up to den-
sities where the impact half-width reaches the quasi-
static width given by (13). Using similar estimates for

g, this yields for the limiting density

1(mii) ' s6 s'
N„=-I

I
—=-,'x10»—

4 & 5 ) a' a'
(24)

with v, =niz=7X10'» Lcm sec '] as the velocity of
perturbing hydrogen ions. Comparison with (23) shows
that this is larger than Nq, if b's~/a' is larger than 0.8.
Usually E„- will be smaller than Xd;,. and one should
use (19) instead of (23) to estimate the density at which
Doppler and Stark broadening are equal.

For densities higher than N„ the line profile is given
by

1((o)= I dF W(F)l, ((a,F), (25)

that is by the average of the electron impact profile
I, (a&,F) described by an equation analogous to (22)
over the ion field-strength F. At low densities the
Holtsmark distribution function can be used for W(F),
and at high densities the distribution functions modified
for correlation and shielding effects are applicable,
which were discussed in the previous section. The
electron impact profile depends on the ion field-strength
because the matrix elements of (H, —Hi, )/A in Eq.
(22) now represent the frequencies of the various Stark
components, which are split by the quasi-static ion
fields.

Equation (25) can be used up to densities where the
electron impact width approaches the quasi-static
width, i.e., according to estimates corresponding to
those leading to (24) up to densities smaller than

N~8 2i X 1022s6/a9& (26)

which is a factor 10' larger than the corresponding
quantity E„.for the ion broadening. X„is only larger
than the Inglis-Teller limit LEq. (15)] for cases where
12a&s; i.e., for most of the important lines from low-s
hydrogenic ions one must use the quasi-static approxi-
mation for all perturbers at densities approaching the
Inglis-Teller limit. For this reason, and because the
electron broadening tends to compensate the reduction

+Ri, Ri,. This width is equal to the Doppler width in
Eq. (18) for densities greater than

~AT, q m'e's"~'
~ 1 1 y

N.,=4x1o-2I
( mi ) c5'u' &b' a')

g11/2

=4X10", (23)
a'b'
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FIG. j.. Comparison of the present calculations with the
Holtsmark proale of Herr 4686 A at T=40 000 L'Kg. Pn=r&(A)/
~c(c8s) j

FiG. 2. Comparison of the present calculations with the
Holtsmark pro6le and an approximation for high series members
for Heir 3203 A at T=40000 L'K] Lo.=AX(A)/Fc(cgs)g.

of the quasi-static broadening by correlation and
shielding effects, the Inglis-Teller formula is therefore
essentially correct in most applications.

RESULTS AND DISCUSSION

Detailed calculations in the usual reduced wave-
length-scale n=A)t/(2. 61elVl) for densities from 10"
to 10" [cm '] and temperatures from 5000 to 80 000
['K] were carried through for the ionized helium lines
at 4686 A and 3203 A,""with the quasi-static approxi-
mation for ions and the impact approximation for
electrons. For both lines, these approximations are
reasonably valid for the whole density and temperature
range considered. At lower densities where one must
correct for Doppler broadening the Holtsmark profile
is a fair approximation. At higher densities one should
use the quasi-static theory for both ions and electrons,
taking the Coulomb interactions into account.

In Figs. 1 and 2 the present calculations are compared
with the Holtsmark theory (which neglects the electron
broadening and interactions between the charged
particles) for an intermediate temperature (the profiles
are very insensitive to the temperature). As in the case
of HP, ' the agreement with the Holtsmark profile is
sometimes better than expected, e.g. , in the case of
Wulff's experiment" the Holtsmark theory for HeII

"K. Y. Shen, Ph. D. thesis, University of Maryland, College
Park, 1960 (unpublished)."A complete set of profiles will be published in a U. S. Naval
Research Laboratory Report.

's H. Wulff, Z. Physik 150, 614 (1958).

4686 A gives an electron density 1@=3.9X10"[cm '],
whereas comparison with the present theory results in
X=2.5 [cm ']. Obviously the additional broadening
by electron impacts is also here partially compensated
by the narrowing of the quasi-static profile resulting
from the Coulomb interactions.

For higher series members and low densities the
approximate simplified formulas given in reference 3
should be applicable. That this begins to become true
already for the 5~3 transition (Herr 3203 A) is
demonstrated by the fair agreement on the line wings
between the curve corresponding to this approximation
in Fig. 2 with the result of the present calculation for
&=10is [cm ']. (The differences in the line core are
partially due to the correlation and shielding effects
and will be masked by Doppler broadening, especially
at still lower densities. )
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APPENDIX

It will be demonstrated that a completely quantum
mechanical calculation leads to the same result as the
classical path calculation, if the corresponding approxi-
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mations are made. As an example a so-called one-state
completely degenerate case"" with x=1 is considered.
Then the matrix elements of the @ operator can be
written as

(~'I& l~"&=& ~(~'IS (0)—1I~"&
= ——,'Xn(0. ~ "}, (1A)

where S,(0) is now the quantum mechanical scattering
matrix and ((r ~ "}the average of the cross section for
electron scattering which causes a transition of the
atom from a' to 0,".The sum is over all states of the
perturber.

Using the interaction Hamiltonian (3) and plane
waves as perturber wave functions (corresponding to
the straight classical path), one obtains for the scat-
tering amplitudes in the Born approximation (corre-
sponding to the weak-collision approximation), inte-
grating over the volume between two concentric
spheres with radii r;„and r,„,

Here K (lKl =E) is the difference of the initial (ii;)
and final (kr) propagation vectors and ((r'lr, ln'"&x

the matrix element of the component of the atomic
electron coordinate vector in the K direction. The total
cross section is then (with

i
lr;i =

l kr
l
=ks) given by

27rE
(r ««« — f «««««f «dQ

J f ««« f ««' dE
ko'

, , (~'lr l~'")x(~"'lr l~"&x» (3A)
5 k() E .

The largest possible value for E, would obviously
be E,„=2ks = 2m@/h. But according to (2A) this
value should only be used if E, is not larger than
2/r;„, i.e., if r; were smaller than the de Broglie
wavelength t. In all other cases 2/r; should be
adopted for E, . It also follows from (2A) that E;„
will be of the order 2/r, , and accordingly one has,
for r;„)I,

(4A)Emc«/Em in &ms«/&min.me'
( 'I «.

I

"').
J «I «I "'"'s.

27rA2
a'0."'

Averaging over the directions and substitution of
(3A) and (4A) into (1A) yields finally for the (t operator,
with ks ——mr(/A and r.= (iver'/me')R

((r lrnla «&x ( e«Icr cosa

2n-k' r' 4' ( k ) (rmsx)
@.= ——

l

—
i In] l(R. R.),

3r i nz& Er;„3
(SA)

me eaKT 0088 —Tmax

o.
' r n"' ~

52 $E Tmin

sin8d8

rP,
)

.0;

'4 M. Baranger, Phys. Rev. 111,481 (1958).
"M. Baranger, Phys. Rev. 112, 855 (1958&.

which agrees with the classical path result [see Eq.

E&2/r ... (21) in reference 17, if one identifies r, with the Debye
radius and r;„with the impact parameter, where the

2me perturbation theory breaks down. This is legitimate,
((r'lr l(r'"&x 2/" «&E&2/r ' (2A) because the minimum impact parameter is larger than

the de Broglie wavelength by the square of the principal

2/r;„&E. quantum number [see Eq. (19) in reference 17. If this
were not the case the only effect of quantum mechanics
would be to introduce 'A as minimum impact parameter
under the logarithm.


