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Distribution of the Magnetization in a Ferromagnet
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The distribution of the magnetization is calculated for a thick ferromagnetic slab with easy axis
transverse to the plane of the slab in a large applied field in the plane of the slab. The calculation predicts
a stable nonuniform distribution which has several features suggestive of the domain pattern to be expected
in such a system. In particular, the pattern consists of alternating strips having approximately the periodicity
expected from conventional domain theory; and incipient fiux closure domains appear if the anisotropy
6eld is smaller than the demagnetizing 6eld.

INTRODUCTION

1
~~NE of the unsolved problems of magnetostatics

is the prediction of domain structure in a ferro-
magnetic body. The existence of Bloch walls is predicted
by a one-dimensional energy minimization theorem,
but it has not been accounted for theoretically in two
or three dimensions.

A rigorous technique for calculating nonuniform
distributions of magnetization has recently been applied
to several simple problems. '—' In all these problems,
however, it turns out that the nonuniform distributions
are unstable and thus cannot be regarded as incipient
domain formation. 4

It is the purpose of this report to show that there is
a class of physically interesting problems in which this
technique leads to stable nonuniform distributions of
the magnetization. The stability is achieved by dealing
with specimens nearly saturated in a hard direction of
magnetization. It is well known that, if such a specimen
is held in an applied field nearly large enough to saturate
it, then the magnetization will deviate only slightly
from alignment with the field. We shall carry out the
calculation for a particularly simple arrangement of
this type in order to avoid computational difficulties.
The resulting distribution of the magnetization has
several features that are strongly suggestive of the
domain structure to be expected for the configuration.
The problem is a nonlinear one and is not carried far
enough by the present analytical calculation to show
well-developed domain structure. It is apparent from
the results, however, that useful progress could be
made by further numerical work.

In Sec. II we obtain the initial form of the dis-
tribution by the technique used earlier. ' In Sec. III
we show that a stable finite nonuniform distribution
results in the configuration we are considering.

V2U=
4xMV'. i inside

(2)
0 outside.

The boundary conditions on the surface of the
ferromagnet are4

(3)

(4)

(5)

8X (B8/Be) =0,

U;„=U.„t,

(BU/Be).„,= (BU/Be);„47rM8 ri, —

where n is the normal to the surface.
In a uniaxial crystal with an easy or hard axis along

x, co11=2E and all other terms in or vanish. ~=En', if

E)0, l is a hard axis, if E(0, i is an easy axis. We
will assume E(0, and also H =Hi.

The components of Eq. (1) are

c (PVsy yV'P) M[P (B—U/Bs) —y(BU/By) PH—j=0, —
c(yV'a —aVsy) —2Eay

M[y (BU/Bx) —a(BU/Bs)+aH —j=0,

c(aV'P —PVsa)+ 2EaP —
M [a(BU/By) —P (BU/Bx) $=0.

or, by using 8=M/M =ax+Py+pz, a'+P'+y'=1,

v X [cVs8—(B~/B8) —M VU+ MH] =0. (1)

The terms in the bracket are proportional (in this order)
to the exchange field, the anisotropy field, the dipolar
field, and the applied field.

In the anisotropy term, B/B8 means (iB/Ba+gB/BP
+zB/By) and the anisotropy energy is assumed written
in the form

~0+~la+~2p+s (~lla +2~12ap+~22p )+ ' ' '
~

The dipolar energy (magnetostatic potential) obeys
the Poisson equation:

We will deal with a slab between x= &/, nearly
saturated in the +s direction, so that a, p«1, y=1,
and we introduce the dimensionless notation

II. THE NUCLEATION MODE

In a ferromagnet in equilibrium, the torque acting
on the magnetization vanishes everywhere:

MXH. rr=0,
' W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957}.' E. H. I'rei, S. Shtrikman, and D. Treves, Phys. Rev. 106, 446

(1957}.' A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958).
'%, F, Brown, Jr. , J. Appl. Phys. 30, 62S (1.959).

p=xm. /l, h=H/2rrM, Is= (c/2M')»

r}=

year/f,

k =K/2m M' 5 l/~o.

t =sm/l, m= (2/c)'U,

Then to first order in a and p, the torque equations
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and boundary conditions are
S BN

$—V'+ (5'/ir) (8+2k)]n+——=0,
2ir Bg

S ()I
L
—V'+ (5'/m) h]P+——=0,

2' O'Q

45/(Bn/Bg)+ (BP/Bg)] inside

+in = lout)

(Bu/8$), „t,= —45u+(Bu/8$);„, $=~~. (11)

The general solution of the system of Eqs. (6)—(8) is

a=A sin(pg+(o) sin(my+go) cos(ef+fo),
p=B cos(p$+(o) cos(my+go) cos(efjt o),

I= Ucos(pt+&0) sin(mt/+'go) cos(Bf+fo),

Ba/8/=OP/Bj=0,

outside,
where p, m, and e are related by the vanishing of the

(9) secular determinant

pp'+ m2+ ~'+ (52/~) (j'g+ 2&)] —Sp/27r

$p'+m'+n'+ (5'/Ã)h] Sm/27r =0 (12)

4Sp (p'+m'+I')

The boundary value problem of Eqs. (6)—(11) has
nontrivial solutions only for certain ranges of the
reduced field h. In particular, there is no solution if h is
very large. The largest value of h for which a nontrivial
solution exists represents the 6eld for which the
distribution of the magnetization can erst deviate from
(uniform) saturation. We will calculate this "nucleation
field" h„and the corresponding eigenfunctions n, P, u
for the case of a thick slab (S~ ~). The restriction
to a "thick" slab is not very stringent. In a typical
ferromagnet, lo is of the order of 10 ' cm, so that even
the translucent layers that have been used in investiga-
tions of domain patterns' are thick (5 10') in our sense.

With the assumption (which will be shown to be
self-consistent later) that in the nucleation mode,
(m2+I') is of order 5, and &+2k=—a is of order 5 ' the
secular equation becomes approximately

S' 2S4
p'+ (2+&)p4+ —hp'

Vr2

S2 S'
+ [2m +h(—+m')I] x+m'+e—=0, (13)

which, to the same approximation, has the roots

pi2= —(5'/~) h,

pP = —25~/~

2m2+h(m'+rP) (m2+m')ir
2— +~.

2h S'

Thus the eigenfunctions will be of the form

n= P A; sin(P;$+b;) sin(my+go) cos(xi+| 0), (14)

' See, for example, C. Kooy and U. Enz, Philips Research
Repts. 15, T (1960), which deals with precisely the configuration
under investigation here.

with similar forms for P and N. Equations (6)—(8)
furnish relations between the A;, 8;, and U;:

2irt p'+m'+m'+ (5'/7r) x]
U;= A;,

m [pP+m'+n'+ (5'/m, )~]

p$ LpP+m'+s'+ (5'/3-)h]

(Note that in the vicinity of h=2, that is, &= —1, p,
has a singularity and the present approximation breaks
down. We shall see below that the form of the eigen-
function changes near this value of the anisotropy field).
The reduced potential outside the magnet is of the form

I=W exp) —(eP+m') i(( 7r)]—

(16)
&&sin(my+go) cos(el+i o) $)vr,

u= W' exp/+ (m'+e')'*(e+s)]
&(sin(my+&0) cos(vi+&0), ((—s,

which vanishes properly at infinity. The boundary
conditions of Eq. (10) will now be used to determine
H/ and S", and the remaining six boundary conditions
of Eqs. (9) and (11) furnish the needed six relations
among the A, and $o;. The constants po and to only
translate the mode in the plane of the slab and thus
are not needed.

The tedious work of applying these equations can
be simplified a little by a physical argument. From the
symmetry of the problem about (=0, it follows that
the $0, are either zero or i2m and in fact they must all
be zero or all —',x. A schematic sketch of the surface
pole distributions for these two alternatives is shown
in Fig. 1. It is apparent from the figure that $o, ——~i+ is
energetically more favorable and thus will lead to the
higher value for the nucleation field.
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Thus the form of the eigenfunctions becomes

a=sin(my+go) cos(rr{+{o)

X [A i cosh
I pi I

(+A 2 cosh
I p, I

)+A 3 cosp~$],

P= —cos(my+go) cos(mt+go)
X [i&i »»

I pil (+i&»inhl p2I (+~~ »np3(»
u= —sin(my+go) cos(ef+fo)

X[iUi sinhl pil $+iU2 sinhl p2I (+U3 sinp3$],

where the A;, 8;, and U; are related according to
Eq. (15). Now from Eqs. (9)—(11) and (16)

I pi I
A i sinh

f pi f
~+

I p, f
A~ sinh

I p2 f
~

—p~Ai sinpgr=0, (17)

f„.=o

()
()
() )

() &()
i

I pi I
Bl cosll

I pi I
7r+i

I p2 I
B2 cosh

I p2 I
7r

+p383 cospgr =0, (18)

(m'+N') i[iUi sinh
I pi I

ir+iU& sinh
I p~ I

ir+ Ua sinp37r]

=[~lp IU c»hip l~+~lp IU c»hip l~
+p3U: cospsir]+4$[Ai cosh

l pil ~
+A2 cosh

l p2I 7r+A~ cosp~~]. (19)

Equations (17)—(19), after elimination of 8; and U, by
means of Eq. (15), form a linear homogeneous set
which has a solution A &, A2, A 3 only if the determinant
of the coeKcients vanishes.

It can be shown that, to the approximation in which
we are working, the determinant will vanish if

r » &:~ ( +—(m'+N') l
I

E 2m'+h(m'+e') ] 0 S'
—~ sinpgr+4 cospgr=o (20).

Since the coeKcient of sinp3ir is of order S ', this
implies pa=2 and hence

K= {h/2[—(2+h) m'+ as'5 } [(m'+—5') ir /S]

which is to be maximized by adjusting m and e. To
maximize, we take

FIG. 1. Distribution of surface poles and dipolar Gelds
for two alternative types of mode.

There is no stationary point m WO, nWO, and Eq. (21b)
gives the absolute maximum. It is the mode belonging
to this eigenvalue that may be expected to nucleate.
Ke note here, incidentally, that we have shown the
self-consistency of the assumption made earlier that,
for the nucleation mode, (m'+e') is of order S, and
~ is of order 5 '.

We see from Eq. (21b) that the nucleation mode has
the form of incipient strip domains parallel to the s
axis. The nucleation field 7i„=—2k+m is, of course,
very close to the anisotropy 6eld, and the reduced
nucleation wavelength 2~/m agrees reasonably well
with measured domain widths. ' (Comparison with
experimental values is dificult because the exchange
constants for most materials are not accurately known. )
If h))2 (k&(—1), as is true of several uniaxial ferrites,
Eqs. (21a) and (21b) yield nearly the same nucleation
fields, and the appearance of meandering strip domains
would be consistent with the present calculation.

In order to study the nucleation mode in more
detail, we use Eqs. (17) and (18) to obtain the constants
A~ and A2. Using some further simple approximations,
we 6nd

or
dh =dh = (B~/Bh) dh+ (Bz/Bm) dm+ (B~/Be) de =0,

Bz ( Bir) Br. ( Bz)
I1——l=o, —

Bm ( Bhl BN L Bh J

exp[—I p2I~] (~) *
*expL—

I p~l~]

2lp I

&8& S
(22)

Ag ——— exp[ —
I p, l~]A„

2(h —2)[h(h+2)]l
Since B~/Bh has no poles, a has stationary points at

N = 0 (minimum);m=0,

m=0,

Jk+ 10

ii= (S'/2m)',

~= —(2w/S')' (local maximum);

)S' h q'
m=l — I, n=o,

&2~ 2+&3 pa= 2
—P/2(&+2)]'(~S) '.

If k& —1 (h)2), Ip2I(lpil, and Ai(&A2, thus Ai
(2») and all the 8; are negligibly small. Also we know from

Eq. (20) that p3 is not exactly —',, but rather

With this information we can get a picture of the mode;
Eh+2 S') a schematic plot of n and P vs $ appears in Fig. 2.



FIG. 3. x and y components of the magnetization in the nucleation
mode; k) —1 (variation near walls exaggerated).

Pro. 2. x and y components of the magnetization in the nucleation
mode; k & —1 (variation near walls exaggerated).

We next consider the condition k) —1 (k&2) so that
~ ps() (pt(. We now find that A,&)A2, so that the
term in A2 is negligible. The form of n is not greatly
affected, apart from being smaller near the walls.

Thus a plot of n and P vs $ will appear as shown in
Fig. 3. The change in the form of P shown in the figure
is highly suggestive of incipient Aux closure domains.
Such domains would indeed be expected to form if
Banisotropy &2~~

III. FINITE DEVIATIONS FROM SATURATION

The linearized problem we have solved in the
preceding section admits superposition and hence
cannot provide a description of stable finite deviations
from saturation. On the other hand, the nonlinear
boundary-value problem of Eqs. (1)—(5) presents
considerable mathematical difhculties even to large
scale numerical computation. It is the purpose of this
section to show that in the present problem some
finite amplitude results can be obtained with modest
mathematical means. These results may serve as a
guide for more ambitious numerical work.

We will now take advantage of the fact (mentioned
in Sec. I, above) that, if a ferromagnet is saturated in
the hard direction, and the applied field is then reduced
slightly below the value required to maintain saturation

(the nucleation field h ), it will remain nearly saturated.
This is equivalent to saying that the hysteresis loop in
the hard direction is not rectangular; a rectangular
loop implies that as soon as the applied field is lowered
below the nucleation value, the magnetization abruptly
changes to a radically difkrent distribution (complete
reversal). Thus in describing magnetization processes
in the hard direction one might hope to use some kind
of perturbation technique which would not be applicable
in a situation leading to a rectangular hysteresis loop.

In the notation which we have been using, if h= h„—0

(5«h„), then

(23)

This approximation allows us to write Eq. (1) in a
form containing no radicals and no power higher than
the third of the dependent variables.

To develop a perturbation procedure, assume (as is
possible in principle) that I and P have been eliminated
between the torque and field equations. Then we must
solve

To.=0,

where T is an operator containing linear and nonlinear
terms. Assume that the solution is of the form

n =+;;A;,n,;, A, (&&1&

where the n;, are normalized functions. We use the
double subscript notation because we will want to write

n* =f'(k)g (n)
Now let

2'= T'a+&+2't,
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~„A,,yu, ;+[A; ]=0.
Since uoo=0, we have from Eq. (25)

[Aoo]=6', [A,;]&6'*,, i+j /0, etc.

(26)

In principle, this procedure will yield all the 2,, from
the coefficients of successive powers of 6. In practice,
the procedure would be exceedingly tedious and not
very useful, since we already know that the higher-
order terms are exceedingly small. Hence we will only
work out Hop, Ao], Ayp, and A~~ in order to show that
the distribution of o, does tend in the direction to be
expected if domains are going to be formed. The
equations are

5' 5' 5 BN—P+—(&+2k) n 8n+- —
7r 2x. Bt

S' 5 BN——,
' nV'n —n (V'n)' ——kn' ——n'—=0,

4~ 8(

5' S BN—V'+—k P+——=0,
7l 2'

(27)

(Bn BP )7'I = 4$( —+—
~.

gq)

We cannot neglect BP/Bg in the field equation and
hence we need a linear approximation for the 8;,.

where Tj contains all the nonlinear terms, To is linear,
and 8 is the deviation of the applied field from the
nucleation value. In this notation, the linear problem
of Sec. II is Too.00=0.

We choose that o,;; to form a complete orthogonal
set over a suitable rectangle. This can be done easily
in one direction: Let g, (g) = cos(2j+1)mq. The appro-
priate f, ($) are complicated, but they can be approxi-
mated by trigonometric functions. Then

2 On= 2 0 P Aijnij =Q Aij +ijnij'
The a,, are of order unity or higher except aoo=0; and

Tn=g a@Ann, ,+fi Q A;;n,;+Ti(Q A;,n;;) =0, (24)

but in the approximation of Eq. (23) all the terms in
T~o. are of the third degree. Thus using the complete-
ness of the n,; we can write schematically

Ti(P A,;n;,)=P [A; 3]n;;, (25)

where the brackets mean [of the order of magnitude of].
In this way we can classify the 3,, as to order of
magnitude in powers of 8, using the orthogonality of
the o.g

A„=-;P/( —k)]:;
A „=—[S/9(2~)"*][(1—k)/k']-:~-:.

A „=—[3S/8 (2~) '*][(1—k)/k']V.
A ii = —[8/3 (2n.)*'][(1—k)/k']'Bl.

(29)

These results are valid only if 6&(5 ', that is to say,
in a very, narrow range near saturation. However,
they do show the behavior one would expect of incipient
domain formation. The sign of the "third harmonic"
terms is opposite to that of the fundamental, which
indicates a "squaring off" of the distribution. Also,
the initial decrease of 3/I, is linear in the applied field,
as is to be expected.

IV. CONCLUSION

It has been the primary purpose of Sec. III to
demonstrate the existence of a finite solution for the
distribution of magnetization and to outline a method
of attack on one aspect of the problem of domain
formation. These results are evidently applicable to
a fairly wide range of problems in which the hysteresis
loop is not rectangular.

The detailed calculation of the nonlinear solution in
the specific problem we have treated here is not
completely rigorous. For example, it is possible that
the fundamental period of the distribution, as well as
its shape, will change as the applied field is reduced.
It would not be especially difficult to modify the
mathematical procedure for this and similar contingen-
cies. However, in view of the limited range of validity
of the approximations which have been made in
order to permit an analytical treatment, it does not
appear ver'y useful to add such refinements. Further
progress can probably be made most readily by means
of numerical work. Also, other geometrical and magne-
tic configurations of greater practical interest should
be amenable to a similar treatment.
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The trial function is

n= A op cosp) cosmit+A io cos3pg cosmic

+Aoi cospf cos3mq+A ii cos3pg cos3mit& (28)

with analogous forms for P and u; p= 2 and m has the
value of Eq. (21b). The omission of the term in
cosh~ p&~ & does not affect the accuracy of the trial
function except near the surfaces (=+w, where it is
not a good approximation.

Substitution of the trial function into Eq. (27)
finally yields the values of the A;; as follows:


