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W. J. CmR, JR.
tVestinghouse Research Laboratories, Pittsburgh, Pennsyh)ania

(Received April 14, 1960; revised manuscript received July 18, 1960)

A perturbation expansion in powers of r, & has been used to investigate the ground-state energy of a dilute
electron gas, the result being, in rydberg units per particle, E= 1.792/—r,+2.66/r, &+b/r, '+O(1/r, ")
+terms falling off exponentially with r,&. The dimensionless parameter r, is the radius of the unit sphere in
Bohr radii. The term in r, is the energy of a body-centered cubic lattice of electrons as calculated by Fuchs;
the r, & term is the zero-point vibrational energy of the lattice, as obtained from a calculation of the normal
modes, the result differing only by a small amount from the values estimated by Wigner; and br, is the
6rst-order effect of anharmonicities in the vibration. The constant b has been estimated, its magnitude being
smaller than unity.

The vibrational part of the specific heat has been calculated, and a 6rst-order approximation has been
obtained for the exponential terms in the energy. Part of this energy comes from exchange, which leads to
the result that, except for very low densities (r, &270), the electron spins are antiferromagnetically aligned.
An order of magnitude for the Neel temperature has been calculated.

INTRODUCTION AND SUMMARY mations suggest, the exact expression for the energy,
E, involves an expansion in powers of r, '. In the third
section the lattice formation is discussed, and in the
fourth section this expansion is carried out. The fol-
lowing is a summary of the present calculations and of
the principal results obtained: The Hamiltonian, H,
consists of the kinetic energy of the electrons and the
Coulomb interactions of the system. If 0'„ is a set of
states for the N electrons and A is the operator which
projects the antisymmetric part of %„(A=+„+P„,
where I'„ is a permutation operator), the matrix
elements of H Eare (1V!) 'J—'(A+„*)(H E)A%' dr, —
with the integral denoting an integration and sum-
mation over all space and spin coordinates of the E
electrons. In the present case the antisymmetrized
functions are not orthogonal. Since H is symmetric,
the elements become J'0' *(H E)A% dr, whi—ch can
be written f@„*(H,rr E)4 dr, wit—h H, ff HA E—
X (A —1);i.e., in a formal sense the matrix representing
H—E in terms of the nonorthogonal antisymmetrized
functions is the same as that representing H, ff—E in
terms of the orthogonal nonantisymmetrized functions.
For a perturbation calculation the latter is somewhat
more convenient. In the present problem the electrons
are almost distinguishable and 2 —1 may be expected
to aBect the energy only in a perturbative way. If
(H E)(A —1) is called —the exchange Hamiltonian,
then H, rr H+H. . Next, l——et

A N electron gas, as conceived by Wigner, ' consists
of a large number of electrons moving in a uni-

formly spread out positive charge having the density
required to give the system charge neutrality. For
many purposes the model is useful as an approximation
to the solid state.

A convenient measure of the electron gas density is
the dimensionless parameter r„dered as the radius
of the unit sphere divided by the Bohr radius, the unit
sphere enclosing a volume equal to the volume per
electron of the gas.

Although properties may be calculated both for the
high-density (r,«1) and low-density (r,))1) cases, the
greatest attention has been given the high-density
problem, and recently Gell-Mann and Brueckner' have
given an exact treatment for the energy in this region.
The direct applicability of this result to the study of
solids is questionable since most frequently the inter-
mediate range of r, is of interest; for example, in the
alkali metals r, varies between 3 and 6, which might
seem to correspond more closely with the low-density
case to be considered here. In general, the intermediate
case requires an interpolation between high- and low-
density results, and the existence of an exact expression
for the former indicates the need for a likewise exact
formulation of the latter. Wigner' first considered the
dilute electron gas problem and pointed out that in the
limit r, —+ ~ where the kinetic energy becomes neg-
ligible, the Coulomb interactions dominate in dete-
mining the wave function and the electrons tend t
arrange themselves in a regular lattice with energ
proportional to r, '. Wigner also made an estimate
the correction to the energy due to the oscillator
motion of the electrons about their lattice points, th
result being 3 r, :ry per particle. As Wigner's approx

Her f Haeries+ H
q

' E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(&95&).

r
where H'=H —H„„„+H,.„, and H„„„indicates the
Hamiltonian obtained by expanding the potential

of energy in a Tayl or series in Powers of disPlacements
of the electrons from a set of lattice points. An exact
solution for the eigenvalues of H„„.„is obtained as a
power series in r, ' (assuming this series to possess
some manner of convergence) and the H' is treated as
a perturbation, it being understood that in each order
the energy term in H' is replaced by an approximation
from the previous order.
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In first-order perturbation the ground-state energy is

E=Ep+(H')=Ep+(H H„—„„)+(H,„), (2)

where Eo is the ground state of H„„„.The first term
in Eo is just the energy of a lattice of electrons in a
background of positive charge, which according to
Fuchs' is —1.79186 r, ' ry per particle for a body-
centered cubic lattice. In agreement with Wigner, it is
assumed that the bcc lattice has the lowest energy,
although the difference between it and other simple
lattices is extremely small. The next nonvanishing
terms in H„„.„are quadratic in the electron coordi-
nates. By means of a normal coordinate transformation,
these terms together with the kinetic energy operators
give a sum of oscillator Hamiltonians. The frequencies
for these electronic lattice vibrations, or phonons, have
been calculated for 512 points in the Brillouin zone,
and by numerical integration 2.66 r, ' ry is obtained
for the zero-point energy. 4 The remaining terms in
H„„„are treated as a perturbation on the oscillator
functions, giving energy terms proportional to r, ',
r, ', etc.

As r, approaches infinity, the matrix elements of H',
calculated with eigenfunctions of H„„„multiplied by
a spin function, approach zero exponentially with r, ',
giving some justification for treating H as a pertur-
bation. Thus the energy may be written

—1.792 2.66
+ + +0(1/r—,l)

yf y2

+terms falling off exponentially with r, '*. (3)

The exact expression for the constant b is given in
Appendix II. A rough numerical estimate shows it to
be less than unity and therefore the term has only a
small eGect on the energy.

An estimate of the exponential terms in the energy
may be obtained from the first-order term (H'). Since
an exact evaluation of this integral is difficult the fol-
lowing approximation has been made. The unperturbed
wave function, itself a perturbation series, is approxi-
mated by the first term in the series, which is a product
of oscillator functions in the normal coordinates. This
function in turn is approximated by setting all the
frequencies equal. The resulting expression describes a
set of electrons oscillating independently about their
lattice points. (This "Einstein model" is in fact the
wave function used by Wigner for the zeroth order
r, & term, and gives for that case a coe%cient only teri
percent higher than the correct result. ) The value of
(H—H„„.„)per particle in this Einstein approximation
is 4.55r, 'LP(1.25r, ')—1]+3.94r, '[P(1.44r, l) —1],

3 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
4Eote added in proof. Rosemary Coldvrell-Horsfall and A. A.

Maradudin, J. Math. Phys. 1, 395 (1960), recently have published
a value 2.638 r, &, obtained by the method of moments. Their
value for the specifjc heat per electron is 56.21 kr, '~ (kT)' ry.

with P(x) the probability integral, which for large x
divers from unity by a factor proportional to exp( —x').
The quantity (H H„—„„)is not zero because of the
fact that the series expansion for the Hamiltonian does
not converge for large displacements from the lattice
points and gives only approximate values for the matrix
elements.

The evaluation of (H,„), still in the independent-
oscillator approximation, may be given, for large r„ in
terms of exchange integrals, ' the sign of which deter-
mines whether the lattice is ferromagnetic or anti-
ferromagnetic. Although the result indicates ferro-
magnetism as r, —+ ~, it occurs only for values so large
that the Curie temperature (strength of the coupling)
is infinitesimal. For values of r, of physical interest,
the above approximation gives an antiferromagnetic
ground state. A rough estimate of the Neel temperature
for large r, is

0 1.6X10sL(13r, '—3.2r, ') exp( —1.55r,~)

(10.5r,-i—2.4r;:-) exp (—2.06r, -'*) ], (4)

C,= 1.6&(10 '4kT'r, '~', (6)

with k the Boltzmann constant and T the absolute
temperature. For T small compared with 8 a magnetic
part should be added to (6), which part, according to
the calculation of Kubo, ' also should vary as T', with
the order of magnitude k(T/8)'.

RANGE OF THE "LOW-DENSITY"
APPROXIMATION

It is of some interest to discuss the range of the
"low-density" region for which the calculations given
here apply. The low-density region will be defined as
that region of r, in which the probability density for a

~ W. J. Carr, Jr., Phys. Rev. 92, 28 (1953).' R. Kuho, Phys. Rev. 87, 568 l1952l.

in degrees Kelvin.
With exponential terms included, the ground-state

energy becomes

—1.792 2.66 b (21 4.8 1.16'
~ ~ ~

r, r& r2 Er, r;: r ~)

(2.06 0.66'
X exp( —2.06r, *)—

~

—
~

exp( —1 55r, :) . (5).., ~)

It is difficult to estimate the accuracy of the ex-
ponential terms without investigating higher orders in
the perturbation series; however, the above terms
contribute relatively little to the energy for low density.
They are ten percent of the total at r, =6, and com-
pletely negligible in the range of r, &10.

Finally, the specific heat per particle has been calcu-
lated in a zero-order approximation. The result for the
vibrational part, which is extremely small except for
large r, and high temperatures, is
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anharmonic terms neglected, is shown in Fig. 1. This
plot indicates that the density at which the electron gas
is stable corresponds to an r, in the neighborhood of 5.
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DISCUSSION OF THE LATTICE FORMATION

The Hamiltonian for the system is T+V, where T
is the kinetic energy operator for the electrons and the
potential energy V is given by

V=

~ 2
O. I
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FIG. 1. Energy of the electron gas plotted against r, . The open
circles are points given by Eq. (5) with anharmonic terms neg-
lected. The 6lled circles were calculated from the Gell-Mann and
Brueckner' expression. In constructing the dashed curve con-
necting the two end regions, consideration was given to the fact
that it must fall below the sum of the Fermi plus exchange energy
for plane waves. The open circle points below r, =6 have lower
accuracy, even if the approximations apply to this region, since
for these points the exponential terms in (5) are appreciable.

pair of electrons can be considered as that for a per-
turbed lattice arrangement (with its zero-point motion).
The only point one can investigate here is whether the
perturbation series seems to break down at some value
of r, . Insofar as the calculation has been carried, there
is no evidence of a "breakdown" above r, equal to 5 or
6. This statement is so because the exponential and
anharmonic terms are small down to these intermediate
densities. Since the low-density perturbation calculation
is based on the premise that the Coulomb energy
(C.E.) is larger in magnitude than the kinetic energy
(K.E.), it is not unreasonable to speculate thatthe
region of applicability is roughly that for E(0, inas-
much as E=O corresponds to K.E.= ~C.E.I. Thus
according to Fig. I, this rough estimate would indicate
the low-density region extends down to an r, of about
2.3. On the contrary, however, Xozieres and Pines'
estimate the low-density range to be above r, =20.'

Of course, there is a more important point to consider:
namely, at what value of r, does another state become
lower in energy than the perturbed lattice state con-
sidered here. There is little reason to doubt that, at some
density, energy bands, formed, for example, from polar
states of the lattice, will become lower. Then (5) will
give the ground state only to the extent the states which

7 P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958). The
interesting observation is made that according to the Lindemann
formula, the lattice would "melt" at r, =20. However, this formula
is an empirical rule governing the thermal vibrations of nuclei, and
its applicability to the zero-point motion of electrons in this
problem is a matter which remains to be established.

'Note added in proof. Rosemary Coldwell-Horsfall and A. A.
Maradudin, J. Math. Phys. 1, 395 (1960), point out the difficulty
in choice of Lindemann constant. An uncertainty of a factor of
two in this constant means a factor of 16 uncertainty in the r, for
"melting. "

The erst term on the right is the self-energy of the
uniform positive charge, the second the Coulomb energy
of the electrons, and the third term the interaction
between electrons and positive charge, in a self-evident
notation. p is the density, given in terms of Bohr radii
by (3/47r)r

The argument that as r, ~ ~ the electrons approach
a lattice configuration is the following: If a wave func-
tion can be found which minimizes the potential energy
and still leads only to a negligible higher-order result
for the positive kinetic energy, then obviously, to erst
order, the energy has been minimized and the ground
state obtained. With surface effects ignored, a regular
lattice of electrons would seem to minimize the potential
energy, ' and of these, in accord with Wigner's hypothe-
sis, the body-centered cubic is assumed to have lowest
energy. If the electrons now are constrained, not to the
lattice points, but to regions about the lattice points
of radius proportional to a positive fractional power of
r„say r, ', then the change in potential energy is found
by a Taylor expansion to be proportional to higher
order terms in r„and the kinetic energy, which is
proportional to the inverse two-thirds power of the
volume or r, ", is also a higher-order term if t& ~.

The principal question in the argument is whether
the body-centered cubic lattice really is the configu-
ration of lowest potential energy. By means of an
Ewald-type calculation, Fuchs' obtained a value—1.79186 r, ' ry per particle for the bcc case and—1.79172 r, ' for the fcc case. A similar calculation
by the author for the simple cubic structure gives—1.760 r, '. Kohn and Schechter" have obtained the
value —1.79168 r, ' for the hexagonal close-packed
lattice. Thus, at least for the simple structures, the
body-centered cubic lattice does have the lowest energy
although the difference is very slight. Possibly, when

For a discussion of this point see R. E. Peierls, QNantN~
Theory of Solids (Oxford University Press, London, 1955), pp. 7-9.I g7. Kohn and D. Schechter (unpublished). These authors
note a mistake in the calculations of C. Herring and A. G. Hill,
Phys. Rev. 58, 132 (1940). The latter reported the hexagonal
close-packed lattice as having the lowest energy.
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zero-point terms are included, another lattice will have
slightly lower energy for finite r„but this question has
not been considered.

It may be argued that a lattice configuration is not
consistent with the translational symmetry in the
Hamiltonian. This objection can be removed by forming
a new wave function which is a linear combination of all
translations of the original lattice; the resultant func-
tion will have uniform electronic charge density, as
symmetry demands, but the energy will be unchanged.

SERIES EXPANSION FOR THE HAMILTONIAN

1
H„=—P v,'+—P I,'

2~r.3 'Aj

(u' —u) (u' —u)

n;—n, '

3[(u,—u, ) (n, —n,)]'
n;—n, '

—P; V'P and the unperturbed Hamiltonian, apart from
the constant —1.7921i1/r„becomes

In this part of the problem the electrons are treated
as distinguishable, with the jth electron close to the
jth lattice point.

It is convenient to write the potential energy in the
following form:

dr
I

dr
V= Vp —e'p Q

[r—r, [
~ [r—R;[.

g2

When placed in the form

H„=—Q; &s2+Q, P, C (n,—n, )u,u;,

the components of the tensor C(n, —n, ) are

C„(0)=—,

C.„(0)=C,.(0)=0,

(12)

(13)

(g) and for iW j2 r —r'b 2 'b

where the R; are the lattice points of a body-centered
cubic lattice with the spacing adjusted so there are
equal numbers of lattice points and electrons, and Vp

is given by

e'p' t.
t

drdr' dr

2 ~ ~ [r—r'[ ~ ~ [r—R[
g2

with numerical value [(—1.791&6)/r,)]&ry.
Let R;+u; be substituted for r, and (~/3)'r. aen,

for R; where the components of n; are integers, all even
or all odd, and a& is the Bohr radius. After a Taylor
expansion (see Appendix I) the potential energy in
rydberg units becomes

C„(n;—n, ) =
3 1 3 (n;,—n,.)'-

C.„(n,—n, ) =C„,(n;—n, )

—9 (n;,—n, ) (n;,—n;„)
(16)

n;—n, '

The remaining components are determined by
symmetry.

Thus the problem to be solved is the well-known
problem of vibrational waves in a lattice; however,
the "phonons" in this case are electrons vibrating in
the fixed field of the positive charge, in addition to
their mutual fields.

The solution of (12) is obtained by transforming to
a set of 31V variables qq which reduce (12) to the oscil-
lator form,

V,y ——

—1.792 1
1V+—P m

3 ~

rg rg s7

+oP(k)qi. 2 .
~qI'

(17)

The required transformation, which is given for
notational purposes, is obtained by setting

(3) 1 [(u;—u, ) v;;3'
~ ~ ~

&~) r,3 3!
(10)

n;—n,

where the u's are now measured in units of the Bohr
radius.

Terms in (10) beyond the quadratic terms are to be
treated as perturbations.

In rydberg units the kinetic energy operator is

u, = Q Q exp(if n, )v(f,s)Qi„
(21V)i i

where the subscript k has been replaced by a double
subscript f, s, with s taking the values 1, 2, and 3, and
f being a vector in the basic cell of reciprocal space. An
arbitrary f can be written as &f+, where f+ is in the
upper half-zone, and the variables Q are defined by
Qf+ gf'.+iq i+, and Q i+.=pi', —iq i', . The vectors
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TABLE I. Values for &o(fs) and v(fs) at particular points in f space [2&v is the value of hv in rydbergs where v is the frequency].
The numbers given for &o are multiplied by r, & Fo. r certain directions co(1)—=co(f1) is a longitudinal branch and a&(2) and a&(3) are trans-
verse. In degenerate cases the v's are not specified because of the arbitrariness. The values for [000] refer to the limit as f approaches
zero along a particular direction. The frequency of the 5=0 longitudinal mode is the "plasma"' frequency. In some of the principal sym-
metry directions more accurate values for the frequencies have been given by Clark (reference 12). If

(a)
v(f. f /')=I 61

Ec&
then

(b) (—a)
«(/. ,/*,f. ) =( o (, «( f*,/.—,f.;)=I

Ecj ~, cj
etc. ; while the co's are unchanged by cubic symmetry operations. Since the vs are arbitrary in sign, it also is possible to take
v(fs) =v( —fs) instead of v(fs) = —v( —f, s).

v(2)

1( 1)—1
K2& 0)

[200] 1.668 0.330 0.330 Trans,

(—0.593 l
0.570
0.570)

See [110)

Trans.

(—0.367 )
0.930

)o)
(—0.625)

0.705
0.335)

See [110]
1( 1)

uzi, o)
See [100]
(—0.423)

0.641
0.641)

(—0.563 l
O.827

[o)
(—0.607)

'0.562
0.562j

(8/s-) f a& (1) co (2) &o (3) v (1)

[110] 1.715 0.085 0.228 1 (11
1

vz &0)

(11

[211] 1.676 0.244 0.365 (0.806)
0.419

(0.419)
[220] 1.672 0.157 0.423

[222] 1.617 0.440 0.440 1 (1)
1

v3 ( I j
[310] 1.603 0.427 0.499 (0.9301

j
0.367

f

[321] 1.606 0.312 0.569 (0.781'
0.570

(0.257)
[330] 1.627 0.210 0.554

[332] 1.499 0.507 0.705 (0.657'
0.657

(0.370j
[400] 1.468 0.650 0.650

[411] 1.500 0.502 0.707 (0.907
0 299

(0.299

[420] 1.546 0.466 0.626 (0.827)
]

O.563
[

& o)
[422] 1.467 0.393 0.835 (0.795)

0.429
(0 429j.

v(3)

(0)

Trans.

1( 0)—1
1)

[440] 1.608 0.228
[442] 1.424 0.533
[444] 1 1

[510] 1.357 0.748

0.601
0.830
1

0.774 (—0.366)
0.9310)
0.540'l
0.625

[
q —o.564)

See [110]

( 0.602)—0.602
i —0.525)

See [100]

(—0.481)
0.620
0.620)

See [110]
1(—11

1
v3t, 1)
See [110]

(O.931
]

O.366
)o)

(0.810 )
0.569

(0.143)

Trans.

[521] 1.403 0.511 0.8770

t, 1)
0.0036)—0.415
0.910 )

[530] 1.522 0.481

[532] 1.351 0.414

0.672

1.001 1 1(1i

~2IW1)

0.262
( 0.262) [600] 1 l73 0 9pl

0 929) [611] 1.211 0.751

0,901

0.985 (0.877)
0.340

E0.340j
1 ( 0'l

—1
v2( 1)

(ol

1( 0)—1
1)

[620] 1.313 0.777

[622] 1.172 0.501

0.820

1.172 Trans,
to v(2)

[710] 1.095 0.948 0.950
[800] 1 1 1
[000] vX 0 0 Iiong. Trans.

(8/s) f a&(1) e(2) ~(3) v(1) v(2)

[431] 1.548 0.342 0.697 (0.7391 ( 0.662)
o.667

I I
0.691

/

E0.095j E —0.289)

[433] 1.291 0.651 0.953 (0.736) ( —0.677)
0.478 0.521

(0.478j t, 0.521)

See [110]
See [110]

v(3)

0.128)—0.277
0.953j

1(—1

&I)

O.231
]

—O.534
/0.813)

( 0371—0.371
0.851)

1( 0)—1

Trans.
to v(2)

Trans.

v which in the present case are real are defined by
v( —fs) =v*(fs) in addition to

v(f, s) v*(fs') =8„,

G(f)v(fs) —oi'(fs) v(fs) =0,

(19)

(20)

where the components of the tensor G are given by

6 g
G p(f)=P C,p(n;) exp(if n,)= +G p'(f), (21)

2 r.s

with G p'(f) =P;&s C p(n, ) exp(if n;); and finally the
frequencies, which are proportional to or, are given by

det[G p(f) —oi'(f, s)8,p7=(). (22)

It is to be noted from (15) that G„.'+G„„'+G„'=0

CALCULATION OF THE OSCILLATOR
FREQUENCIES

The three-by-three determinant (22) gives a cubic
equation in co, with three positive roots.

The G's may be obtained from the calculations of
Cohen and Keffer" and the frequencies for various
values of f, corresponding to 512 points in the basic
cell, are given in Table I. Some of these points have

"M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
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been obtained previously by Clark" who used an Ewald-
type calculation. Due to the presence of the fixed
positive charge, one of the branches is observed to
behave like an optical mode, as explained by Clark.

Because of the long-range nature of the Coulomb
interaction, the frequency versus f curve appears to be
discontinuous at f=0 (see reference 11),since from (15),
(16), and (21) G' goes to zero, at least at the center of
the crystal, and therefore from (22) all three co's equal
r, &. This is not the limit one obtains by letting f ~ 0,
which is the physically interesting case.

The unperturbed energies in rydberg units are given
by Q& (2n&+1)&o(k). The ground-state or zero-point
energy, for which all the quantum numbers eI, are zero,
has been obtained according to the method of numerical
integration used by Cohen and Keffer."The result is
2.66 r, & rydbergs per particle, which compares with
the value 3 r, & obtained by signer. "

PERTURBATIONS ON THE OSCILLATOR
FUNCTIONS

The third and higher order terms in the expansion
(10) may be transformed to the q coordinates and
treated as a perturbation, the unperturbed states being

EXPONENTIAL TERMS DECREASING WITH r,&

In the approximation of distinguishable electrons,
the different spin states are all degenerate. To deter-
mine the separation among spin states, it is necessary
to introduce an antisymmetric wave function; the de-
generate levels will then be split according to the ex-
change energy, which, as will be shown, decreases
exponentially with r, '. For this calculation the Hamil-
tonian must be taken in closed form, since one is
interested in the overlap of the "tails" of the wave
functions, and in this region of large displacement, u,
the Taylor expansion (10), does not converge. In fact,
the use of closed form for the Hamiltonian leads to
exponential terms even without exchange.

An antisymmetric wave function might be formed
as discussed in the introduction, by starting with the
wave functions (23), transforming the q~'s to the dis-
placements u, =r,—R;, multiplying by a spin function
g(e&, . eii), and operating on the result with P„&E„
which permutes the electronic space and spin coordi-
nates r, and e;. Such functions, however, make the
calculation of matrix elements dificult. Another set
which is nearly as good for the problem may be con-
structed by forming determinants from the complete
basic set

(23)

where lt (q) is the eth excited oscillator function. More
explicitly, P is a function of (&u)lq or qr, 1. An mth-
order term in the expansion (10) will contain terms of
the type q r, ' +", which contributes a factor propor-
tional to r, &') ' or r, & )'+') to a matrix element.
This contribution to the matrix element, divided by
the difference between two unperturbed energies, is
proportional to r, ~'+'. It would appear from this re-
sult that the perturbation series is an expansion in
powers of r, '; however, parity considerations of the
perturbation series" show that the coeKcients of odd
powers of r, : are all zero, so the series is really an
expansion in powers of r, :.

Since the unperturbed energies contain a factor r,—&,

the next term in the series expansion of the energy is
proportional to r, '. Contributions of this power come
from the fourth-order part of the expansion (10)
(m=4) in first-order perturbation, and the third-order
part (m=3) in second-order perturbation. These terms
are calculated in Appendix II.

i~ C. B. Clark, Phys. Rev. 109, 1133 (1958).
"Actually Wigner states in a footnote that a more accurate

calculation leads to the value 2.7 r, &, in agreement with the
present result.

'4 The wave functions have a de6nite parity. Thus in a product
of matrix elements,

f'+„F(qa)q drfq F'(qi,)q;d~ fq,F"(q&)e„d~, .

where each wave function appears twice, the result is zero if the
product FF' ~ Il" changes sign when the sign of all the q's is
reversed.

@'mi mii =4mi(ri —Ri) Qm&(rz —Rx) $(ei ' e&), (24)

where p (r—R) is a three-dimensional oscillator func-
tion centered about R. The g's are eigenfunctions of
the first two groups of terms on the right-hand side of
(11); i.e., the ground state differs from the ground
state of (23) by the effect of correlation introduced by
the electron interaction in the last group of terms in
(11)."Since the above set is complete, a solution of the
secular determinant formed from the antisymmetrized
C's also should give the exact energy levels.

Matrix elements between antisymmetrized 4 's readily
may be calculated (Appendix III). These exact matrix
elements are just the values that would be obtained
from the Taylor expansion (10) for the Hamiltonian,
plus additional terms proportional to exp( —cr, '*), plus
the exchange terms which also fall off exponentially
with r, &. The result confirms that with exponential
terms neglected, the solution is that obtained by neg-
lecting exchange and by expanding the interaction in
a Taylor series; therefore, it is the series solution Ep,
calculated in the previous sections. An improved solu-
tion is obtained by treating the erst term of a perturba-
tion expansion exactly, but neglecting the exponential
part in all the higher terms. The result obtained in this
way is simply Ep plus the difference between the exact
and the approximate diagonal elements. The ground-

"The function 4", is given by exp( —-', Z&&gI, ), whereas C,
» exp( —2r. & ~;I ). Since ZI, qp=Z; I;, the two are equal in
the approximation for which all the frequencies are the same and
equal to r, &.
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state energy becomes

(Aep)H(AC p)dr

J'gp(r —R )Pp(r —R&)dr; and H(1,2) is an effective two-
body Hamiltonian given by

H(1,2) =e,H„„,,c,dr. (25)
4

(+12++22) epp)
2m r—1'j 1'—I'2

(AC p)'dr

This result, although obtained in a slightly diferent
way, is equivalent to the erst-order perturbation result
discussed in the Introduction.

The problem of calculating the mean value of a
Hamiltonian in terms of exchange integrals between
nonorthogonal wave functions has been considered in
a previous publication. 5 For small overlap, or large r„

(AC,)H(Ae, )dr

I (AC, )'d

r

e,He,dr ', P Q—J-;;(Pg), (26)

where (I';;) is the average over the spin function $ of
the permutation operator E;;, and J;, is the two-body
"exchange integral. "

From Appendix III, in units of rydbergs and Bohr
radii,

where (P is the probability integral, which for large x
has the asymptotic expansion

exp( —x') ( 1
+

xmas. I 2x' i
When the substitution R;;=(m/3)&r, e;; is made, the
right side of (27) becomes approximately

—Xr, pi'L2. 06(1—.32r, &) exp( —1.55r,&)

+1.16(1—.24r, '*) exp( —2.06r, '*)j. (29)

EXCHANGE INTEGRAL AND ANTI-
FERROMAGNETISM

The spin average P',;)has its maximum value (unity)
for a ferromagnetic state; thus if J;; is positive, the
ferromagnetic state has lowest energy. The correct
expression for the exchange integral is'

J'i= (ij[H(1,2) I ji)—T;~'(ij I H(1,2)
I
ij), (30)

where the letters i, j indicate gp(r& —R;), pp(r& —R;)
which are ground-state oscillator functions centered
about lattice points i and j; T;, is the overlap integral

I

4 gHC ada — 4 gH„„,.C ada
ai 4

1
I 5'(2 'r, 'Rg) —1j, (27)

i~~' R;&.

1 1
+e' P dr yp'(r —Rp) +

kgi, j' I'y —1' I'g —I

+ (31)

It will be noticed that this exchange integral for two
electrons in the many-body problem differs from the
familiar hydrogen molecule exchange in that the eGec-
tive Hamiltonian H(1,2) in the former case is a two-
body Hamiltonian in the approximate field of all the
other charges.

Integrals of the type necessary to calculate J,;
already have been evaluated by Boys." After inte-
grating the second term on the right-hand side of (31)
over a sphere to obtain const+e'p(2m/3)(rP+rp'), one
Ands for the exchange

Jo.=exp( —-,'r ~R ') [2(2/m)'*r, *

2R;;-'5'(2 —'*r;-*R;,) r—R '—
2(P(r, l[-,'R;+-', R;—r[)

+2 P, droop'(r —Rg)
agi, ~ J [-', R;+-',R;—r [

(P(r,-*'[R,—r[) (P(r;&[R,—r[)-

[R,—r[ [R,—r[
(32)

2 Q I
2[-',R;+-,'R;—Rg[

—'—IR;—R„I—'
kgi, j

—IR —R~
I

'), (33)

which by manipulating subscripts may be written as

+4 P LI-', R;;—R
[

—' —R-'].
tgo

(34)

If i and j are nearest or next-nearest neighbors, the
approximate value of (34) is given by —4R;; '. Thus
by replacing 6' with unity, and R;; with (~/3)'r, e...
(32) becomes approximately

J;;=I 1.6r, *' 6e;; 'r, ' I ='r —'j-
Xexp( —0.515N 'r '*) (35)

16 S. I'. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).

where (P(x) again is the probability integral and the
units are rydbergs and Bohr radii.

For the present case of large r, (and assuming
RI,&p'R;;) the integral term in (32) may be approxi-
mated suKciently well by
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J„,„„=(1.6r, '—7r, ') exp( —2.06r, '*). (37)

The integral for the third-nearest neighbors is con-
siderably smaller.

Strictly speaking, as r, —& ~, the exchange integrals
become positive and ferromagnetism should result.
This occurs, however, only when r, has the large value
of 270 or greater, for which case the exchange- energy
is so small as to have no physical interest. For cases of
practical interest, one may assume the dilute electron
gas is antiferromagnetic. Although the exact spin eigen-
function of an antiferromagnetic state is a matter of
some complexity, for the present purpose a two-sublat-
tice approximation will be made. The spins on one
sublattice are taken to be positive; those on the other
negative, Thus, nearest neighbors are antiparallel, for
which (P;,)=0. Next nearest neighbors, which are on
the same sublattice, are parallel and (P,;)=1.

Therefore, from (26) and (37), the exchange energy
per electron is approximately

The only positive contribution to this integral comes
from the

~
ri —r2~

' term in the Hamiltonian.
For nearest and next-nearest neighbors, one has

J„„=(1 6r,. ' 6—5r,. ') exp( —1.55r,&), (36)

cv ——62kr, st2[(k T),272. (40)

The only unusual feature of the calculation is that
only the transverse modes contribute to C&, since the
longitudinal mode behaves like an optical branch. "A
numerical integration was used to obtain the average
of the reciprocal cube of the velocity. The smallness of
C& is due to the large velocity, and it is obvious that
(40) has interest, if any, only in the high-temperature
region. The Debye temperature is given by 2.45
&&10'r, : in degrees Kelvin and therefore the term
"low temperature" includes all ordinary temperatures
for reasonable densities.

APPENDIX I

In the Taylor expansion of

1/Ir' —r
I
=1/IR' —R+u' —u

I

where

g= f 4(f—2f 2+f 2f 2+f 2f 2) and P—f 6(f—2f 2f 2)

After a change in units, the sound velocity, which is
proportional to &u,/f, for a transverse mode becomes
2.2&&10'r, 1{017.7 0—30.6[5&(5'—3P)'*7)' in cm/sec,
and the "low"-temperature specific heat per particle is

(6/2) (7r, ' 1.6r—, ') exp( —2.06r, '*), (38) in (8), the first term obviously is canceled; the next
term

since there are six next-nearest neighbors. In the para-
magnetic state, where there is little correlation between
spins, the next-nearest-neighbor exchange energy would

be approximately one-half the above, and the nearest
neighbor contribution —

2&& (8/2) &&J,. since there are
eight nearest neighbors. The difference between the
energies of these two states, divided by the Boltzmann
constant, gives an order of magnitude for the "Weel"
temperature, 8. The result is given. in Kq. (4). For r,
=9, 0=1000; for r, =16, 0=120; and for r, = 25, 0=15
in degrees Kelvin.

Previously, various calculations have been made on
a free-electron model which shows the dilute electron
gas to be ferroxnagnetic. As already mentioned by
Wigner, ' these calculations are incorrect because of
the lack of correlation. In the free-electron model, the
kinetic energy is proportional to r, ', whereas actually
the electrons occupy only a fraction, (r.~/r, )2= r, &, of
the total volume and therefore have a larger kinetic
energy, proportional to r, (r,')* or r, '.

SPECIFIC HEAT

In zeroth order approximation the specific heat
coming from the vibrational spectra is that for a set
of harmonic oscillators with the energy levels pre-
viously given. For long wavelengths the expression for
the "transverse" modes becomes [from Eq. (18) in
reference 117

th)= fr, '{0.177—0.306[5m (52—3P)17}'* (39)

Q Q (u, —u, ) ~;,1/~R; —R;~,

which would be zero by symmetry except for the fact
it diverges, must be canceled by a corresponding term
from the integrals in (8).

The part of (8) given by

dr
p

dr

r—, ~ r—rj

is a sum over the difference in potential at R, and that
at rj due to a uniform charge density. For a large
spherical region about R;, this difference is (22r/3) p; I, .
The part of the integral outside this spherical region
can be shown to cancel the above linear term in g.

APPENDIX II

The unperturbed wave functions, +, consist of
products of one-dimensional oscillator functions, p (q2),
where e is the quantum number to which the oscillator
is excited. The matrix elements of qs are (q2), ~t
= [(22+1)/24v(k)7'* and (qi), ,=[22/2o~(k)7'*, with all
others zero.

Consider the second-order perturbation from the
ground state, 40, caused by the quantity

P= E E L(.'—.;) ~',7'
iAj il —nj

22 The "longitudinal" mode is given by M, =r, 2/3 0354f2- ,

+0 612Sf'+0(f4)ji.
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Upon substituting for u from Eq. (18) in the text cause of the six ways of permuting three Q s,
and replacing the subscript i with j+m, one obtains

[Qfref' g'Q —(f+f') 8' ']OnB (f)f1 $1$1 $1 )
F= (2A)') —:P P [P P exp(if n, )

tS+P g f 8

flfl +1~1 81

x[e"e "Q-«+ ) -]..*
X[exp(if n )—1]Q(,v(fs) v ]' . (A2)

F=2 ~Ã '* P P-[exp(if n )—1]
mWP ff'sa's"

X[exp(if' n )—1](exp[—i(f+f') n ]—1)

Xe~ Q("Q-((+~)" [v(f») v ]Lv(f's') v-]
1

X[v(—f—f', s") v„]—
= i(21V) l P(p—„,"B(f,f', s,s', s")

where
Xe(.e& .Q ((+(),", (A3)

B= P [sinf n +sinf' n —sin(f+f) n ]
XLv(f,s) v ]Lv(f's') v ]

1
X[ (-f-f"-) v.]—, (A4)

a symmetric function in f and f'.
The second-order perturbation of the energy is de-

termined by g zo ~F0 ~'/(Eo —E ).The matrix element
Ii p is zero for more than three excitations, i.e., if 0
differs from 0'p by more than three one-particle func-
tions Fo =0 because (A3) is cubic in the Q coordinates.
Since, respectively, S and S' times as many triple
excitations as double and single excitations can be
constructed, only the former need be considered. Con-
sequently, for the nonvanishing values,

I[e.e "Q-. "]..I

= 2—i[co (fs)cv(f's')&u(f+ f',s")]—'*. (AS)

After the indicated differentiation the subscript m' is
to be set equal to m.

When the bracket in (A2) is expanded and written
as a six-fold summation, i.e., Pff f

"'
, a factor

P; exp[i(f+f'+f") n; appears on the right-hand side
of (A2). This factor equals E if f"=—f—f'+K, where
K is a reciprocal-lattice vector, and zero otherwise. For
a given value of f+f' there is one, but only one, set of
values for f" and K which makes the delta function
nonvanishing, since f" must be in the basic zone. With
the definition Q(+), =Q( and v(f+K) = v(f), one has [B(ff'ss's") /2

2g ff/gglgfl

X[a)(fs)a)(f's')(o(f+f' s")]—'

X[co(fs)+(0(f's')+co(f+f' s")] ', (A7)

where the substitution
I

Ep E=—2[(—0(fs)+a&(fs')+co(f+f' s")] (A8)

has been made.
From Eq. (10) in the text it is seen that Eq. (A7)

above must be multiplied by (3/ir) I'r, /36 in order to
give the contribution to the energy (in second-order
perturbation) of the third-order terms in the expansion
of the potential energy. The value of the right-hand
side of (A7) has been estimated in two ways: firstly, by
using the independent oscillator model where the co's all
equal r, &; and secondly, by a numerical integration of
the isotropic term in an expansion of the function
F(f,f') in terms of cubic symmetry. This isotropic term
is just the value of the function in the [100]direction.
The result of the first method is —17.5r, 'E and that of
the second is essentially the same. This estimate of
(A7) gives a contribution to the energy of —0.4r, '1lt' ry.

In a similar way it is found, for the first-order
perturbation part, that

(
1

P P [(u' u') 'v "]'—
'"j sQ

where

3 D (fs)-' 1
(A9)

1' naWO f 8 ~(f $)

D„(f,s) = (1—cosf n' )[v(f,s) v„]i,

=6B*(ff'$$'$")
l (Q(.e~ "Q-(~+()" )o-I'

—6B(ff ss s )([Q(,e, Q (( () ]o ) . (A6)

The second term on the right of (A6), which is the
square of the matrix element, goes to zero when
summed over o. since the nonvanishing elements are
either purely real or purely imaginary and the squares
will cancel in pairs. The erst term, the square of the
absolute value of the matrix element, is nonvanishing
for eight triply excited states, n, because of the fact Q&,
contains both qf, and q f,. With these considerations
and the use of (AS),

If Q(, has a nonvanishing matrix element, then the and n =n after the differentiation. A numerical inte-
corresponding element of Q (, (which is equal to e(, ) gration over the points in f space given in Table I gives
likewise does not vanish. Because of this fact and be- the value 10.6$r,, for the right-hand side of (9). This
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value multiplied by (3/~)'~'r, '/4! gives a contribution type
of 0.4r, 'Ã to the energy, which just cancels the second-
order perturbation result. Within the accuracy of these
estimates the constant b in Eq. (3) of the text is zero;
its exact value is evidently smaller than unity.

any(ry —Ry)gng(r2 —R2)&my(ry —Ry)/mal(r2 —Rg)

APPENDIX III

The exchange part of the matrix element

1/1V!J (AC „)(H—E)AC d~

will contain terms of the type J'4„(H—E)P,C dr. A
permutation which interchanges the i and jth electrons
will change u;=r;—R, into u~+R;;. Therefore the inte-
grand will contain factors such as

exp{——,'r, l(u,2+NP)} exp{——,'r, '[(u;
+R;;)'+ (u,+R;,)')},

or

exp{—r, l[(u;+-', R,;)'+(u,+~R,;)']}exp{ ~r, '*R,,'}
The last exponential, equivalent to

exp {——,
' (m/3):r, '*0, '}

comes out of the integral and terms of this type always

appear in the exchange.
Next examine J C„(H—H„„„)C dr, which is done

by comparing the difference between integrals of the

when evaluated exactly and when evaluated term by
term for a Taylor expansion of

~

r&—r&
~

By using generating functions for the Hermite poly-
nominals, the integral can be expressed as a differential
operator operating on p~ and p2 in the expression

" exp{—r, &[(rq—Rq —p~)'+ (r2 —R,—p,)'j}dr

as py p2~ 0.

The exact value of the above integral is

(P[2 &r, &(R +p~2~)
7r8r.9I2

) Ru+pnI

ry —r2 = uy —u2

is expanded and the integration done term by term,
the result obtained is the series expansion for x'r, '~'

X
~
Rq2+p~g~ '. Thus the difference is proportional to

(P(x)—1 which vanishes exponentially as x —& ~.


