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host was based on only the room temperature value of
X»1 in Coo.SFe2,204 because the crystal-held calculation
was not consistent with the experimental data available
for small cobalt concentrations. ' Finally, it should be
remarked that the values of E~, V„and V, of both
hosts may be raised or lowered by a common factor
(say 40%%uz) without impairing seriously agreement with
experiment. The main reason for this is that the value
of V, is not Axed well by the tetragonal distortion of
CoO because of some uncertainty in the wave function
(Kanamori's factor a'+c' —2b') and because of the lack
of assurance that V, should be the same in CoO as in
cobalt-substituted ferrites.

Further work is suggested by the observation that
anisotropy and magnetostriction of cobalt-substituted
magnetite and cobalt-substituted manganese ferrite are
consistent with the orbital doublet model of the Co'+
ion. It would be worthwhile to carry out further
experiments at low temperatures where the highly
specific effects of the cobalt ion would be more striking.
At absolute zero one should expect nearly discontinuous
curves of torque versus angle'4 and radically non-
sinusoidal strain-vs-angle curves which are calculable
from our work. The manganese ferrite host is perhaps
the better choice for such experiments because the
agreement at higher temperatures is better and because

'4 J. Smit, F. K. Lotgering, and U. Enz, J. Appl. Phys. , Suppl.
to Vol. 31, 137S (1960).

it has no structural complications such as the ortho-
rhombic transition" occurring at 120'K in magnetite. "

The manganese-ferrite host has the disadvantage of a
partially inverse (20 jo) structure, which means that
there is a largely disordered distribution of divalent
and trivalent cations on both octahedral and tetra-
hedral sites. This means that some unsymmetric
random crystal field may act on the cobalt ion and
complicate its magnetic properties. In magnetite there
is also a mixture of divalent and trivalent iron on
octahedral sites. This distribution, however, becomes
ordered" in the orthorhombic phase. If the crystal field
due to the ordering has an appreciable effect on the
state of the cobalt ion, then low temperature studies
of cobalt-substituted magnetite would provide valuable
information about magnetite itself as well as about the
specific effects of the cobalt ion.
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A strong external electric field in.a semiconductor produces hot electrons. In the present paper, we investi-
gate theoretically the currents produced by such electrons in a microwave 6eld. We discuss two special cases:
Case A deals with a strong steady electric 6eld on which a weak microwave 6eld of frequency co is super-
imposed. It is found that in addition to a steady current there is an alternating current of frequency co which
leads the microwave 6eld by a phase given by Eq. (30). The phase difference is negligible at low frequency,
but becomes appreciable at frequencies a&= (1/ro) (1/100), at liquid-nitrogen temperature. Here ro is the
electron-phonon relaxation time of thermal electrons. (Interaction with acoustic modes only is considered. )
In case 8, we consider the effect of a strong microwave 6eld by itself. Here the current has a strong com-
ponent of frequency co and a weaker component of frequency 3'. We 6nd phases similar to those in case A.
Results for case B are valid if 1/ro)&a) (1/ro) (1/100) at liquid-nitrogen temperature.

1. INTRODUCTION

'HE purpose of the present paper is to investigate
theoretically the currents introduced by an

alternating field in a nonpolar semiconductor when the
current carriers have average energy per particle ap-
preciably larger than that of the lattice.

The idea of hot carriers was first introduced by

Frohlich' in connection with the theory of dielectric
breakdown. In the presence of an external electric field
F, the free electrons (or holes) in a semiconductor
continuously gain energy from the field. In a steady
state, they must lose it to the lattice at the same
average rate as they gain it. Since the rate of loss of

' H. Frohlich, Proc. Roy. Soc. (London) A188, 521 (1947).
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energy from electrons to lattice increases with increasing
electronic energy, one expects that in a steady state the
mean electronic energy E will be higher than. its mean
energy —,'kTo in the absence of an electric field. (Here
Ts is the temperature of the lattice. ) The electrons can
reach their own thermal equilibrium if they exchange
energy among themselves faster than with the lattice.
A thermal equilibrium among electrons permits one to
treat electrons collectively with an electronic tempera-
ture T=as(E/k). Frohlich and Paranjape' have esti-
mated the rate of loss of energy of a fast electron to the
other electrons through Coulomb interaction; and
compared it with the rate of loss of its energy to the
lattice vibrations. The former rate is proportional to e
the density of electrons, and the latter is independent
of m. A critical density of electrons is thus necessary
to make the energy exchange amongst electrons the
faster process. It is found that densities of order 10"/cm'
are adequate to describe the electrons by a temperature
T) Tp.

Even if the electronic density is so low that they
cannot reach thermal equilibrium, E is always higher
than ~kTp. It follows from Stratton's calculations' that
in this case E divers from ~3kT only by a numerical
factor of order unity.

In the present paper, we neglect factors of order
unity. We treat all electrons as having the same energy
kT, and assume that they interact with the acoustic
modes of lattice vibrations (i.e., we neglect interaction
with the optical modes).

The present problem, even with the above simplifi-
cations, becomes quite unmanageable to solve exactly.
We need to estimate first the electronic temperature
as a function of time t. In the presence of a purely
sinusoidal electric field of low frequency, the electronic
temperature will follow the field adiabatically; i.e., at
every instant, the electronic temperature will assume
a value that can be associated with a steady field at
that instant. Since T is not a simple function of F for
all values of F, T(t) would be rather a complicated
function to handle. If the maximum value of T is much
greater than Ts, the function T(t) would be very
unsymmetrical about the mean value T of T(/). On
the other hand, if we consider a field of very high
frequency, then T would not be able to follow the field
adiabatically. It has already been pointed out by
Frohlich and Paranjape2 that it takes many collisions
for hot electrons to lose their excess energy. If we
associate a time constant 7. with the rise or decay time
of the electronic temperature, then at high frequencies
co) 1/r. At these high frequencies, the electronic tem-
perature would be expected to oscillate nearly sym-
metrically about its mean value. It would then be
possible to develop T(/) in Fourier series in 2ro, and
retain only T and the first time-dependent term.

~ H. Frohlich and B. V. Paranjape, Proc. Phys. Soc. (I,ondon)
B69, 21 (1956).

s R. Stratton, Proc. Royal Soc. (London) A242, 355 (1957).

That is, the difference of the two quantities on the left-
hand side of Eq. (1) gives us the rate of change of
energy r)E/r)t of the electrons.

I et r (T,Te) = rdeno—te the time of relaxation of an
electron of energy kT interacting with lattice vibrations
at a temperature Tp. It is well known that v decreases
as T increases, if T))Te, then r«7.o, where re=—r(Ts, To)
is the time of relaxation obtained from low-field mo-
bilities. In the presen t problem, we need T(t) to calcu-
late j(t) for a given F(t).

Let the electric field be given by

F (t) =Fo+Fi since/, (2)

and assume throughout that MTp((1, so that the con-
ductivity can be replaced by its static value o.= e'r/m
Therefore j(t)=oF is the electric current and hence,

(r)E/r)t) p ——j(t)F(/) = (e'r/m) (Fr+Fr singlet)'. (3)

Here nz is the effective mass of electrons which we
take as constant.

Calculation of (BE//R)r, has been carried out by
several authors. ' ' A simple derivation of their results
can be given if T is sufficiently larger than Tp, i.e., for
suKciently strong fields Ii.

Conservation of energy and momentum lead at once
to the conclusion that the average exchange of energy
per collision between the lattice and an electron is
roughly (kTms')~, where s is the velocity of sound.
Since the probability of absorption or emission of a
lattice quantum is proportional to n or n+1, respec-
tively, the net loss of energy (kTms')' by an electron
requires 2n+1 collisions with the lattice. Here n is the
average number of phonons which can interact with an
electron of energy kT.

n= {expL(kTms') l/kTsj —1) '= Tks(/Tkm)sl (4)

provided
(kTms') l/k To (1.

The above approximation' holds for electric fields in
the range in which the mobility is found proportional
to F ".It thus follows that

(r)E/r)t) z, (kTms') ~/(r X2n)——. (6)

4 B. V. Paranjape, Proc. Phys. Soc. (London) B70, 628 (1957).

2. CALCULATION

The method of calculating the electronic temperature
in time-dependent electric fields is similar to that given
by Frohlich' who has considered the problem of constant
fields. In a steady field, Frohlich equates the rate of
transfer of energy from the electric field to the electrons,
(c)E/N)i, to that from electrons to lattice vibrations,
(c)E/c)/) r,.

In the present problem, since the electric field is a
function of time, we have

(aE/at) p (BE/r)—t) I. r)E/r)t. —— (1)
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Following the usual derivation' of v., one finds

1 1 kT(nzs')' 1 p T p
'

r rp (kTp)**rp &To)

Thus, up to first order in X

sincut —
Lcu r/2 (ag) *'] cosiot

y= ag 1+X——
1+ L (p~ r)'/4ag]

which for T= Tp leads to T= Tp as required.
Thus Eq. (1), using Eqs. (2) to (7), yields

e'r p (Tp l
* ( T ) ' tÃso—(Fo+F»inst)'I —

I

—
I

—
I

m ( T) (To)

where

= agL1+X cosopg sin(pit —
q A)],

tangy= p~r/(2agi).

Case 8
I.et Fp be zero and F& sufficiently large so that Eq.

= kTo . (8) (8) still holds. We then have

It should be noted that Eq. (8) holds rigorously only
if T is suKciently larger than Tp. This should always
hold for high frequency fields of sufficient magnitude,
but not necessarily for low frequencies.

Special Cases

Case A

where
a&'(1—cos2u& rt') =y'+y2 j,

ae = er pF, /ms.

(20)

(21)

As mentioned in the introduction, let co be sufficiently
high so that we can expect the temperature T to
oscillate sinusoidally with frequency 2' and with a
relatively small amplitude around a mean value. We
then expect the solution of Eq. (20) to be of the form

We first consider y=yo+yi+. (22)

Define

F(t) =Fp+F i slnopt,

Fi/F p ——X((1.

ay' = 2e'ro'F o'/rn's' yp= aB.

(9) where yp is assumed time independent and yi is periodic
with frequency 2pi. We further assume

I yiI((yo
Substituting Eq. (22) into Eq. (20), we find for the

time-independent part
(11) (23)

(T/To) =y,

2 (kTp/ms') ro ——r,

t/r= t'

Thus, Eq. (8) becomes

az'(1+1 sino&rt')'=y'+y*'y

To the lowest order in yi, then

aB cos2oprt'= 2yoy, +yolky, ,

(14) so that using Eq. (14)

cos2iot+ (opr/anal) sin2cpt

y1 2aB
1+(~r-)'/ae

(24)

The dot indicates the derivative with respect to t'.
Since ) is small we expect the solution of the form

y=yo+&yi+&'yp+ . .

where

= —pap cosopiy cos(2' —ope),

tan opii =pir/as~.

Equating the coefficients of A.
"we have for the coefficient

of the term independent of A. y= aB[1——,
' costi cos (2opt —ape)]. (26)

Hence, up to first order in y~, the complete solution of
(20) is

a~'= yo'+yo*'yo.

Solution of (17) for sufliciently long t' gives

yp= Gg, l.e., yp=o.

The coe%cient of P requires

2a~' sinp~rt = 2ypyi+yp'yi,
so that

yi= singlet — cos~t .
L1+(co r)o/4aA] 2 (a~) ''

(17) Using Eqs. (4), (7), and (12), it now follows that the
current is given in general by

e'rF (t) e'rpF (t)
j(t)=— (27)

In our two cases, then, remembering that y& is always
assumed small compared with yp, we have in case A

up to order X
I

external field Fp(1+X sinp~t)],

e'v-p Fp
jg(t) =

m (aA)l
5 A. H. Wilson, The Theory of M'equals (Cambridge University

Press, New York, 1954), 2nd ed. XI 1+X(sin&pt ——,'cosy~ sin(pot —q~))], (28)
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which is of the form

where

e'7p Fpj & (t) = —[1+)' sin((ot+g)],
m (ag)'*

(29) ms' (erpFq) *

ccprp)
2kTp ( ms )

(37)

can be expected that our method certainly converges
for case 8 if cur) a&', i.e., from Eqs. (13) and (21),

g COS(pg Sln(P~
tang=

1—
~ cos pg

(30)

X =X((1—
p cos ppg) +4 cos yg sill yA}*) (31)

and in case B,

e'rp I'
j&(t)= ——sincotL1+4

cosign

cos(2ppt —pz)], (32)
5$ Ggg

which is of the form

e'~p ~i
j~(t) =——

Lp& sin(&et+8&)+p& sin(3&st+8&)], (33)
1Ã Cg'

where

y~ ——f (1—
p cos'q~)'+(p smpp~ cospp~) }') (34)

8 slnpg cos+g
tan8g ——+—

1—
8 cos p~

y2
———,

' cosy~, and 62
———

q ~.

3. DISCUSSION

(35)

(36)

The above results are derived on the assumption that
M 7 p&(1. This upper limit on co holds up to qui te high
frequencies, since r p (the relaxation time obtained from
low-6eld mobilities) at liquid-nitrogen temperature is
of the order of 10 "sec. There is no lower limit on the
frequency in case A, since it is assumed here that the
periodic part of the field is very small compared with
the steady field.

We notice that in case A the current has a term
independent of time in zeroth order and a term of the
imposed frequency co in first order with a phase shift g.

In case 8, on the other hand, we obtain in Eq. (33)
a current which has one term with frequency or and
another term with frequency 3'. Of course, a contri-
bution to the 3' frequency term would have been
obtained if we had continued the development of y to
include terms with period 4'. These terms are of smaller
order and therefore can be neglected provided co~ is
large.

From the structure of our differential equation it

It might well be, however, that our solution is rea-
sonably good even at lower frequencies. We note in
this connection that since deviations from Ohm's law
occur when (er pF ~/ms) =1, Eq. (37) requires ppr p) 1/100
at 78'K (assuming ms'=1'K). Thus, an a&rp satisfying
Eq. (37) can also satisfy the condition &vrp((1.

The interesting feature of this experiment is that
application of a strong high-frequency field leads, in
view of the periodic behavior of electronic temperature,
to a current which besides having a strong component
with frequency ~ and a phase shift 6& has a weaker
component of frequency 3'. Equation (35) shows that
the phase shift becomes appreciable at frequencies
much below those in which it would occur in weak
fields. The 3~ component is a direct consequence of
the behavior of the electron temperature: T has a time-
independent term and a term of frequency 2~. Measure-
ment of the current in strong high-frequency fields
would enable us to confirm general features of our
model. It also would permit direct measurement of
(a&r/a~**) a~ accor.ding to Eq. (21) is known in terms
of rp and m which can be measured at weak fields.
Appropriate measurements in strong high-frequency
fields, therefore, would permit experimental deter-
mination of ~, which is a measure of the time required
for hot electrons to cool down.

These conclusions were reached on the basis of our
model which takes account of interaction of electrons
with acoustic modes only, but neglects interaction with
optical modes. The proposed experiment would, there-
fore, be able to test whether or not strong deviations
from this model must be contemplated.
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