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I

The magnetostrictive effect of an orbitally degenerate magnetic ion in a cubic ferromagnet is calculated
in detail using crystal-field theory. In contrast to our previous work, it is not assumed that inter-atomic
exchange energy is large compared with spin-orbit energy. The results are applied to the effect of cobalt
in cobalt-manganese ferrite. It is found that the theory is consistent vith experimental results for the
magnetostrictive parameters X1oo and X111 in the compound Coo ~4~Mnfl. 747Fe1.9904 from 225'—355'K. By
fitting theory to experiment, a trigonal splitting of about 630 cm ' for the ground state of the cobalt ion is
inferred. The trigonal splitting has less than half its value in cobalt-iron ferrite.

I. INTRODUCTION

~ 'HE present work is an extension of an earlier
calculation' of the magnetostrictive eGect of

cobalt substitutions in ferrites. In the earlier work it was
assumed that the exchange energy coupling the cobalt
spin to other spins in the crystal is large compared with
spin-orbit energy. That case, which we may call strong
exchange, was assumed because analysis of magneto-
crystalline anisotropy' had indicated that it applied to
cobalt-substituted magnetite. More recentiy it was
concluded' that the anisotropy of cobalt-substituted
manganese ferrite is consistent with the same orbital-
doublet model found to work in the magnetite case.
However, the magnitude of exchange energy required
to bring about agreement in manganese ferrite was
found to be rot large compared to spin-orbit energy.
We may call this the case of weak exchange.

Having this indication that manganese ferrite is an
interesting host for the study of effects of cobalt-
substitution, it seemed worthwhile to calculate magneto-
striction for the case of weak exchange. In this paper,
the calculation is given and the results are compared
with experimental results for a cobalt-manganese
ferrite. 4

In general, magnetostrictive strain may be considered
to arise from an internal stress which is a function of

' J. C. Slonczewski, J. Phys. Chem. Solids 15, 335 i1960).' J. C. Slonczewski, Phys. Rev. 110, 1341 (1958).
3 J. C. Slonczewski, J. Phys. Chem. Solids 18, 269 (1961).
4 R. F. Pearson and P. J. Harbour (private communication).

the orientation of the spontaneous magnetization. In
the case of an ideal periodic crystal, the stress is
homogeneous and is given by the differential of free
energy with respect to strain. Then the central problem
of the theory of magnetostriction is to calculate the
first-order strain-dependence of the energy levels of the
crystal.

If the magnetic crystal is not periodic, as in a solid
solution, the problem is not changed in any essential
respect as long as the one-ion model applies. It is true
that in this case the internal stress field is not homoge-
neous. From the point of view of the elastic continuum
model of a crystal, it may be regarded as residing at
point singularities centered at the transition-metal ions
or atoms. However, according to the theory of elasticity,
the average strain of an elastically homogeneous body
is equal to the average stress divided by the appropriate
elastic constant. Therefore, the macroscopic magneto-
strictive strain does not depend on the spacial distri-
bution of the stress singularities but only on their
strength and mean density. It follows that the results
of a theory based on a one-ion model will apply for
arbitrary concentration of the magnetostrictive ions if
these ions do not interact with each other (except
through exchange) and if the inhomogeneity of elasticity
due to the solid solution is negligible.

The formal theory, which centers around the calcu-
lation of strain dependence of the energy of an orbitally
degenerate ion, is given in Sec. II. In Sec. III the results
are applied to cobalt-substituted manganese ferrite
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and compared with Pearson's measurements of rnagneto-
striction in Cop. 245Mnp. 74yFe1.9904. Section III also
summarizes the crystal-field information gathered to
date from analyses of anisotropy and magnetostriction
in Co,pe3,04 and Co Fe2Mn1, 04.

metry. The other cases L111], L111], and (111]were

eliminated by considerations of symmetry.
We will need to consider the differential of f, which

has the form
df= kT—dZ/Z,

X,= -', [A „(001)—A „(010)],
lt, = -', A, y (2

—l2—l0), (2)

where the coordinates refer to the cubic axes of the
crystal. If the magnetostriction obeys the standard
two-constant phenomenological expression, then X. and
A., reduce to the standard coeScients A, 1pp and X111,
Wspectively. It is more useful to calculate P, and A.,
than X1pp and A. 111, because the expansion of 3,; in
powers of n„a„, and e, will not converge at su%ciently
low temperatures. These parameters may be measured
by applying the magnetic field and strain gauges in a
(100) plane.

We introduce again the strength,

f;,(n n„n,)=Of(u n„rr, )/BA, ;,
of the elastic stress singularity caused by the presence
of an isolated cobalt impurity. Here f is the free energy.
The stress is caused by the electrostatic forces of the
cobalt ion acting on other ions. By minimizing the
total energy of the crystal in the usual way, we obtain

lt, =2XLf„(010)—f„(001)]/3(Cii—Crs), (3)

lt, =XLf y (110)—f.„(110)]/6C44. (4)

Here E is the number of cobalt ions per unit volume and
C11, C12, and C44 are elastic constants. It is assumed that
the cobalt is distributed equally among the four octa-
hedral sublattices of a spinel structure. In Eqs. (3)
and (4), f„and f,„are evaluated for a cobalt ion lying
on a site for which $111]is the axis of threefold sym-

II. CALCULATION

The approximations made in our strong-exchange
calculation' introduced a relative error of the order
(rrX/2PH)' (rr=effective orbital g factor, lan=spin-orbit
constant, PH= exchange energy) into the final expres-
sion for magnetostrictive strain. This means that the
spin of cobalt was assumed to be deflected by spin-orbit
coupling only slightly from the direction of the molecular
Geld in the state of lowest energy. Since this quantity is
(132/174)' in Co,Mnt, Fes04 '

I as compared to
(132/640)' in Co,Fes,04'] the strong-exchange result
cannot be applied to this compound.

Our general procedure now is the same as before.
Magnetostriction is described by the functional depend-
ence of the strain tensor A, , (rr, n„,n, ) (i,j=x,y, s) on
the orientation of the spontaneous magnetization given
by the direction cosines o. , o.„n,. The particular
magnetostrictive parameters A., and X, to be calculated
were introduced earlier. ' They are defined by the
equations

where k is Boltzman's constant, T is temperature, and
Z is the partition function. Chester5 and others have
discussed a general perturbation expansion for Z having
the form

Z=Zp+ P Z.,
n=1

(6)

Zs ——P, exp( —P'E,),

Zn, = p p I QlQ2I Qsss' ' I QnQ1

Ql Q2 Vn

(7)

Xexp( —P'Est)/ Q (E~r—E~,) (~&0), (8)
i=2

where p'= (kT) ', E, is an eigenvalue of the unperturbed
Hamiltonian, and Vg;g; is a matrix element of the
perturbation. The summation in Eq. (8) carries over
all sets q1q2 q„.

The convergence of this expansion does not neces-
sarily place a restriction on the energy denominators
appearing in Eq. (8). A limiting procedure involving a
proper grouping of terms effectively replaces any
(Es,—Es;) ' w'hich are greater than (kT) ' by a power
series in (kT) '. Thus the expansion parameters are
always Vs,s;/kT or less. For detailed discussion of the
properties of this expansion, Chester's article' should
be consulted.

The quantities f„and f,„will be calculated using a
one-ion Hamiltonian of the form

X=Xp+X,+X,+'U.

Here ~ represents the internal energy of the Co'+
electrons including their kinetic energy, Coulomb
interaction with the nucleus, mutual Coulomb inter-
action, and electrostatic energy in the crystalline
potential for vanishing strain. The exchange energy 3'..
has the form 2pH S, where p is the Bohr magneton, S
is the cobalt spin, and H is the molecular field due to
other spins in the crystal. X, is the spin-orbit energy
and 'U is the increment of crystal-Geld energy depending
on A;;.

The unperturbed basis functions diagonalize
Xs+X,+X,s, where X,s is the submatrix of X, in the
ground multiplet. For the unperturbed states ~Mm) of
the ground orbital doublet, the 2(2S+1) unperturbed
energy levels are

Esr„=
i
2pH+mVpk

iaaf

(M= —S, —S+1, S;m= &1), (10)

where Up ———nP is the eGective spin-orbit parameter

~ G. V. Chester, Phys. Rev. 93& 606 (1954).
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and M is the spin quantum number with spin quantized
along the axis 2PH+mUok. The perturbation consists
of K,'+'U, where K,' is X. less its submatrix in the
doublet manifold. One excited multiplet, an orbital
singlet

I Mo), will be considered. Its unperturbed
energy is

E~o 2PH——M+Ei (M'= —S, —S+1, S), (11)

where E& is the trigonal field splitting. The doublet and
singlet taken together comprise an effective I' state.

When calculating Z in the denominator of Eq. (5),
we apply the expansion (6)—(8) only to the term K,'
of the perturbation. We will further approximate Z by
Zp thereby incurring a relative error of order not
greater than X'/E~AT. When calculating dZ in Eq. (5),
we apply the expansion to the perturbation BC,'+d'U,
where d'U is the 6rst-order differential of 'U with respect
to strain, keeping only terms to first order in d'U in the
final expression.

As shown previously, ' the diagonal matrix elements of
O'U in the ground multiplet give rise to a fixed, non-
magnetostrictive strain. These matrix elements are
neglected in what follows. We have then that dZy=0.
Substituting in Eq. (8) we find

de = —ATdZg/Zo

= —Zo ' P exp( —P'Eir )(MmlBC, 'IM'0)
um~m=yl.

X (M'0
I

d'U
I Mm)/E, +c.c., (12)

df3 kTdZ3/Zo———

exP ( P'Eir—) (Mm
I

d'U
I

M' —m)

x (M' —m IK,'I M"0) (M"0lx, 'I Mm)

X (E~ „—E~„)—'E,—'+c.c. (13)

In these equations c.c. means complex conjugate. We
have neglected Boltzmann factors containing E& in the
exponent. We have also neglected pH and Uo in com-
parison with E, in the energy denominators. In Eq. (13)
we made use of the fact that d'U commutes with S.

Now df2 is of the order Uodv/Ei and df3 may be as
great as order U02dv/EfkT. Both terms are significant
in the temperature range of usual interest. The term
Bf~/BA,; represents the stress singularity caused by
the change in electron density associated with the
"classical" tilting of the electron orbits of the degenerate
orbital states out of the plane normal to the trigonal
axis. The term Bf3/BA, , represents the stress singularity
caused by the electron density introduced by wave
mechanical interference between the degenerate orbital
states by virtue of indirect transitions via the excited
singlet. It may be seen that higher. order dZ„con-
tribute smaller corrections to f.

For a single spin-multiplet, spin-orbit energy may be

X

FIG. 1. Geometrical relationships used in the calculation.

written in the form

ae, =U S=P; ~. ..U,tS,,
where

Ug 2(——U—;+iU„), (15)

Sg——S AS„. (16)

where

f„=V.ZO 'Ei '(Z2+Z3),

f.„=V,Zo-'E (——,'Z, +Z,),

(21)

(22)

Mm'm=yii
m exp (—P'Eia ) (m

I
U,t I 0)

x(MI-s'IM')o (M'I. IM)-+", (23)

exp( —P'Eir„) (M
I „IM')

x(-mlU, tlo)(M'I- s;IM"). (OIU im)

X(M"IoS;IM) (Eir Eir ) '+c.c., (24)—

Z, =&~ exp( —P'E~ ). (25)

Since several axes of spin quantization are involved
in these equations, it is necessary to introduce the
unitary transformations connecting them. The trans-

Here the s' axis of quantization is the trigonal axis k
(see Fig. 1). The axis x' lies in the (H,k) plane. U
operates on the space part of the wave function only and
is equal to —nial in the effective -8 approximation.
Here 1 is the eA'ective orbital angular momentum
operator. For purposes of this calculation, the state
IMm) may be written in the form IM) Im) where the
subscript m speci6es the axis of spin quantization
2pH+mUok.

From our previous work' we have, in the effective
-I' approximation,

(+1IB&/» *I —1)=(—1IB&/»-I+1)=v., (»)
(+1IB'U/»-lo) = —(—1IB'0/»* lo) = —v., (1g)

(+1IB&/B&., l
—1)= (—1IB&/».,I+1)= V„(19)

(/1I w3/BA. „Io) = —(—1IB'0/». „Io) = —,
' v„(2o)

where V, and t/', are real constants. Making the above
substitutions, we have
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P~ fM)o (Mlo=I=Q~ IM)(Mf, (26)

where the spin state
I
M) with no subscript satisfies

S. IM)=M[M). (27)

Making these substitutions and noting that d»7»4. (Q) is

real, we find

m exp(-P'E»r )
MM'm=+ji M"

formation matrix is'

d»r»r (P) =(Ml exP(705') IM')= (M[4 IM'),

which is equivalent to

(Mls=&~ d~M (y)(M'I

In this context only, the subscript p means that
(M I 4, is the initial state (M

I
rotated through the angle

g in the right-hand screw sense about the y' axis.
In our basis we have

sin'89 ——1——', (n,+n„+n,)',

and from Eq. (10)

(36)

E»r =M[(2PH)9+ Uo'+4X3 ~mPHUo

X (~.+~„+~,)]l. (37)

Making these substitutions we find

zo ——Up(2n, —47.—n„) (3-'* sin89)
—' p»I„~1m

Xexp( —p'E»7„) p»r (5+mM')-'*(5 —mM'+1) &

XAr»r(e )d»r»r(& ), (33)

Zo= Up p(Q) (3 sin'gp) ' p»7 ~$ exp( —p'E»r„)
XQ»r. »r" L(5+-mM"+2) (5+mM"+1)
X (S mM—")(5 mM—" 1)]l—d»r»r (m&)

Xd~"~(e )d»r"4.9~~ (& )
X(Ew „Ew—) ', -(34)

p (n) = 2n, o —n -'—n„o+4n,n„—2n, 47,—247„49„(35)

and

X (m I U,t
I
0)d»r»r" ( e)—
X (M"

I
5,

I
M')d»7»r. (—8„)+c.c.,

exp( —P~E»r~)d»r»79 (mQ)
MM'M" mal. ijM"'Mi"

x(—mi U, [0)d~.,~„,(—0,„)(M'"IS,IM")

x (m[U '
I
0)*d~~'"( 0-)—

X(M'"
I
5,

I
M")*/(E»4„E»r„)+c.c.—

Here the angles 0~& are de6ned by Fig. i.
We may use the standard representation for 5+ ..

(M'fS+[M) = (M[S IM')
= (S—M) l(5+M+1) ib»r. , »44.4.

Equations (3), (4), (21), (22), (25), and (33)—(37), and
the formulas for dMM given by Edmonds' are sufficient
to calculate the magnetostrictive parameters.

The magnetostriction calculated here in the "weak
exchange" approximation is correct to all orders in

nX/2'. The perturbation approximations introduced
relative errors of orders 2PH/E~, nX/E~, and (nlrb)'/E, k T.
The thermal populations of all 2(2S+1) states of the
ground multiplet were taken into account. This is to be
compared with the earlier "strong exchange" approxi-

(24') mation' which caused errors of order (nX/2pH)',
(2PH/Er)', nX/Er, and (nX)'/E, kT, and neglected all
thermal populations except those of the two lowest
states with 3f,= —5. Either result applies only if
[47XI(&E, and the choice between the two approxi-
mations hinges on whether 2PH is smaller or greater

(30) than (nXE,)i.

The matrix elements of 'U were calculated assuming
that the phase of

I m) was fixed in the hays frame. For
the matrix elements of U we transform from xys to
x'y's' and obtain, with the help of Table III of
reference 1,

(1I U+lo)=( —1[U lo)*
= Uo(97*&,+4pn„+n, ) (3*' sing())

—', (31)

(m[U, . [m)=mU„m= —1, O, +1,
all other matrix elements vanishing. Here 4p = exp(2779/3).
We have used here the relationship'

~(+1[U. Io) =~*(+1[U„lo)=(+1[U, io)
=~*(—1[ U. lo) =~(—1[U„[o)

= (—1
[
U [0)= —3 'Up, (32)

which hoMs in the effective -I' approximation.

6 A. R. EdInoncjs, Angular 3Io~nentznn in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Chap. 4,

III. COMPARISON WITH EXPERIMENT

We may apply the formulas of the previous section to
the case of Cop. 945 Milo, 747Fe1,9904 (chemically analyzed)
for which P ~00 and P ~~I have been measured by the
strain-gauge method. 4 The temperature range of
270'—360'K is high enough so that we may reasonably
approximate X~00 with X, and A. ii~ with X,. The experi-
mental error is 5% at room temperature and rises to
10%at the highest and lowest temperature used.

The measurements were made in a (111)plane instead
of the (100) plane more appropriate to this calculation.
However, our previous experience' indicates that the
distinction is not very important at the temperatures
under consideration. In view of the many other approxi-
mations which were made, the large amount of addi-
tional computation which would be required to correct
this deficiency is not justified.

For numerical values we take the following: Uo ——132
cm ' and PH=87 cm ' from the analysis of magneto-
crystalline anisotropy, ' and X=0,245X1.35X10"cm '.
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FIG. 2. Magnetostriction vs temperature for Cop. 247Mn0. 747-

Fe1.9904. Each theoretical curve was 6tted to experimental data'
by adjusting one parameter. The quantities X, and ), are equal,
approximately, to the conventional magnetostriction parameters
A, ipp and A, »&, respectively.

Of course an error is incurred in treating II as a constant.
One may expect the temperature variation of H to
resemble that of the spontaneous magnetization M of
MnFe204. Since M(300'K)/M(0'K) =0.67," we expect
H to vary considerably over the temperature range of
the experiment. Although this circumstance may have
an appreciable effect on the temperature dependence of
magnetostriction, the complexity of the magneto-
striction formulas and the existence of other errors do
not make a more precise analysis worthwhile. For the
elastic constants we assume the room-temperature
values of magnetite' (C~~—C» ——1.67X10" erg cm ',
C44=0.97X10" erg cm ') for lack of more appropriate
values.

Using the numerical values given above, the param-
eters X, and X, are completely determined except for
the constants of proportionality V,/E, and V,/E~,
respectively. Adjusting these constants to obtain the
best fit to Pearson's data, we obtain the results shown
in Fig. 2. The numerical values are V,/E~=6. 32 and
V,/K= —4.36. In this comparison, no correction was
made for the magnetostrictive effects of Fe and Mn
ions. An empirical correction would be ambiguous
because of the inconsistency of published' values of

Alii, and polycrystalline magnetostriction for
MnFe204. At the present time we cannot say how
important this correction is.

It should be remarked that the agreement for tem-
perature dependence of magnetostriction is fairly
specific. Phenomenological theories" of magneto-
striction always predict the same temperature depend-
ence for A. ioo as for xiii. However, experiment shows
them to be different and a similar difference appears
in our calculated results as well (at room temperature

TABLE I. Crystal-field parameters (in cm ') of Co'+
substitutions in Fe304 and MnFe204.

Host crystal

n'A

PII
~t
V,
V,

Fe304

—132
320

1600
4000—2500

Cop 25Mnp. 75Fe204
and MnFe204

—132
87

630
4000—2800

the logarithmic slope of X»~ is 50% steeper than that
of X&oo). The reason for this is that the phenomenological
theories consider only spin degrees of freedom, while
orbital as well as spin degrees are important in the
compound considered here.

Concerning the numerical values of V„V„and Et,
we may say that the most important difference between
the hosts Fe304 and MnFe204 in so far as crystal-field
effects g,re concerned is that Fe304 has the inverse spinel
structure and MnFe~04 has an 80% normal structure. "
Since the lattice parameters" are quite similar (Fe304'.
a=8.39 A, 1=0.379; MnFe204' . a=8.50 A, I=0.3846)
the oxygen positions scarcely differ. Therefore the
parameters V, and V, which are governed predomi-
nantly by the nearest oxygen neighbors are expected
to be nearly the same in both hosts. On the other hand,
the value of Et is expected to be sensitive to the cation
distribution because it is much smaller than the cubic
splitting. In fact, point-charge calculations of Tsuya"
indicate that the trigonal potential of the nearest
8-site cations is quite appreciable. Therefore, it is
reasonable to assume that V, and V, are the same for
all ferrite hosts but that Et depends on the cation
distribution. Using the value V,=4000 cm ' estimated
from Kanamori's analysis" of tetragonal distortion in

CoO, we get from the above ratio Et=633 cm ' for
Co,Mn~, Fe204. Substituting this value into the above
ratio for U,/E, , we have U, = —2800 cm '. This value
of V, is consistent with the value of —2500 cm '
deduced' from the room temperature magnetostriction
of Coo.8Fe2,204 (it was assumed that this wholly inverse
spinel had the magnetite value of E,).

We have recapitulated in Table I the numerical
values of crystal-field parameters for the Co'+ ion in
magnetite and manganese ferrite. This table requires
some comments. All of the quantities except V, were
determined by analyzing anisotropy and magneto-
striction of cobalt-iron ferrite and cobalt-manganese
ferrite. The value of V, was estimated from the tetrag-
onal distortion of Co0, using Kanamori's" theoretical
analysis. The values of eX and V, were assumed to be
equal in the two hosts. The value of V, for the Fe304

J. Smit and H. P. J. Wijn, I:errites (John Wiley R Sons, Inc. ,
New York, 1959), Chap. VIII, p. 156.

M. S. Doraiswami, Proc. Indian Acad. Sci. A26, 413 (1947).
9 American Institlte of Physics handbook (Mct raw-Hill Book

Company, Inc. , New York, 1957), pp. 5—223."A recent reference is C. Kittel and J.H. Van Vleck. Phys. Rev.
118, 1231 (1960).

"Reference 7, Chap. VIII, p, 144.
"N. Tsuya, Sci. Repts. Research Insts. Tohoku Univ. Ser. BS,

161 (1957).
'3 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 17, 177, 197

(1957).
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host was based on only the room temperature value of
X»1 in Coo.SFe2,204 because the crystal-held calculation
was not consistent with the experimental data available
for small cobalt concentrations. ' Finally, it should be
remarked that the values of E~, V„and V, of both
hosts may be raised or lowered by a common factor
(say 40%%uz) without impairing seriously agreement with
experiment. The main reason for this is that the value
of V, is not Axed well by the tetragonal distortion of
CoO because of some uncertainty in the wave function
(Kanamori's factor a'+c' —2b') and because of the lack
of assurance that V, should be the same in CoO as in
cobalt-substituted ferrites.

Further work is suggested by the observation that
anisotropy and magnetostriction of cobalt-substituted
magnetite and cobalt-substituted manganese ferrite are
consistent with the orbital doublet model of the Co'+
ion. It would be worthwhile to carry out further
experiments at low temperatures where the highly
specific effects of the cobalt ion would be more striking.
At absolute zero one should expect nearly discontinuous
curves of torque versus angle'4 and radically non-
sinusoidal strain-vs-angle curves which are calculable
from our work. The manganese ferrite host is perhaps
the better choice for such experiments because the
agreement at higher temperatures is better and because

'4 J. Smit, F. K. Lotgering, and U. Enz, J. Appl. Phys. , Suppl.
to Vol. 31, 137S (1960).

it has no structural complications such as the ortho-
rhombic transition" occurring at 120'K in magnetite. "

The manganese-ferrite host has the disadvantage of a
partially inverse (20 jo) structure, which means that
there is a largely disordered distribution of divalent
and trivalent cations on both octahedral and tetra-
hedral sites. This means that some unsymmetric
random crystal field may act on the cobalt ion and
complicate its magnetic properties. In magnetite there
is also a mixture of divalent and trivalent iron on
octahedral sites. This distribution, however, becomes
ordered" in the orthorhombic phase. If the crystal field
due to the ordering has an appreciable effect on the
state of the cobalt ion, then low temperature studies
of cobalt-substituted magnetite would provide valuable
information about magnetite itself as well as about the
specific effects of the cobalt ion.
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Behavior of Hot Electrons in Microwave Fields
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A strong external electric field in.a semiconductor produces hot electrons. In the present paper, we investi-
gate theoretically the currents produced by such electrons in a microwave 6eld. We discuss two special cases:
Case A deals with a strong steady electric 6eld on which a weak microwave 6eld of frequency co is super-
imposed. It is found that in addition to a steady current there is an alternating current of frequency co which
leads the microwave 6eld by a phase given by Eq. (30). The phase difference is negligible at low frequency,
but becomes appreciable at frequencies a&= (1/ro) (1/100), at liquid-nitrogen temperature. Here ro is the
electron-phonon relaxation time of thermal electrons. (Interaction with acoustic modes only is considered. )
In case 8, we consider the effect of a strong microwave 6eld by itself. Here the current has a strong com-
ponent of frequency co and a weaker component of frequency 3'. We 6nd phases similar to those in case A.
Results for case B are valid if 1/ro)&a) (1/ro) (1/100) at liquid-nitrogen temperature.

1. INTRODUCTION

'HE purpose of the present paper is to investigate
theoretically the currents introduced by an

alternating field in a nonpolar semiconductor when the
current carriers have average energy per particle ap-
preciably larger than that of the lattice.

The idea of hot carriers was first introduced by

Frohlich' in connection with the theory of dielectric
breakdown. In the presence of an external electric field
F, the free electrons (or holes) in a semiconductor
continuously gain energy from the field. In a steady
state, they must lose it to the lattice at the same
average rate as they gain it. Since the rate of loss of

' H. Frohlich, Proc. Roy. Soc. (London) A188, 521 (1947).


