1340

tained using an independent technique with much
narrower photon energy resolution.

J. J. Sakurai? has predicted that large polarizations
near 90° c.m. can only be obtained in ‘this energy
region by interferences between first and second pion
resonances of opposite parity, as suggested by Peierls.?
G. Stoppini and C. Pelligrini,’* and L. F. Landovitz
and L. Marshall,®® suggested other models which might
also give rise to appreciable polarizations, even if the
two resonances were both of even parity.

One of us (J. O. M.) has investigated the nature of
most of these models. A qualitative examination of the

12G. Stoppini and C. Pellegrini, Proceedings of the Ninth
Annual Conference on High Energy Physics, Kiev, 1959
(unpublished).
(1135L5 F. Landovitz and L. Marshall, Phys. Rev. Letters 3, 190
959).
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multipole expansions for the cross sections and polari-
zations was supplemented by numerical calculations
using simple resonance formulas for the resonant am-
plitudes and phases. It was concluded that only the
model suggested by Peierls, in which the second state
has odd parity and is photoproduced by electric dipole
radiation, can consistently explain the angular dis-
tributions and polarizations observed in #° photopro-
duction. The distributions appear to contain material
contributions from nonresonant states and from the
third resonance. In some of the models, the sign of the
polarization is inconsistent with the signs of the inter-
ference terms in the angular distribution. The small
size of the cosf term in the angular distribution was
found to be correctly predicted by the Peierls model,
especially when nonresonant s waves are included.
Typical results are shown in Fig. 2.
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A method is given to distinguish between the solutions of the dispersion relations corresponding to
kinematical and dynamical resonances. It consists of studying the resonance energy as a function of the
coupling constant. The method is illustrated for potential scattering, for charged scalar meson theory,

and for resonances due to unstable particles.

I

RESONANCE in the scattering of elementary

particles is called kinematic if it is due to an
intermediate unstable particle. In the description of
such a resonance the unstable particle is put into the
theory to begin with; in more conventional field
theories a new field is introduced for the new particle.
In contrast to this, a dynamical resonance arises solely
from the nature of forces between the initial interacting
particles and therefore must come out automatically
from the dynamical equations without introducing a
new particle.

In view of the discovery of several new resonances!
in the strong interactions of mesons and hyperons, it is
desirable to characterize these two types of resonances
more fully and to distinguish them both theoretically
and experimentally. An experimental characterization
has been given by Chew? according to which the phase

* Supported in part by the Air Force Office of Scientific Re-
search.
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1 M. Alston et al., Phys. Rev. Letters 5, 520 (1960) ; A. Abashian
et al., ibid. 5, 258 (1960); M. Ferro-Lussi et al., Bull. Am. Phys.
Soc. 5, 509 (1960).

2 G. F. Chew, University of California Radiation Laboratory
Report UCRL-9289 (unpublished), p. 56.

shift will change sign near the resonance if it is due to
an unstable particle and for a dynamical resonance the
phase shift, in general, will not change sign. Unfortu-
nately, the dispersion theoretical treatment of the
strong interactions does not distinguish between kine-
matical and dynamical resonances. This is due to a
well-known ambiguity?® of the solutions of the dispersion
relations. The so-called extra solutions of the dispersion
relations can be shown to have resonance character and
to correspond to unstable intermediate states.* The
question has been raised whether conventional field
theories can produce any resonances or whether the
observed resonances are due to the unstable particles?
(composite, elementary, or excited states). If the second
alternative is true, we may conjecture that the failure
of the perturbation theory in strong interactions is not
due to the largeness of the coupling constant but to
the fact that hitherto such unstable intermediate states
have not been considered.

In this note we give a method to characterize and
distinguish the kinematical and dynamical resonances,

8 L. Castillejo, R. H. Dalitz, and F. Dyson, Phys. Rev. 101,
453 (1956).

4 See for example, A. O. Barut and K. H. Ruei, Nuclear Phys.
21, 300 (1960).
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or the two types of solutions of dispersion relations,
by studying the resonance energy as a function of the
coupling constant and discuss their relations to bound
states.

I

The scattering amplitude due to an unstable state is
given in second-order perturbation theory by*

; =<<Z'131|a><a|H1|Q>
Y E—Ee—(at+ib)
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where ¢ and ¢’ are the initial and final states, o the
unstable intermediate state, E, the energy of the
intermediate state, and
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We write the amplitude (1) in the following form:

Ji=aN/(1=X), A=g, ©)
with

X=(Eota+ib)/E; Nay=(¢'|H|a)a|H,|q)/E.

Equation (1) is also valid if the total energy of the
system E is partly discontinuous (i.e., bound states).
The poles of J; will correspond to the bound states
which will lie in the unphysical region for scattering,
E<E,, where E, is the energy corresponding to a
bound state of zero binding energy. E>E, is the
physical region for scattering. Splitting (2) into a
principal part and a part containing 7 /8(E— E"), we
get

a=P f dg" el Ho|¢") |/ (B—E);
@)
”z”f dg" $(E—E")|(a| H|q")|.

In the unphysical region ¢<0, 6=0. Hence the poles
of J, in this region are given by E=E,+a<E, In
the physical region >0, o takes its minimum negative
value at E=E,. At E=0, ¢<0. We expect that the
numerator of the integrand of ¢ has a maximum in
the neighborhood of E=E,. a becomes positive at
higher energies and approaches zero as £— «. From
(3) the resonance energy is given by E,=E,+}a.
Putting e=\f(E,), we get

A= (E,— E.)/ f(E:). ©)

We first plot ¢ as a function of E,, i.e., f(E,); then
using (5) we see that and the form of A as a function
of the resonance energy is given schematically as in
Fig. 1. If the « state has a definite angular momentum
so that one may consider a partial wave scattering
amplitude, and if we make the reasonable assumption
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F1c. 1. Resonance energy F, as a function of the coupling
constant A for kinematical resonances.

that there is only one resonance of that given angular
momentum, then the first branch of the curve between
E,=0 and E,=E, is relevant. The resonance energy
increases with decreasing coupling constant and, as one
may expect, the resonance can occur for arbitrarily
small coupling constants.5

III

We compare now this behavior with that of the
dynamical resonance. Consider first the dynamical
resonances in potential scattering. The scattering
amplitude f(E,7) where 7 is the momentum transfer,
or simply the partial wave amplitude f;(E) can be put
in the form of Eq. (3):

fB)=aN (1=X)= 3 aun, (©)

n=l1

where we have put H;=AV and
X1=XO+iX,®,

By the unitarity condition X;®=[k/(214+1)]Jau\.
X @=0 in the unphysical region, £<0, by the reality
condition in this region, where the bound states are
given by

XU(EN=1; Q)

the corresponding energies will be denoted by E;<0.
In the physical region the resonances—if they exist—
are given by

X O(EN=1, E,>0. (8)

The form of the curves (7) and (8) is given schemati-
cally in Fig. 2(a). Bound-state energies (E;) will
increase monotonically with increasing A. Since X;® is
a continuous function of E, the two curves coincide
at E=0. By Eq. (6) there is no resonance as A — 0,
assuming that the series (6) converges; at the other
end, for any finite A and for a large class of potentials
(regular at origin and sufficiently rapidly going to zero
at infinity) the phase shift is different from #/2 as
E — o for both relativistic and nonrelativistic potential
scattering.® Thus the only way of having a resonance

8 For such a resonance in weak interactions see S. L. Glashow,
Phys. Rev. 118, 316 (1960).
¢ A. O. Barut and K. H. Ruei, J. Math. Phys. 2, 181 (1961).
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F16. 2. Resonance and bound state energy as a function of the
coupling constant for dynamical resonances. (a) Potential scat-
tering; three bound states have been assumed. (b) Charged
scalar meson theory.

for E— 0 is A— . This gives us the general form
of the resonance energy as a function of A. If there is
a single resonance for fixed angular momentum and
fixed A, then only curve (a) will appear.

If we increase A, for a given potential, there may occur
several bound states. One would expect then, for a
fixed A, # resonances if there are » bound states. For
fixed A the phase shift at E= o is zero.® According to
a theorem of Levinson,’ the phase difference §(0)—§()
is equal to n if there are # bound states, none of them
with binding energy zero; and it is equal to (n—%)7
if one of the # bound states has zero binding energy.
Therefore the phase difference between two adjacent
resonances must be = and at E=0 the phase shift is
discontinuous at the resonance points, as can be seen
from Fig. 2.

Exactly the same behavior is found in charged scalar

7"N. Levinson, Kgl. Danske Videnskab. Selskab., Mat.-fys.
Medd. 25, No. 9 (1949).
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meson theory.> The amplitude for the Serber-Lee
point-source model of this theory in one-meson approxi-
mation can be put in the form

e® sind/k= (\/w)/(1—X); X=Nw)[1—(1—u??]. (9)

The bound-state curvesare givenby A=w/[1— (1—w?)?]
and in the physical region (w>1) the resonance curves
are given by A=w [Fig. 2(b)].

Thus the dynamical resonances occur in connection
with the bound states and the resonance energy increases
with 4ncreasing coupling constant. The resonance in
the very low-energy neutron-proton scattering is
precisely of this type.

v

The method of analytic continuation of the coupling
constant (i.e., coupling constant as a function of the
resonance energy) discussed above has been actually
constructed to deal with the solutions of dispersion
relations. Given a solution of the dispersion relation,
it is not clear whether we are dealing with the true
solution or an extra solution. It is important to dis-
tinguish between these two types of solutions because
one can either eliminate the extra solutions by suitable
conditions, or, as the case may be, select the relevant
extra solution if the resonance is due to an unstable
particle. An important case in this connection is the
33-resonance in pion-nucleon scattering. A study of the
analytic continuation of the coupling constant in the
dispersion-type equation of Chew and Low?® for the static
p-wave meson-nucleon scattering reported separately.®

5G. . Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
9 A. O. Barut and K. H. Ruei (to be published).
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The significance of a theory of gravitational equilibrium of concentrated masses is discussed in connection
with possible general relativistic effects in white dwarf stars. The covariant form of phase space and
Liouville’s theorem is developed, using the canonical equations for a particle under gravitational and elec-
tromagnetic forces. The dynamical isotropy of the ideal fluid is formulated, and the associated equations
of state and allowed streaming patterns are found. A covariant kinetic theory yields general relativistic
forms for the Maxwell and Fermi distributions in the case of thermal equilibrium, and limits their streaming
to rigid motion. Rotating fluids are studied in comoving coordinates, and the problem of determining their
gravitational equilibrium is reduced, in most cases of physical interest, to a simple standard form with
constant density and vorticity.

I. INTRODUCTION

HIS paper is one of a series on the theory of great
concentrations of gaseous matter capable also of
rapid circulation. When a test particle falling freely

* This work was supported in part by the Office of Naval Re-
search. Part of the work is based on an otherwise unpublished

from infinity towards the center of a resting mass
reaches a speed comparable to that of light, the con-
centration of matter can be called great. When the
Ph.D. thesis presented by one of the authors (G.E.T.) to the
University of Minnesota in 1951. A preliminary account of Secs.

IT and III was reported to the American Physical Society [Phys.
Rev. 86, 621(A) 51952)].



